1
|
Biricioiu MR, Sarbu M, Ica R, Vukelić Ž, Clemmer DE, Zamfir AD. Advanced profiling and structural analysis of anencephaly gangliosides by ion mobility tandem mass spectrometry. Biochimie 2025; 232:91-104. [PMID: 39884374 DOI: 10.1016/j.biochi.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/02/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Anencephaly, the most severe type of neural tube defects (NTDs) in humans, occurs between the third and fourth gestational weeks (GW), involves the cranial part of the NT and results in the absence of the forebrain and skull. Exposed to amniotic fluid toxicity, neural tissue is degraded and prevented from development. Currently, little is known about the molecular bases of the disease and the possible involvement of glycans. In this context, considering the role played by gangliosides (GGs) in fetal brain development and the previous achievements of ion mobility separation (IMS) mass spectrometry (MS) in biomarker discovery, we report here on the introduction of this advanced analytical technique in NTD research, and its optimization for a comprehensive determination of anencephaly gangliosidome. Three native GG extracts from residual brains of anencephalic fetuses in 28, 35 and 37 GW were comparatively profiled by IMS MS, structurally analyzed by IMS MS/MS, and finally assessed against a native GG mixture from normal fetal brain. IMS MS provided data on 343 anencephaly gangliosides vs. only 157 known before and revealed for the first time the incidence of the entire penta-to octasialylated series. The comparative assay disclosed variations in GG expression with fetal age and a correlation of the pattern with the developmental stage. In contrast to the normal fetal brain, the neural tissue in anencephaly was found to contain an elevated number of polysialogangliosides and a lower expression of O-Ac- and GalNAc-modified glycoforms. These species worth further detailed investigation as new potential anencephaly markers.
Collapse
Affiliation(s)
- Maria Roxana Biricioiu
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Str. 1, 300224, Timisoara, Romania; Department of Physics, West University of Timisoara, Vasile Parvan, 4, 300223, Romania
| | - Mirela Sarbu
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Str. 1, 300224, Timisoara, Romania
| | - Raluca Ica
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Str. 1, 300224, Timisoara, Romania
| | - Željka Vukelić
- Department of Chemistry and Biochemistry, Faculty of Medicine, University of Zagreb, Šalata 2, 10000, Croatia
| | - David E Clemmer
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Alina D Zamfir
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Str. 1, 300224, Timisoara, Romania; Department of Physics, West University of Timisoara, Vasile Parvan, 4, 300223, Romania; Institute for Research, Development and Innovation in Natural and Technical Sciences, Aurel Vlaicu University of Arad, B-dul Revoluţiei 77, 310130, Romania.
| |
Collapse
|
2
|
Wang W, Myers SJ, Ollen-Bittle N, Whitehead SN. Elevation of ganglioside degradation pathway drives GM2 and GM3 within amyloid plaques in a transgenic mouse model of Alzheimer's disease. Neurobiol Dis 2025; 205:106798. [PMID: 39793768 DOI: 10.1016/j.nbd.2025.106798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/05/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that accounts for two-thirds of all dementia cases, and age is the strongest risk factor. In addition to the amyloid hypothesis, lipid dysregulation is now recognized as a core component of AD pathology. Gangliosides are a class of membrane lipids of the glycosphingolipid family and are enriched in the central nervous system (CNS). Ganglioside dysregulation has been implicated in various neurodegenerative diseases, including AD, but the spatial distribution of ganglioside dysregulation with respect to amyloid-beta (Aβ) deposition is not well understood. To address this gap, matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) was employed to investigate the age-dependent expression profiles of the A-series ganglioside species GD1a, GM1, GM2, and GM3 in the APP/PS1 transgenic mouse model of AD in which age-dependent amyloid-beta (Aβ) plaques develop. This study utilized a dual-resolution approach in combination with whole-brain imaging for comprehensive detection of ganglioside expression across neuroanatomical regions via high-resolution imaging of the cerebral cortex and hippocampus to investigate plaque-associated ganglioside alterations. The results revealed age-dependent changes in the complex gangliosides GM1 and GD1a across white and gray matter regions in both wildtype and APP/PS1 mice. Significantly greater levels of simple gangliosides GM2 and GM3 were observed in the cortex and dentate gyrus of the hippocampus in transgenic mice at 12 and 18 m than in age-matched controls. The accumulation of GM3 colocalized with Aβ plaques in aged APP/PS1 mice and correlated with Hexa gene expression, suggesting that ganglioside degradation is a mechanism for the accumulation of GM3. This work is the first to demonstrate that age-related ganglioside dysregulation is spatiotemporally associated with Aβ plaques using sophisticated MSI and reveals novel mechanistic insights into lipid regulation in AD.
Collapse
Affiliation(s)
- Wenxuan Wang
- Vulnerable Brain Lab, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Sarah J Myers
- Vulnerable Brain Lab, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Nikita Ollen-Bittle
- Vulnerable Brain Lab, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Shawn N Whitehead
- Vulnerable Brain Lab, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
3
|
Ollen-Bittle N, Pejhan S, Pasternak SH, Keene CD, Zhang Q, Whitehead SN. Co-registration of MALDI-MSI and histology demonstrates gangliosides co-localize with amyloid beta plaques in Alzheimer's disease. Acta Neuropathol 2024; 147:105. [PMID: 38896306 PMCID: PMC11577574 DOI: 10.1007/s00401-024-02759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurological condition characterized by impaired cognitive function and behavioral alterations. While AD research historically centered around mis-folded proteins, advances in mass spectrometry techniques have triggered increased exploration of the AD lipidome with lipid dysregulation emerging as a critical player in AD pathogenesis. Gangliosides are a class of glycosphingolipids enriched within the central nervous system. Previous work has suggested a shift in a-series gangliosides from complex (GM1) to simple (GM2 and GM3) species may be related to the development of neurodegenerative disease. In addition, complex gangliosides with 20 carbon sphingosine chains have been shown to increase in the aging brain. In this study, we utilized matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) to interrogate the in situ relationship of a-series gangliosides with either 18 or 20 carbon sphingosine chains (d18:1 or d20:1, respectively) in the post-mortem human AD brain. Here, we expanded upon previous literature and demonstrated a significant decrease in the GM1 d20:1 to GM1 d18:1 ratio in regions of the dentate gyrus and entorhinal cortex in AD relative to control brain tissue. Then, we demonstrated that the MALDI-MSI profile of GM3 co-localizes with histologically confirmed amyloid beta (Aβ) plaques and found a significant increase in both GM1 and GM3 in proximity to Aβ plaques. Collectively, this study demonstrates a perturbation of the ganglioside profile in AD, and validates a pipeline for MALDI-MSI and classic histological staining in the same tissue sections. This demonstrates feasibility for integrating untargeted mass spectrometry imaging approaches into a digital pathology framework.
Collapse
Affiliation(s)
- Nikita Ollen-Bittle
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Shervin Pejhan
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, ON, Canada
| | - Stephen H Pasternak
- Schulich School of Medicine and Dentistry, Robarts Research Institute, London, ON, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Qi Zhang
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, ON, Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada.
- Department of Anatomy and Cell Biology, 454 Medical Sciences Building, The University of Western Ontario, London, ON, N6A 3K7, Canada.
| |
Collapse
|
4
|
Schengrund CL. Sphingolipids: Less Enigmatic but Still Many Questions about the Role(s) of Ceramide in the Synthesis/Function of the Ganglioside Class of Glycosphingolipids. Int J Mol Sci 2024; 25:6312. [PMID: 38928016 PMCID: PMC11203820 DOI: 10.3390/ijms25126312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
While much has been learned about sphingolipids, originally named for their sphinx-like enigmatic properties, there are still many unanswered questions about the possible effect(s) of the composition of ceramide on the synthesis and/or behavior of a glycosphingolipid (GSL). Over time, studies of their ceramide component, the sphingoid base containing the lipid moiety of GSLs, were frequently distinct from those performed to ascertain the roles of the carbohydrate moieties. Due to the number of classes of GSLs that can be derived from ceramide, this review focuses on the possible role(s) of ceramide in the synthesis/function of just one GSL class, derived from glucosylceramide (Glc-Cer), namely sialylated ganglio derivatives, initially characterized and named gangliosides (GGs) due to their presence in ganglion cells. While much is known about their synthesis and function, much is still being learned. For example, it is only within the last 15-20 years or so that the mechanism by which the fatty acyl component of ceramide affected its transport to different sites in the Golgi, where it is used for the synthesis of Glu- or galactosyl-Cer (Gal-Cer) and more complex GSLs, was defined. Still to be fully addressed are questions such as (1) whether ceramide composition affects the transport of partially glycosylated GSLs to sites where their carbohydrate chain can be elongated or affects the activity of glycosyl transferases catalyzing that elongation; (2) what controls the differences seen in the ceramide composition of GGs that have identical carbohydrate compositions but vary in that of their ceramide and vice versa; (3) how alterations in ceramide composition affect the function of membrane GGs; and (4) how this knowledge might be applied to the development of therapies for treating diseases that correlate with abnormal expression of GGs. The availability of an updatable data bank of complete structures for individual classes of GSLs found in normal tissues as well as those associated with disease would facilitate research in this area.
Collapse
Affiliation(s)
- Cara-Lynne Schengrund
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
5
|
Bao Z, Yu D, Fu J, Gu J, Xu J, Qin L, Hu H, Yang C, Liu W, Chen L, Wu R, Liu H, Xu H, Guo H, Wang L, Zhou Y, Li Q, Wang X. 2-Hydroxy-5-nitro-3-(trifluoromethyl)pyridine as a Novel Matrix for Enhanced MALDI Imaging of Tissue Metabolites. Anal Chem 2024; 96:5160-5169. [PMID: 38470972 DOI: 10.1021/acs.analchem.3c05235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), which is a label-free imaging technique, determines the spatial distribution and relative abundance of versatile endogenous metabolites in tissues. Meanwhile, matrix selection is generally regarded as a pivotal step in MALDI tissue imaging. This study presents the first report of a novel MALDI matrix, 2-hydroxy-5-nitro-3-(trifluoromethyl)pyridine (HNTP), for the in situ detection and imaging of endogenous metabolites in rat liver and brain tissues by MALDI-MS in positive-ion mode. The HNTP matrix exhibits excellent characteristics, including strong ultraviolet absorption, μm-scale matrix crystals, high chemical stability, low background ion interference, and high metabolite ionization efficiency. Notably, the HNTP matrix also shows superior detection capabilities, successfully showing 185 detectable metabolites in rat liver tissue sections. This outperforms the commonly used matrices of 2,5-dihydroxybenzoic acid and 2-mercaptobenzothiazole, which detect 145 and 120 metabolites from the rat liver, respectively. Furthermore, a total of 152 metabolites are effectively detected and imaged in rat brain tissue using the HNTP matrix, and the spatial distribution of these compounds clearly shows the heterogeneity of the rat brain. The results demonstrate that HNTP is a new and powerful positive-ion mode matrix to enhance the analysis of metabolites in biological tissues by MALDI-MSI.
Collapse
Affiliation(s)
- Zhibin Bao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Dian Yu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Jinxiang Fu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Jianchi Gu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Jia Xu
- Department of Clinical Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, #1 Xiyuangcaochang, Beijing 100091, China
| | - Liang Qin
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Hao Hu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Chenyu Yang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Wenjuan Liu
- Department of Clinical Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, #1 Xiyuangcaochang, Beijing 100091, China
| | - Lulu Chen
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Ran Wu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Haiqiang Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Hualei Xu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Hua Guo
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Lei Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Yijun Zhou
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Qi Li
- Department of Clinical Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, #1 Xiyuangcaochang, Beijing 100091, China
| | - Xiaodong Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| |
Collapse
|
6
|
Ollen-Bittle N, Pejhan S, Pasternak SH, Keene CD, Zhang Q, Whitehead SN. Co-registration of MALDI-MSI and histology demonstrates gangliosides co-localize with amyloid beta plaques in Alzheimer's disease. RESEARCH SQUARE 2024:rs.3.rs-3985371. [PMID: 38463949 PMCID: PMC10925476 DOI: 10.21203/rs.3.rs-3985371/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurological condition characterized by impaired cognitive function and behavioural alterations. While AD research historically centered around mis-folded proteins, advances in mass spectrometry techniques have triggered increased exploration of the AD lipidome with lipid dysregulation emerging as a critical player in AD pathogenesis. Gangliosides are a class of glycosphingolipids enriched within the central nervous system. Previous work has suggested a shift in a-series gangliosides from complex (GM1) to simple (GM2 and GM3) species may be related to the development of neurodegenerative disease. Additionally, complex gangliosides with 20 carbon sphingosine chains have been shown to increase in the aging brain. In this study, we utilized matrix assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) to interrogate the in situ relationship of a-series gangliosides with either 18 or 20 carbon sphingosine chains (d18:1 or d20:1 respectively) in the post-mortem human AD brain. Here, we expanded upon previous literature and demonstrated a significant decrease in the GM1 d20:1:GM1 d18:1 ratio in regions of the dentate gyrus and entorhinal cortex in AD relative to control brain tissue. Then we demonstrated that the MALDI-MSI profile of GM3 co-localizes with histologically confirmed amyloid beta (Aβ) plaques and found a significant increase in both GM1 and GM3 in proximity to Aβ plaques. Collectively these results support past literature and demonstrate a perturbation of the ganglioside profile in AD. Moreover, this work validates a pipeline for MALDI-MSI and classic histological staining in the same tissue sections. This demonstrates feasibility for integrating untargeted mass spectrometry imaging approaches into a digital pathology framework.
Collapse
Affiliation(s)
- Nikita Ollen-Bittle
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 5C1
| | - Shervin Pejhan
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, ON, Canada
| | - Stephen H Pasternak
- Robarts Research Institute, Schulich School of Medicine and Dentistry, London, ON, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 5C1
| | - C Dirk Keene
- Department of Laboratory Medicine & Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Qi Zhang
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, ON, Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 5C1
| |
Collapse
|
7
|
Ollen-Bittle N, Lowry CA, Donovan KE, Andrew RD, Whitehead SN. Validating MALDI-IMS Feasibility in Ex Vivo Brain Slices. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37471497 DOI: 10.1021/jasms.3c00152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) generates unique mass spectra in X/Y coordinates across a tissue sample, thus allowing for the spatial detection and relative quantification of biologic compounds in situ. The soft ionization of MALDI-IMS makes it an ideal technique for high-resolution imaging of complex lipid species. Lipid-based spatial chemical maps derived from MALDI-IMS provide critical insight into the unique molecular profiles of a variety of neurologic diseases. Ex vivo brain slice preparations are a prominent alternative to in vivo animal models for studying many different neurologic conditions. For the first time, we present a feasible protocol for achieving reproducible lipidomic MALDI-IMS data from ex vivo rat brain slices and provide evidence that ex vivo brain slices maintain spatiochemical lipidomic profiles representative of an intact whole brain. We conducted a methods comparison assessing the lipid profiles within the neocortex, striatum, and corpus callosum between coronal sections taken from ex vivo brain slices and the current gold standard tissue preparation method, fresh frozen whole brains. For the first time we demonstrate a technique by which 400 μm ex vivo brain slices can be extracted from an imaging chamber and prepared for MALDI-IMS in a way that preserves their lipidomic integrity. We demonstrate the feasibility of MALDI-IMS in ex vivo brain slices and provide a roadmap for MALDI-IMS utilization in uncharted neuroscience fields.
Collapse
Affiliation(s)
- Nikita Ollen-Bittle
- Department of Anatomy and Cell Biology, Western University, London, Ontario N6A 5C1, Canada
| | - Chloe A Lowry
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Katherine E Donovan
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - R David Andrew
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Western University, London, Ontario N6A 5C1, Canada
- Deparment of Clinical Neurological Sciences, Western University, London, Ontario N6A 5C1, Canada
| |
Collapse
|
8
|
Guo Z. Ganglioside GM1 and the Central Nervous System. Int J Mol Sci 2023; 24:ijms24119558. [PMID: 37298512 DOI: 10.3390/ijms24119558] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 06/12/2023] Open
Abstract
GM1 is one of the major glycosphingolipids (GSLs) on the cell surface in the central nervous system (CNS). Its expression level, distribution pattern, and lipid composition are dependent upon cell and tissue type, developmental stage, and disease state, which suggests a potentially broad spectrum of functions of GM1 in various neurological and neuropathological processes. The major focus of this review is the roles that GM1 plays in the development and activities of brains, such as cell differentiation, neuritogenesis, neuroregeneration, signal transducing, memory, and cognition, as well as the molecular basis and mechanisms for these functions. Overall, GM1 is protective for the CNS. Additionally, this review has also examined the relationships between GM1 and neurological disorders, such as Alzheimer's disease, Parkinson's disease, GM1 gangliosidosis, Huntington's disease, epilepsy and seizure, amyotrophic lateral sclerosis, depression, alcohol dependence, etc., and the functional roles and therapeutic applications of GM1 in these disorders. Finally, current obstacles that hinder more in-depth investigations and understanding of GM1 and the future directions in this field are discussed.
Collapse
Affiliation(s)
- Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
9
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Omura S, Shimizu K, Kuwahara M, Morikawa-Urase M, Kusunoki S, Tsunoda I. Exploratory factor analysis determines latent factors in Guillain-Barré syndrome. Sci Rep 2022; 12:21837. [PMID: 36528634 PMCID: PMC9758666 DOI: 10.1038/s41598-022-26422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Exploratory factor analysis (EFA) has been developed as a powerful statistical procedure in psychological research. EFA's purpose is to identify the nature and number of latent constructs (= factors) underlying a set of observed variables. Since the research goal of EFA is to determine what causes the observed responses, EFA is ideal for hypothesis-based studies, such as identifying the number and nature of latent factors (e.g., cause, risk factors, etc.). However, the application of EFA in the biomedical field has been limited. Guillain-Barré syndrome (GBS) is peripheral neuropathy, in which the presence of antibodies to glycolipids has been associated with clinical signs. Although the precise mechanism for the generation of anti-glycolipid antibodies is unclear, we hypothesized that latent factors, such as distinct autoantigens and microbes, could induce different sets of anti-glycolipid antibodies in subsets of GBS patients. Using 55 glycolipid antibody titers from 100 GBS and 30 control sera obtained by glycoarray, we conducted EFA and extracted four factors related to neuroantigens and one potentially suppressive factor, each of which was composed of the distinct set of anti-glycolipid antibodies. The four groups of anti-glycolipid antibodies categorized by unsupervised EFA were consistent with experimental and clinical findings reported previously. Therefore, we proved that unsupervised EFA could be applied to biomedical data to extract latent factors. Applying EFA for other biomedical big data may elucidate latent factors of other diseases with unknown causes or suppressing/exacerbating factors, including COVID-19.
Collapse
Affiliation(s)
- Seiichi Omura
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Kazuaki Shimizu
- Department of Psychology, Faculty of Sociology, Kansai University, 3-3-35 Yamate-Cho, Suita, Osaka, 564-8680, Japan
| | - Motoi Kuwahara
- Department of Neurology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Miyuki Morikawa-Urase
- Department of Neurology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Susumu Kusunoki
- Department of Neurology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan.
| |
Collapse
|
11
|
Tulin EKC, Yoshimura T, Nakazawa C, Saito S, Kanai K, Kozono T, Nakakita SI, Tonozuka T, Ikenaka K, Nishikawa A. Recombinant lectin Gg for brain imaging of glycan structure and formation in the CNS node of Ranvier. J Neurochem 2022; 163:461-477. [PMID: 36156798 DOI: 10.1111/jnc.15695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/12/2022] [Accepted: 09/13/2022] [Indexed: 01/19/2023]
Abstract
The nodes of Ranvier are unmyelinated gaps in the axon, important for the efficient transmission of action potentials. Despite the identification of several glycoproteins involved in node formation and maintenance, glycans' structure and formation in the node remain unclear. Previously, we developed a recombinant lectin from the Clostridium botulinum neurotoxin complex, specific to the galactose and N-acetylgalactosamine terminal epitopes (Gg). Gg stained Neuro2a cells. Here, we show Gg punctuate staining in mouse brain cryosections. Thus, we hypothesized that Gg could help study glycans in the node of Ranvier. Lectin histochemistry on mouse brain cryosections confirmed that Gg binds specifically to the node of Ranvier in the central nervous system (CNS). Using a combination of lectin blotting, glycosidase treatment on tissue sections, and lectin histochemistry, Gg ligands were identified as α-galactose terminal glycoproteins in the perinodal extracellular matrix. Furthermore, we detected the spatiotemporal distribution of galactosylated glycans in the CNS node of Ranvier in mouse brain tissues at different postnatal times. Finally, we observed impaired clustering of galactosylated glycans in the nodes during demyelination and remyelination in cuprizone-induced demyelination and remyelination mouse model. In conclusion, Gg can serve as a novel brain imaging tool in glycobiology and report glycoprotein formation and alterations in the CNS node of Ranvier. Our findings might serve as a first step to establish the role of glycans in the node of Ranvier.
Collapse
Affiliation(s)
- Ea Kristine Clarisse Tulin
- Department of Applied Life Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Takeshi Yoshimura
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Chiaki Nakazawa
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Shion Saito
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Kyoko Kanai
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Takuma Kozono
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | | | - Takashi Tonozuka
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Atsushi Nishikawa
- Department of Applied Life Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
12
|
Li H, Liu Y, Wang Z, Xie Y, Yang L, Zhao Y, Tian R. Mass spectrometry-based ganglioside profiling provides potential insights into Alzheimer's disease development. J Chromatogr A 2022; 1676:463196. [PMID: 35716462 DOI: 10.1016/j.chroma.2022.463196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 01/01/2023]
Abstract
Gangliosides are a family of glycosphingolipids which are particularly enriched in the nervous system. They play crucial roles in neuroprotection and neurological diseases. Alzheimer's disease (AD) is a neurodegenerative disease with cognitive, judgment and memory dysfunction. In this study, a mass spectrometry-based data-dependent acquisition method assisted with fragmentation characteristics screening by computer algorithm was developed for qualitative and quantitative analysis of gangliosides at low concentration. The developed method was applied to obtain detailed ganglioside species content in hippocampus of model mice (APPswe/PS1dE9 transgenic mice) with AD at 3- to 8-month-old. Up-regulated acetylated and N-acetylgalactosaminylated ganglioside species, and the down-regulated major gangliosides were observed with the development of AD from early to late stage. We speculated that deterioration of AD may be related to the acetylation/N-acetylgalactosaminylation transformation of complex gangliosides due to the inhibition of GD3 synthase activity. Moreover, the ganglioside species di-O-Ac-GT1a (d36:1), O-Ac-GD1b (d36:1) and O-Ac-GD1b (d36:0) were considered as the time-coursed biomarkers, and O-Ac-GT1a (d36:2) could be a candidate for early diagnosis of AD.
Collapse
Affiliation(s)
- Hua Li
- SUSTech Core Research Facilities, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Yilian Liu
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Zhe Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yuping Xie
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206 China
| | - Lijun Yang
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, 518055 China; Department of Oncology, The First Affiliated Hospital of SUSTech and Shenzhen People's Hospital, Shenzhen, 518020, China
| | - Yanni Zhao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Ruijun Tian
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, 518055 China.
| |
Collapse
|
13
|
Engel KM, Prabutzki P, Leopold J, Nimptsch A, Lemmnitzer K, Vos DRN, Hopf C, Schiller J. A new update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 2022; 86:101145. [PMID: 34995672 DOI: 10.1016/j.plipres.2021.101145] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 01/06/2023]
Abstract
Matrix-assisted laser desorption and ionization (MALDI) mass spectrometry (MS) is an indispensable tool in modern lipid research since it is fast, sensitive, tolerates sample impurities and provides spectra without major analyte fragmentation. We will discuss some methodological aspects, the related ion-forming processes and the MALDI MS characteristics of the different lipid classes (with the focus on glycerophospholipids) and the progress, which was achieved during the last ten years. Particular attention will be given to quantitative aspects of MALDI MS since this is widely considered as the most serious drawback of the method. Although the detailed role of the matrix is not yet completely understood, it will be explicitly shown that the careful choice of the matrix is crucial (besides the careful evaluation of the positive and negative ion mass spectra) in order to be able to detect all lipid classes of interest. Two developments will be highlighted: spatially resolved Imaging MS is nowadays well established and the distribution of lipids in tissues merits increasing interest because lipids are readily detectable and represent ubiquitous compounds. It will also be shown that a combination of MALDI MS with thin-layer chromatography (TLC) enables a fast spatially resolved screening of an entire TLC plate which makes the method competitive with LC/MS.
Collapse
Affiliation(s)
- Kathrin M Engel
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Patricia Prabutzki
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Jenny Leopold
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Ariane Nimptsch
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Katharina Lemmnitzer
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - D R Naomi Vos
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Carsten Hopf
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Jürgen Schiller
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany.
| |
Collapse
|
14
|
Olešová D, Majerová P, Hájek R, Piešťanský J, Brumarová R, Michalicová A, Jurkanin B, Friedecký D, Kováč A. GM3 Ganglioside Linked to Neurofibrillary Pathology in a Transgenic Rat Model for Tauopathy. Int J Mol Sci 2021; 22:12581. [PMID: 34830461 PMCID: PMC8622195 DOI: 10.3390/ijms222212581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/24/2022] Open
Abstract
Glycosphingolipids (GSLs) are amphipathic lipids composed of a sphingoid base and a fatty acyl attached to a saccharide moiety. GSLs play an important role in signal transduction, directing proteins within the membrane, cell recognition, and modulation of cell adhesion. Gangliosides and sulfatides belong to a group of acidic GSLs, and numerous studies report their involvement in neurodevelopment, aging, and neurodegeneration. In this study, we used an approach based on hydrophilic interaction liquid chromatography (HILIC) coupled to high-resolution tandem mass spectrometry (HRMS/MS) to characterize the glycosphingolipid profile in rat brain tissue. Then, we screened characterized lipids aiming to identify changes in glycosphingolipid profiles in the normal aging process and tau pathology. Thorough screening of acidic glycosphingolipids in rat brain tissue revealed 117 ganglioside and 36 sulfatide species. Moreover, we found two ganglioside subclasses that were not previously characterized-GT1b-Ac2 and GQ1b-Ac2. The semi-targeted screening revealed significant changes in the levels of sulfatides and GM1a gangliosides during the aging process. In the transgenic SHR24 rat model for tauopathies, we found elevated levels of GM3 gangliosides which may indicate a higher rate of apoptotic processes.
Collapse
Affiliation(s)
- Dominika Olešová
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 84510 Bratislava, Slovakia; (D.O.); (P.M.); (A.M.); (B.J.)
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Kosice, Slovakia
| | - Petra Majerová
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 84510 Bratislava, Slovakia; (D.O.); (P.M.); (A.M.); (B.J.)
| | - Roman Hájek
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, UK;
| | - Juraj Piešťanský
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 83232 Bratislava, Slovakia;
| | - Radana Brumarová
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, and Faculty of Medicine and Dentistry, Palacký University Olomouc, I. P. Pavlova 6, 77900 Olomouc, Czech Republic; (R.B.); (D.F.)
| | - Alena Michalicová
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 84510 Bratislava, Slovakia; (D.O.); (P.M.); (A.M.); (B.J.)
| | - Bernadeta Jurkanin
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 84510 Bratislava, Slovakia; (D.O.); (P.M.); (A.M.); (B.J.)
| | - David Friedecký
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, and Faculty of Medicine and Dentistry, Palacký University Olomouc, I. P. Pavlova 6, 77900 Olomouc, Czech Republic; (R.B.); (D.F.)
| | - Andrej Kováč
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 84510 Bratislava, Slovakia; (D.O.); (P.M.); (A.M.); (B.J.)
| |
Collapse
|
15
|
Chakraberty R, Reiz B, Cairo CW. Profiling of glycosphingolipids with SCDase digestion and HPLC-FLD-MS. Anal Biochem 2021; 631:114361. [PMID: 34478702 DOI: 10.1016/j.ab.2021.114361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 12/01/2022]
Abstract
Lipid components of cells and tissues feature a large diversity of structures that present a challenging problem for molecular analysis. Glycolipids from mammalian cells contain glycosphingolipids (GSLs) as their major glycolipid component, and these structures vary in the identity of the glycan headgroup as well as the structure of the fatty acid and sphingosine (Sph) tails. Analysis of intact GSLs is challenging due to the low abundance of these species. Here, we develop a new strategy for the analysis of lyso-GSL (l-GSL), GSL that retain linkage of the glycan headgroup with the Sph base. The analysis begins with digestion of a GSL sample with sphingolipid ceramide N-deacylase (SCDase), followed by labelling with an amine-reactive fluorophore. The sample was then analyzed by HPLC-FLD-MS and quantitated by addition of an external standard. This method was compared to analysis of GSL glycans after cleavage by an Endoglycoceramidase (EGCase) enzyme and labeling with a fluorophore (2-anthranilic acid, 2AA). The two methods are complementary, with EGCase providing improved signal (due to fewer species) and SCDase providing analysis of lyso-GSL. Importantly the SCDase method provides Sph composition of GSL species. We demonstrate the method on cultured human cells (Jurkat T cells) and tissue homogenate (porcine brain).
Collapse
Affiliation(s)
- Radhika Chakraberty
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Bela Reiz
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Christopher W Cairo
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
16
|
Hasan MM, Mimi MA, Mamun MA, Islam A, Waliullah ASM, Nabi MM, Tamannaa Z, Kahyo T, Setou M. Mass Spectrometry Imaging for Glycome in the Brain. Front Neuroanat 2021; 15:711955. [PMID: 34393728 PMCID: PMC8358800 DOI: 10.3389/fnana.2021.711955] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Glycans are diverse structured biomolecules that play crucial roles in various biological processes. Glycosylation, an enzymatic system through which various glycans are bound to proteins and lipids, is the most common and functionally crucial post-translational modification process. It is known to be associated with brain development, signal transduction, molecular trafficking, neurodegenerative disorders, psychopathologies, and brain cancers. Glycans in glycoproteins and glycolipids expressed in brain cells are involved in neuronal development, biological processes, and central nervous system maintenance. The composition and expression of glycans are known to change during those physiological processes. Therefore, imaging of glycans and the glycoconjugates in the brain regions has become a “hot” topic nowadays. Imaging techniques using lectins, antibodies, and chemical reporters are traditionally used for glycan detection. However, those techniques offer limited glycome detection. Mass spectrometry imaging (MSI) is an evolving field that combines mass spectrometry with histology allowing spatial and label-free visualization of molecules in the brain. In the last decades, several studies have employed MSI for glycome imaging in brain tissues. The current state of MSI uses on-tissue enzymatic digestion or chemical reaction to facilitate successful glycome imaging. Here, we reviewed the available literature that applied MSI techniques for glycome visualization and characterization in the brain. We also described the general methodologies for glycome MSI and discussed its potential use in the three-dimensional MSI in the brain.
Collapse
Affiliation(s)
- Md Mahmudul Hasan
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mst Afsana Mimi
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Md Al Mamun
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ariful Islam
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - A S M Waliullah
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Md Mahamodun Nabi
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Zinat Tamannaa
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoaki Kahyo
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mitsutoshi Setou
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu, Japan
| |
Collapse
|
17
|
Lam BWS, Yam TYA, Chen CP, Lai MKP, Ong WY, Herr DR. The noncanonical chronicles: Emerging roles of sphingolipid structural variants. Cell Signal 2020; 79:109890. [PMID: 33359087 DOI: 10.1016/j.cellsig.2020.109890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023]
Abstract
Sphingolipids (SPs) are structurally diverse and represent one of the most quantitatively abundant classes of lipids in mammalian cells. In addition to their structural roles, many SP species are known to be bioactive mediators of essential cellular processes. Historically, studies have focused on SP species that contain the canonical 18‑carbon, mono-unsaturated sphingoid backbone. However, increasingly sensitive analytical technologies, driven by advances in mass spectrometry, have facilitated the identification of previously under-appreciated, molecularly distinct SP species. Many of these less abundant species contain noncanonical backbones. Interestingly, a growing number of studies have identified clinical associations between these noncanonical SPs and disease, suggesting that there is functional significance to the alteration of SP backbone structure. For example, associations have been found between SP chain length and cardiovascular disease, pain, diabetes, and dementia. This review will provide an overview of the processes that are known to regulate noncanonical SP accumulation, describe the clinical correlations reported for these molecules, and review the experimental evidence for the potential functional implications of their dysregulation. It is likely that further scrutiny of noncanonical SPs may provide new insight into pathophysiological processes, serve as useful biomarkers for disease, and lead to the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Brenda Wan Shing Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ting Yu Amelia Yam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory Aging and Cognition Centre, Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory Aging and Cognition Centre, Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biology, San Diego State University, San Diego, CA, USA; American University of Health Sciences, Long Beach, CA, USA.
| |
Collapse
|
18
|
Sipione S, Monyror J, Galleguillos D, Steinberg N, Kadam V. Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications. Front Neurosci 2020; 14:572965. [PMID: 33117120 PMCID: PMC7574889 DOI: 10.3389/fnins.2020.572965] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Gangliosides are glycosphingolipids highly abundant in the nervous system, and carry most of the sialic acid residues in the brain. Gangliosides are enriched in cell membrane microdomains ("lipid rafts") and play important roles in the modulation of membrane proteins and ion channels, in cell signaling and in the communication among cells. The importance of gangliosides in the brain is highlighted by the fact that loss of function mutations in ganglioside biosynthetic enzymes result in severe neurodegenerative disorders, often characterized by very early or childhood onset. In addition, changes in the ganglioside profile (i.e., in the relative abundance of specific gangliosides) were reported in healthy aging and in common neurological conditions, including Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), stroke, multiple sclerosis and epilepsy. At least in HD, PD and in some forms of epilepsy, experimental evidence strongly suggests a potential role of gangliosides in disease pathogenesis and potential treatment. In this review, we will summarize ganglioside functions that are crucial to maintain brain health, we will review changes in ganglioside levels that occur in major neurological conditions and we will discuss their contribution to cellular dysfunctions and disease pathogenesis. Finally, we will review evidence of the beneficial roles exerted by gangliosides, GM1 in particular, in disease models and in clinical trials.
Collapse
Affiliation(s)
- Simonetta Sipione
- Department of Pharmacology, Faculty of Medicine and Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | |
Collapse
|
19
|
Li H, Xu R, Yang L, Luan H, Chen S, Chen L, Cai Z, Tian R. Combinatory Data-Independent Acquisition and Parallel Reaction Monitoring Method for Deep Profiling of Gangliosides. Anal Chem 2020; 92:10830-10838. [PMID: 32648742 DOI: 10.1021/acs.analchem.0c02313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ganglioside is an important class of lipid species involved in intercellular signaling and various diseases, especially for neurodegenerative diseases. Systematic ganglioside profiling is challenging because of their naturally low abundance and highly diverse species. Herein, a new data-independent acquisition and parallel reaction monitoring (DIA/PRM) method with superior sensitivity was developed. The untargeted DIA acquisition consecutively records all the precursor ion and fragment ions at the same time, while the targeted PRM analysis with versatile higher collisional dissociation generates full MS/MS spectra for structure elucidation and verification. As compared with traditional data-dependent acquisition (DDA), the DIA/PRM method unbiasedly detected the majority of abundant ganglioside species and as low as 50 pg of ganglioside in an untargeted manner. Gangliosides in four kinds of biological samples including the mouse brain, mouse plasma, HeLa cell, and human colon cancer tissue were systematically identified, and low-abundance ganglioside species were further extended on the basis of linear chromatography retention rules of the most frequently detected ganglioside species. A total of 383 ganglioside features were defined with 329 of them derived from 32 ganglioside species. Taking advantage of the high-resolution MS analysis, rare ganglioside species were further elucidated according to their characteristic fragment ions and neutral losses. In total, 18 gangliosides with a ceramide carbon number from 20 to 25 and modified gangliosides, including 18 acetylated, 8 diacetylated, 1 phosphorylated, 36 N-glycolyneuraminic acid (NeuGc)-containing, and 7 di-NeuGc-containing gangliosides, were newly identified. The developed DIA/PRM method therefore generated a rich ganglioside resource for further functional exploration and is a unique alternative for DDA analysis for global ganglioside profiling in various biological systems.
Collapse
Affiliation(s)
- Hua Li
- SUSTech Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China.,State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ruilian Xu
- Department of Oncology, The First Affiliated Hospital of SUSTech and Shenzhen People's Hospital, Shenzhen 518020, China
| | - Lijun Yang
- Department of Oncology, The First Affiliated Hospital of SUSTech and Shenzhen People's Hospital, Shenzhen 518020, China.,Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hemi Luan
- SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shili Chen
- Department of General Surgery and Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lan Chen
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ruijun Tian
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
20
|
Grassi S, Giussani P, Mauri L, Prioni S, Sonnino S, Prinetti A. Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases. J Lipid Res 2020; 61:636-654. [PMID: 31871065 PMCID: PMC7193971 DOI: 10.1194/jlr.tr119000427] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
Lipid rafts are small, dynamic membrane areas characterized by the clustering of selected membrane lipids as the result of the spontaneous separation of glycolipids, sphingolipids, and cholesterol in a liquid-ordered phase. The exact dynamics underlying phase separation of membrane lipids in the complex biological membranes are still not fully understood. Nevertheless, alterations in the membrane lipid composition affect the lateral organization of molecules belonging to lipid rafts. Neural lipid rafts are found in brain cells, including neurons, astrocytes, and microglia, and are characterized by a high enrichment of specific lipids depending on the cell type. These lipid rafts seem to organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating the homeostasis of the brain. The progressive decline of brain performance along with physiological aging is at least in part associated with alterations in the composition and structure of neural lipid rafts. In addition, neurodegenerative conditions, such as lysosomal storage disorders, multiple sclerosis, and Parkinson's, Huntington's, and Alzheimer's diseases, are frequently characterized by dysregulated lipid metabolism, which in turn affects the structure of lipid rafts. Several events underlying the pathogenesis of these diseases appear to depend on the altered composition of lipid rafts. Thus, the structure and function of lipid rafts play a central role in the pathogenesis of many common neurodegenerative diseases.jlr;61/5/636/F1F1f1.
Collapse
Affiliation(s)
- Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy. mailto:
| |
Collapse
|
21
|
Wang WX, Whitehead SN. Imaging mass spectrometry allows for neuroanatomic-specific detection of gangliosides in the healthy and diseased brain. Analyst 2020; 145:2473-2481. [PMID: 32065183 DOI: 10.1039/c9an02270h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gangliosides have a wide variety of biological functions due to their location on the outer leaflet of plasma membranes. They form a critical component of membrane rafts, or ganglioside-enriched microdomains, where they influence the physical properties of the membrane as well as its function. Gangliosides can change their structure to meet their external and internal environmental demands. This ability to change structure makes gangliosides both fascinating and technologically challenging targets to identify and understand. A full understanding on how gangliosides are regulated within the central nervous system (CNS) is critical, as ganglioside dysregulation is observed in the aging brain as well as in several neurodegenerative injuries and diseases such as stroke, Alzheimer's disease, Parkinson's disease, Huntington's disease and several lysosomal storage disorders diseases, including Tay Sach's disease. Mass spectrometry (MS) has become a useful means to better understand ganglioside composition and function. Imaging mass spectrometry (IMS) provides the added benefit of placing analytical information within an anatomical context. This review article will discuss recent advances in MS-based detection methods, with a focus on IMS-based approaches to help understand the spatial-specific role gangliosides in the healthy brain as in CNS injuries and disease.
Collapse
Affiliation(s)
- W X Wang
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, CanadaN6A 5C1.
| | | |
Collapse
|
22
|
Xu G, Li J. Recent advances in mass spectrometry imaging for multiomics application in neurology. J Comp Neurol 2018; 527:2158-2169. [DOI: 10.1002/cne.24571] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/14/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Guang Xu
- Hubei Education Cloud Service Engineering Technology Research CenterHubei University of Education Wuhan China
| | - Jianjun Li
- Human Health TherapeuticsNational Research Council Canada Ottawa Ontario
| |
Collapse
|
23
|
Takeo E, Shimma S. Development of quantitative imaging mass spectrometry (q
-IMS) for drug visualization using animal tissues. SURF INTERFACE ANAL 2018. [DOI: 10.1002/sia.6537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Emi Takeo
- Department of Biotechnology, Graduate School of Engineering; Osaka University; Suita 565-0871 Japan
| | - Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering; Osaka University; Suita 565-0871 Japan
| |
Collapse
|
24
|
Caughlin S, Maheshwari S, Agca Y, Agca C, Harris AJ, Jurcic K, Yeung KKC, Cechetto DF, Whitehead SN. Membrane-lipid homeostasis in a prodromal rat model of Alzheimer's disease: Characteristic profiles in ganglioside distributions during aging detected using MALDI imaging mass spectrometry. Biochim Biophys Acta Gen Subj 2018; 1862:1327-1338. [PMID: 29545134 DOI: 10.1016/j.bbagen.2018.03.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Accumulation of simple gangliosides GM2 and GM3, and gangliosides with longer long-chain bases (d20:1) have been linked to toxicity and the pathogenesis of Alzheimer's disease (AD). Conversely, complex gangliosides, such as GM1, have been shown to be neuroprotective. Recent evidence using matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) has demonstrated that a-series gangliosides are differentially altered during normal aging, yet it remains unclear how simple species are shifting relative to complex gangliosides in the prodromal stages of AD. METHODS Ganglioside profiles in wild-type (Wt) and transgenic APP21 Fischer rats were detected and quantified using MALDI-IMS at P0 (birth), 3, 12, and 20 months of age and each species quantified to allow for individual species comparisons. RESULTS Tg APP21 rats were found to have a decreased level of complex gangliosides in a number of brain regions as compared to Wt rats and showed higher levels of simple gangliosides. A unique pattern of expression was observed in the white matter as compared to gray matter regions, with an age-dependent decrease in GD1 d18:1 species observed and significantly elevated levels of GM3 in Tg APP21 rats. CONCLUSIONS These results are indicative of a pathological shift in ganglioside homeostasis during aging that is exacerbated in Tg APP21 rats. GENERAL SIGNIFICANCE Ganglioside dysregulation may occur in the prodromal stages of neurodegenerative diseases like AD.
Collapse
Affiliation(s)
- Sarah Caughlin
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Shikhar Maheshwari
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Yuksel Agca
- Department of Veterinary Pathobiology, University of Missouri College of Veterinary Medicine, Columbia, MO, USA
| | - Cansu Agca
- Department of Veterinary Pathobiology, University of Missouri College of Veterinary Medicine, Columbia, MO, USA
| | - Aaron J Harris
- Department of Chemistry, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Kristina Jurcic
- Department of Chemistry, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Ken K-C Yeung
- Department of Chemistry, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - David F Cechetto
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| |
Collapse
|