1
|
Rana A, Parashar S, Singh D, Singh K, Chanda D, Pal A, Srivastava R, Sharma SN. Exploring the dermal safety of green-synthesized Ag-TiO 2 nanocomposites for topical applications. RSC Adv 2025; 15:9320-9334. [PMID: 40151534 PMCID: PMC11948306 DOI: 10.1039/d4ra08199d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
We investigated Ag-TiO2 nanocomposites (NCs) synthesized using leaf extracts of Azadirachta indica and Mangifera indica for topical applications. The Ag-TiO2 NCs were first characterized by their spherical shapes, with sizes ranging from 20-26 nm to 5-6 nm, and a zeta potential value between -27 and -23 mV. DLS analysis revealed average particle sizes of 671 nm and 573 nm for Ag-TiO2 NCs synthesized from A. indica and M. indica, respectively. The MICs of the nanocomposites were determined via dilution in both Gram-positive and Gram-negative bacteria to determine the optimal concentration for dermal applications. The cytotoxicity assay (MTT) of ATN and ATM compounds at MICs of 312.5 μg mL-1, 625 μg mL-1, and 1250 μg mL-1 showed that they were nontoxic to fibroblast cells. Further assessments of acute and subacute dermal safety were conducted on Charles Foster rats with NCs applied at 625 μg mL-1, 3125 μg mL-1, and 6250 μg mL-1 concentrations. Observations were made for any signs of dermal toxicity using behavioural and physical indices. In acute dermal toxicity, the NCs were applied once, and in subacute dermal toxicity, NCs were applied once daily for 28 days and observed for any sign of dermal toxicity using observation indices like behavioural changes, edema scores, and erythema scores. Post-experiment analyses of body weight, serum biochemistry, oxidative stress, and hematological profiles revealed that the nanocomposites exhibited significant antimicrobial activity. Notably, the safety evaluations indicated no adverse changes, suggesting these NCs are well-tolerated for dermal applications and show great promise for future topical applications.
Collapse
Affiliation(s)
- Archana Rana
- CSIR-National Physical Laboratory Dr K. S. Krishnan Marg New Delhi 110012 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Shweta Parashar
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) Lucknow India
| | - Diksha Singh
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) Lucknow India
| | - Kavita Singh
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) Lucknow India
| | - Debabrata Chanda
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) Lucknow India
| | - Anirban Pal
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) Lucknow India
| | - Ritu Srivastava
- CSIR-National Physical Laboratory Dr K. S. Krishnan Marg New Delhi 110012 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | | |
Collapse
|
2
|
Serov DA, Gritsaeva AV, Yanbaev FM, Simakin AV, Gudkov SV. Review of Antimicrobial Properties of Titanium Dioxide Nanoparticles. Int J Mol Sci 2024; 25:10519. [PMID: 39408848 PMCID: PMC11476587 DOI: 10.3390/ijms251910519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
There is a growing interest in the utilization of metal oxide nanoparticles as antimicrobial agents. This review will focus on titanium dioxide nanoparticles (TiO2 NPs), which have been demonstrated to exhibit high antimicrobial activity against bacteria and fungi, chemical stability, low toxicity to eukaryotic cells, and therefore high biocompatibility. Despite the extensive research conducted in this field, there is currently no consensus on how to enhance the antimicrobial efficacy of TiO2 NPs. The aim of this review is to evaluate the influence of various factors, including particle size, shape, composition, and synthesis parameters, as well as microbial type, on the antibacterial activity of TiO2 NPs against bacteria and fungi. Furthermore, the review offers a comprehensive overview of the methodologies employed in the synthesis and characterization of TiO2 NPs. The antimicrobial activity of TiO2 exhibits a weak dependence on the microorganism species. A tendency towards increased antibacterial activity is observed with decreasing TiO2 NP size. The dependence on the shape and composition is more pronounced. The most pronounced antimicrobial potential is exhibited by amorphous NPs and NPs doped with inorganic compounds. This review may be of interest to specialists in biology, medicine, chemistry, and other related fields.
Collapse
Affiliation(s)
- Dmitriy A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (A.V.G.); (S.V.G.)
| | - Ann V. Gritsaeva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (A.V.G.); (S.V.G.)
| | - Fatikh M. Yanbaev
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Lobachevskogo St. 2/31, Tatarstan, 420111 Kazan, Russia;
| | - Alexander V. Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (A.V.G.); (S.V.G.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (A.V.G.); (S.V.G.)
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod Institute, Gagarin Av. 23, 603105 Nizhny Novgorod, Russia
| |
Collapse
|
3
|
Marcu Spinu S, Dragoi Cudalbeanu M, Avram I, Fierascu RC, Rosu PM, Morosanu AM, Cimpeanu CL, Babeanu N, Ortan A. Antibacterial and Antitumoral Potentials of Phytosynthesized Silver/Silver Oxide Nanoparticles Using Tomato Flower Waste. Int J Mol Sci 2024; 25:9871. [PMID: 39337358 PMCID: PMC11432378 DOI: 10.3390/ijms25189871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
This study presents the phytosynthesis of silver-based nanoparticles using tomato flower waste extracts for the first time in the literature. The determination of total polyphenolic and flavonoid contents in the extracts showed high gallic acid equivalents (6436-8802 mg GAE/kg dm) and high quercetin equivalents (378-633 mg QE/kg dm), respectively, dependent on the extraction method. By the Ultra Performance Liquid Chromatography technique, 14 polyphenolic compounds were identified and quantified in the tomato flower waste extracts. The abundant phenolic compounds were caffeic acid (36,902-32,217 mg/kg) and chlorogenic acid (1640-1728 mg/kg), and the abundant flavonoid compounds were catechin (292-251 mg/kg) and luteolin (246-108 mg/kg). Transmission electron microscopy of the nanoparticles revealed a particle size range of 14-40 nm. Fourier Transform infrared spectroscopy and X-ray diffraction studies confirmed the phytosynthesis of the silver/silver oxide nanoparticles. These findings hold significant results for the antibacterial and antitumoral potential applications of the obtained nanoparticles, opening new areas for research and development and inspiring further exploration. The impact of this research on the field of metallic nanoparticle phytosynthesis is substantial, as it introduces a novel approach and could lead to significant advancements in the field.
Collapse
Affiliation(s)
- Simona Marcu Spinu
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Mihaela Dragoi Cudalbeanu
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Ionela Avram
- Department of Genetics, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
| | - Radu Claudiu Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM Bucharest, 202 Splaiul Independenței, 060021 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gheorghe Polizu St., 011061 Bucharest, Romania
| | - Petronela Mihaela Rosu
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Ana-Maria Morosanu
- Institute of Biology Bucharest, Romanian Academy, 060031 Bucharest, Romania
| | - Carmen Laura Cimpeanu
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Narcisa Babeanu
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Alina Ortan
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| |
Collapse
|
4
|
Tahir H, Rashid F, Ali S, Summer M, Abaidullah R. Spectrophotometrically, Spectroscopically, Microscopically and Thermogravimetrically Optimized TiO 2 and ZnO Nanoparticles and their Bactericidal, Antioxidant and Cytotoxic Potential: A Novel Comparative Approach. J Fluoresc 2024; 34:2019-2033. [PMID: 37672182 DOI: 10.1007/s10895-023-03367-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 09/07/2023]
Abstract
Current study was aimed to determine the antibacterial, antioxidant and cytotoxic potential of Titanium dioxide nanoparticles (TiO2NPs) and Zinc oxide nanoparticles (ZnONPs). Nanoparticles were characterized by UV-Vis spectrophotometry, particle size analyzer (PSA), fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The Minimum inhibitory concentration (MIC) was determined by standard agar dilution method. Antibacterial potential of nanoparticles was analyzed by standard disc diffusion method against bacterial strains including Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumonia. Different concentrations of NPs (0.2, 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4 mg/mL) were incorporated to evaluate the antimicrobial activity. Antioxidant activity and cytotoxicity of these NPs was analyzed by DPPH method and brine shrimp cytotoxicity assay, respectively. The MIC of TiO2NPs against E. coli, P. aeruginosa and K. pneumoniae was 0.04, 0.08 and 0.07 mg/mL respectively while the MIC of ZnONPs against the above strains was 0.01, 0.015 and 0.01 mg/mL. The maximum zone of inhibition was observed for K. pneumoniae i.e., 20mm and 25mm against TiO2 and ZnO NPs respectively, at 1.4 mg/mL concentration of NPs. The susceptibility of NPs against bacterial strains was evaluated in the following order: K. pneumoniae > P. aeruginosa > E. coli. The antioxidant activity of nanoparticles increased by increasing the concentration of NPs while cytotoxic analysis exhibited non-toxic effect of ZnO NPs while TiO2 had toxic effects on 1.2 and 1.4 mg/mL concentrations. Results revealed that ZnO NPs have more antibacterial and negligible cytotoxic potential in contrast to TiO2 NPs.
Collapse
Affiliation(s)
- Hunaiza Tahir
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Farzana Rashid
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University Lahore, Lahore, Pakistan.
| | - Muhammad Summer
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Rimsha Abaidullah
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
5
|
Munir T, Mahmood A, Abbas N, Sohail A, Khan Y, Rasheed S, Ali I. Fabrication of Zinc Doped Titanium Dioxide Nanoparticles to Inhibit Escherichia coli Growth and Proliferation of Liver Cancer Cells (HepG2). ACS OMEGA 2024; 9:34841-34847. [PMID: 39157136 PMCID: PMC11325502 DOI: 10.1021/acsomega.4c04183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024]
Abstract
The current research is related to the synthesis of different concentrations (0, 3, and 7 wt %) Zn doped TiO2-NPs by using the coprecipitation method. The rutile, anatase crystal structure appeared on different diffracted peaks in TiO2-NPs, and the crystallite size (12 to 24 nm) was calculated by using XRD analysis. The spherical, irregular, porous grain-like surface morphology was observed by SEM analysis, and the identification of different functional modes such as hydroxyl, -C-O, -C-O-C, and Ti-O-Ti attached on the surface of the spectrum was examined via FTIR analysis. After that, the increased absorbance of TiO2-NPs by increasing the Zn concentration in TiO2-NPs was observed by UV-visible analysis. After that, the well diffusion method was performed to measure antibacterial activity, and the MTT assay was used to investigate anticancer activity against the HepG2 cell line. It was observed that the inhibition zone of S. aureus and E. coli increased by increasing the concentration of Zn-doped TiO2-NPs from 2 to 32 mm. The 7 wt % Zn-doped TiO2-NPs provided significant anticancer activity against the liver cancer cell line and antibacterial activity. In the future, Zn doped TiO2-NPs can be used for in vitro analysis against different microbial and animal models for the treatment of cancer.
Collapse
Affiliation(s)
- Tariq Munir
- Department
of Physics, Government College University
Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan
| | - Arslan Mahmood
- Department
of Physics, Government College University
Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan
| | - Numan Abbas
- College
of Physics and Information Technology, Shaanxi
Normal University, Xian 710119, Shaanxi, PR China
| | - Amjad Sohail
- Department
of Physics, Government College University
Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan
| | - Yasin Khan
- Department
of Electrical Engineering, College of Engineering, King Saud University, Riyadh 11362, Saudi Arabia
| | - Saba Rasheed
- Department
of Physics, Government College University
Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan
| | - Irfan Ali
- Department
of Physics, Government College University
Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38000, Pakistan
| |
Collapse
|
6
|
Lozano-Rosas R, Ramos-Garcia R, Salazar-Morales MF, Robles-Águila MJ, Spezzia-Mazzocco T. Evaluation of antifungal activity of visible light-activated doped TiO 2 nanoparticles. Photochem Photobiol Sci 2024; 23:823-837. [PMID: 38568410 DOI: 10.1007/s43630-024-00557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/04/2024] [Indexed: 06/11/2024]
Abstract
Titanium dioxide (TiO2) is a well-known material for its biomedical applications, among which its implementation as a photosensitizer in photodynamic therapy has attracted considerable interest due to its photocatalytic properties, biocompatibility, high chemical stability, and low toxicity. However, the photoactivation of TiO2 requires ultraviolet light, which may lead to cell mutation and consequently cancer. To address these challenges, recent research has focused on the incorporation of metal dopants into the TiO2 lattice to shift the band gap to lower energies by introducing allowed energy states within the band gap, thus ensuring the harnessing of visible light. This study presents the synthesis, characterization, and application of TiO2 nanoparticles (NPs) in their undoped, doped, and co-doped forms for antimicrobial photodynamic therapy (APDT) against Candida albicans. Blue light with a wavelength of 450 nm was used, with doses ranging from 20 to 60 J/cm2 and an NP concentration of 500 µg/ml. It was observed that doping TiO2 with Cu, Fe, Ag ions, and co-doping Cu:Fe into the TiO2 nanostructure enhanced the visible light photoactivity of TiO2 NPs. Experimental studies were done to investigate the effects of different ions doped into the TiO2 crystal lattice on their structural, optical, morphological, and chemical composition for APDT applications. In particular, Ag-doped TiO2 emerged as the best candidate, achieving 90-100% eradication of C. albicans.
Collapse
Affiliation(s)
- Ricardo Lozano-Rosas
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Departamento de Óptica, Luis Enrique Erro #1 Sta María Tonantzintla, 72840, Puebla, Mexico
| | - Rubén Ramos-Garcia
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Departamento de Óptica, Luis Enrique Erro #1 Sta María Tonantzintla, 72840, Puebla, Mexico
| | - Mayra F Salazar-Morales
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Departamento de Óptica, Luis Enrique Erro #1 Sta María Tonantzintla, 72840, Puebla, Mexico
| | - María Josefina Robles-Águila
- Centro de Investigación en Dispositivos Semiconductores, Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Edificio 105 C, Boulevard 14 Sur y Av. San Claudio, Col. San Manuel, C. P. 72570, Puebla, Puebla, Mexico
| | - Teresita Spezzia-Mazzocco
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Departamento de Óptica, Luis Enrique Erro #1 Sta María Tonantzintla, 72840, Puebla, Mexico.
| |
Collapse
|
7
|
Huang X, Li C, Wei T, Zou L, Liu N, Bai C, Yao Y, Wang Z, Li B, Qiao D, Niu Y, Wang X, Tang M. Influence of silver doping on pro-inflammatory and pro-fibrogenic effects of nano-titanium dioxide in murine lung. ENVIRONMENTAL TOXICOLOGY 2024; 39:1388-1401. [PMID: 37986241 DOI: 10.1002/tox.24045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/25/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023]
Abstract
Silver is usually loaded on nano-titanium dioxide (TiO2 ) through photodeposition method to enhance visible-light catalytic functions for environment purification. However, little is known about how the toxicity changes after silver doping and how the physicochemical properties of loaded components affect nanocomposite toxicity. In this study, Ag-TiO2 with different sizes and contents of silver particles were obtained by controlling photodeposition time (PDT) and silver addition amount. Pro-inflammatory and pro-fibrogenic responses of these photocatalysts were evaluated in male C57BL/6J murine lung. As a result, silver was well assembled on TiO2 , promoting visible-light catalytic activity. Notably, the size of silver particles increased with PDT. Meanwhile, toxicity results showed that pure TiO2 (P25) mainly caused neutrophil infiltration, while 2 wt/wt% silver-loaded TiO2 recruited more types of inflammatory cells in the lung. Both of them caused the increase of proinflammatory cytokines while decreasing the anti-inflammatory cytokine in bronchoalveolar lavage fluid. However, 2 wt/wt% silver doping also accelerated the lung pro-fibrogenic response of photocatalysts in the subacute phase from evidence of collagen deposition and hydroxyproline concentrations. Mechanistically, the overactivation of TGFBR2 receptors in TGF-β/smads pathways by silver-loaded TiO2 rather than pure TiO2 may be the reason why silver-loaded TiO2 can promote pro-fibrogenic effect response. Intriguingly, the increased toxicity caused by silver doping can be rescued by increasing the size of the loaded silver or decreasing the silver amount. These results may be important for the new understanding of the toxicity of TiO2 -based photocatalysts.
Collapse
Affiliation(s)
- Xiaoquan Huang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Congcong Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Lingyue Zou
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Na Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Changcun Bai
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Binjing Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Dong Qiao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yiru Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Xiaoli Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Thakur N, Thakur N, Kumar A, Thakur VK, Kalia S, Arya V, Kumar A, Kumar S, Kyzas GZ. A critical review on the recent trends of photocatalytic, antibacterial, antioxidant and nanohybrid applications of anatase and rutile TiO2 nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169815. [PMID: 38184262 DOI: 10.1016/j.scitotenv.2023.169815] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have become a focal point of research due to their widespread daily use and diverse synthesis methods, including physical, chemical, and environmentally sustainable approaches. These nanoparticles possess unique attributes such as size, shape, and surface functionality, making them particularly intriguing for applications in the biomedical field. The continuous exploration of TiO2 NPs is driven by the quest to enhance their multifunctionality, aiming to create next-generation products with superior performance. Recent research efforts have specifically focused on understanding the anatase and rutile phases of TiO2 NPs and evaluating their potential in various domains, including photocatalytic processes, antibacterial properties, antioxidant effects, and nanohybrid applications. The hypothesis guiding this research is that by exploring different synthesis methods, particularly chemical and environmentally friendly approaches, and incorporating doping and co-doping techniques, the properties of TiO2 NPs can be significantly improved for diverse applications. The study employs a comprehensive approach, investigating the effects of nanoparticle size, shape, dose, and exposure time on performance. The synthesis methods considered encompass both conventional chemical processes and environmentally friendly alternatives, with a focus on how doping and co-doping can enhance the properties of TiO2 NPs. The research unveils valuable insights into the distinct phases of TiO2 NPs and their potential across various applications. It sheds light on the improved properties achieved through doping and co-doping, showcasing advancements in photocatalytic processes, antibacterial efficacy, antioxidant capabilities, and nanohybrid applications. The study concludes by emphasizing regulatory aspects and offering suggestions for product enhancement. It provides recommendations for the reliable application of TiO2 NPs, addressing a comprehensive spectrum of critical aspects in TiO2 NP research and application. Overall, this research contributes to the evolving landscape of TiO2 NP utilization, offering valuable insights for the development of innovative and high-performance products.
Collapse
Affiliation(s)
- Naveen Thakur
- Department of Physics, Career Point University, Hamirpur, Himachal Pradesh 176041, India.
| | - Nikesh Thakur
- Department of Physics, Career Point University, Hamirpur, Himachal Pradesh 176041, India
| | - Anil Kumar
- School of chemical and metallurgical engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings West Mains Road, Edinburgh EH9 3JG, United Kingdom
| | - Susheel Kalia
- Department of Chemistry, ACC Wing (Academic Block) Indian Military Academy, Dehradun, Uttarakhand 248007, India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, Uttarakhand 249405, India
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, Uttarakhand 249405, India
| | - Sunil Kumar
- Department of Animal Sciences, Central University of Himachal Pradesh, Kangra, Shahpur, Himachal Pradesh 176206, India
| | - George Z Kyzas
- Hephaestus Laboratory, Department of Chemistry, School of Science, International Hellenic University, Kavala, Greece.
| |
Collapse
|
9
|
Sobhani-Nasab A, Banafshe HR, Atapour A, Khaksary Mahabady M, Akbari M, Daraei A, Mansoori Y, Moradi Hasan-Abad A. The use of nanoparticles in the treatment of infectious diseases and cancer, dental applications and tissue regeneration: a review. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 5:1330007. [PMID: 38323112 PMCID: PMC10844477 DOI: 10.3389/fmedt.2023.1330007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/12/2023] [Indexed: 02/08/2024] Open
Abstract
The emergence of nanotechnology as a field of study can be traced back to the 1980s, at which point the means to artificially produce, control, and observe matter on a nanometer level was made viable. Recent advancements in technology have enabled us to extend our reach to the nanoscale, which has presented an unparalleled opportunity to directly target biomolecular interactions. As a result of these developments, there is a drive to arise intelligent nanostructures capable of overcoming the obstacles that have impeded the progress of conventional pharmacological methodologies. After four decades, the gradual amalgamation of bio- and nanotechnologies is initiating a revolution in the realm of disease detection, treatment, and monitoring, as well as unsolved medical predicaments. Although a significant portion of research in the field is still confined to laboratories, the initial application of nanotechnology as treatments, vaccines, pharmaceuticals, and diagnostic equipment has now obtained endorsement for commercialization and clinical practice. The current issue presents an overview of the latest progress in nanomedical strategies towards alleviating antibiotic resistance, diagnosing and treating cancer, addressing neurodegenerative disorders, and an array of applications, encompassing dentistry and tuberculosis treatment. The current investigation also scrutinizes the deployment of sophisticated smart nanostructured materials in fields of application such as regenerative medicine, as well as the management of targeted and sustained release of pharmaceuticals and therapeutic interventions. The aforementioned concept exhibits the potential for revolutionary advancements within the field of immunotherapy, as it introduces the utilization of implanted vaccine technology to consistently regulate and augment immune functions. Concurrently with the endeavor to attain the advantages of nanomedical intervention, it is essential to enhance the unceasing emphasis on nanotoxicological research and the regulation of nanomedications' safety. This initiative is crucial in achieving the advancement in medicine that currently lies within our reach.
Collapse
Affiliation(s)
- Ali Sobhani-Nasab
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Banafshe
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Akbari
- Department of Surgery, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
10
|
Paramo L, Jiménez-Chávez A, Medina-Ramirez IE, Böhnel HN, Escobar-Alarcón L, Esquivel K. Biocompatibility Evaluation of TiO 2, Fe 3O 4, and TiO 2/Fe 3O 4 Nanomaterials: Insights into Potential Toxic Effects in Erythrocytes and HepG2 Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2824. [PMID: 37947670 PMCID: PMC10648038 DOI: 10.3390/nano13212824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Nanomaterials such as titanium dioxide and magnetite are increasingly used in several fields, such as water remediation and agriculture. However, this has raised environmental concerns due to potential exposure to organisms like humans. Nanomaterials can cause adverse interactions depending on physicochemical characteristics, like size, morphology, and composition, when interacting with living beings. To ensure safe use and prevent the risk of exposure to nanomaterials, their biocompatibility must be assessed. In vitro cell cultures are beneficial for assessing nanomaterial-cell interactions due to their easy handling. The present study evaluated the biocompatibility of TiO2, Fe3O4, and TiO2/Fe3O4 nanomaterials thermally treated at 350 °C and 450 °C in erythrocytes and HepG2 cells. According to the hemolysis experiments, non-thermally treated NMs are toxic (>5% hemolysis), but their thermally treated counterparts do not present toxicity (<2%). This behavior indicates that the toxicity derives from some precursor (solvent or surfactant) used in the synthesis of the nanomaterials. All the thermally treated nanomaterials did not show hemolytic activity under different conditions, such as low-light exposure or the absence of blood plasma proteins. In contrast, non-thermally treated nanomaterials showed a high hemolytic behavior, which was reduced after the purification (washing and thermal treatment) of nanomaterials, indicating the presence of surfactant residue used during synthesis. An MTS cell viability assay shows that calcined nanomaterials do not reduce cell viability (>11%) during 24 h of exposure. On the other hand, a lactate dehydrogenase leakage assay resulted in a higher variability, indicating that several nanomaterials did not cause an increase in cell death as compared to the control. However, a holotomographic microscopy analysis reveals a high accumulation of nanomaterials in the cell structure at a low concentration (10 µg mL-1), altering cell morphology, which could lead to cell membrane damage and cell viability reduction.
Collapse
Affiliation(s)
- Luis Paramo
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Querétaro 76010, Mexico;
| | - Arturo Jiménez-Chávez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ciudad de Mexico 07360, Mexico;
| | | | - Harald Norbert Böhnel
- Centro de Geociencias, Universidad Nacional Autónoma de México, Blvd. Juriquilla, 3001, Santiago de Querétaro 76230, Mexico;
| | - Luis Escobar-Alarcón
- Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Carr. México-Toluca, La Marquesa, Ocoyoacac 52750, Mexico;
| | - Karen Esquivel
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Querétaro 76010, Mexico;
| |
Collapse
|
11
|
Jovanović D, Schön JC, Zagorac D, Zarubica A, Matović B, Zagorac J. Energy Landscape of Relaxation and Interaction of an Amino Acid, Glutamine (L), on Pristine and Au/Ag/Cu-Doped TiO 2 Surfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2688. [PMID: 37836329 PMCID: PMC10574630 DOI: 10.3390/nano13192688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Studying the interaction of inorganic systems with organic ones is a highly important avenue for finding new drugs and treatment methods. Tumor cells show an increased demand for amino acids due to their rapid proliferation; thus, targeting their metabolism is becoming a potential oncological therapeutic strategy. One of the inorganic materials that show antitumor properties is titanium dioxide, while its doping was found to enhance interactions with biological systems. Thus, in this study, we investigated the energy landscape of glutamine (L), an amino acid, on pristine and doped TiO2 surfaces. We first locally optimized 2D-slab structures of pristine and Au/Ag/Cu-doped anatase (001 and 101 surfaces) and similarly optimized a single molecule of glutamine in vacuum. Next, we placed the pre-optimized glutamine molecule in various orientations and on a variety of locations onto the relaxed substrate surfaces (in vacuum) and performed ab initio relaxations of the molecule on the substrate slabs. We employed the DFT method with a GGA-PBE functional implemented in the Quantum Espresso code. Comparisons of the optimized conformations and electronic structures of the amino acid in vacuum and on the surfaces yield useful insights into various biological processes.
Collapse
Affiliation(s)
- Dušica Jovanović
- Materials Science Laboratory, Institute of Nuclear Sciences Vinča, University of Belgrade, 11000 Belgrade, Serbia; (D.J.); (D.Z.); (B.M.)
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, 18000 Niš, Serbia;
| | | | - Dejan Zagorac
- Materials Science Laboratory, Institute of Nuclear Sciences Vinča, University of Belgrade, 11000 Belgrade, Serbia; (D.J.); (D.Z.); (B.M.)
- Center for Synthesis, Processing and Characterization of Materials for Application in the Extreme Conditions-Cextreme Lab, 11000 Belgrade, Serbia
| | - Aleksandra Zarubica
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, 18000 Niš, Serbia;
| | - Branko Matović
- Materials Science Laboratory, Institute of Nuclear Sciences Vinča, University of Belgrade, 11000 Belgrade, Serbia; (D.J.); (D.Z.); (B.M.)
- Center for Synthesis, Processing and Characterization of Materials for Application in the Extreme Conditions-Cextreme Lab, 11000 Belgrade, Serbia
| | - Jelena Zagorac
- Materials Science Laboratory, Institute of Nuclear Sciences Vinča, University of Belgrade, 11000 Belgrade, Serbia; (D.J.); (D.Z.); (B.M.)
- Center for Synthesis, Processing and Characterization of Materials for Application in the Extreme Conditions-Cextreme Lab, 11000 Belgrade, Serbia
| |
Collapse
|
12
|
Kamal Z, Said AH, Ebnalwaled AA, Rehan IF, Zigo F, Farkašová Z, Allam M. Genetic effects of chemically and biosynthesized titanium dioxide nanoparticles in vitro and in vivo of female rats and their fetuses. Front Vet Sci 2023; 10:1142305. [PMID: 37614463 PMCID: PMC10442826 DOI: 10.3389/fvets.2023.1142305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/13/2023] [Indexed: 08/25/2023] Open
Abstract
With the increase in nanoparticles (NPs) products on the market, the possibility of animal and human exposure to these materials will increase. The smaller size of NPs facilitates their entrance through placental barriers and allows them to accumulate in embryonic tissue, where they can then be a source of different developmental malformations. Several toxicity studies with chemically synthesized titanium dioxide NPs (CTiO2 NPs) have been recently carried out; although there is insufficient data on exposure to biosynthesized titanium dioxide NPs (BTiO2 NPs) during pregnancy, the study aimed to evaluate the ability of an eco-friendly biosynthesis technique using garlic extract against maternal and fetal genotoxicities, which could result from repeated exposure to TiO2 NPs during gestation days (GD) 6-19. A total of fifty pregnant rats were divided into five groups (n = 10) and gavaged CTiO2 NPs and BTiO2 NPs at 100 and 300 mg/kg/day concentrations. Pregnant rats on GD 20 were anesthetized, uterine horns were removed, and then embryotoxicity was performed. The kidneys of the mothers and fetuses in each group were collected and then maintained in a frozen condition. Our results showed that garlic extract can be used as a reducing agent for the formation of TiO2 NPs. Moreover, BTiO2 NPs showed less toxic potential than CTiO2 NPs in HepG2 cells. Both chemically and biosynthesized TiO2 NP-induced genetic variation in the 16S rRNA sequences of mother groups compared to the control group. In conclusion, the genetic effects of the 16S rRNA sequence induced by chemically synthesized TiO2 NPs were greater than those of biosynthesized TiO2 NPs. However, there were no differences between the control group and the embryo-treated groups with chemically and biologically synthesized TiO2 NPs.
Collapse
Affiliation(s)
- Zeinab Kamal
- Department of Zoology, Faculty of Science, South Valley University, Qena, Egypt
| | - Alaa H. Said
- Electronic and Nano Devises Lab, Faculty of Science, South Valley University, Qena, Egypt
| | - A. A. Ebnalwaled
- Electronic and Nano Devises Lab, Faculty of Science, South Valley University, Qena, Egypt
| | - Ibrahim F. Rehan
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Menoufia University, Shebin Alkom, Egypt
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - František Zigo
- Department of Nutrition and Animal Husbandry, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Zuzana Farkašová
- Department of Nutrition and Animal Husbandry, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Mohammad Allam
- Department of Zoology, Faculty of Science, Luxor University, Luxor, Egypt
| |
Collapse
|
13
|
Xin J, Wang J, Yao Y, Wang S, Zhang Z, Yao C. Improved Simulated-Daylight Photodynamic Therapy and Possible Mechanism of Ag-Modified TiO 2 on Melanoma. Int J Mol Sci 2023; 24:ijms24087061. [PMID: 37108223 PMCID: PMC10138875 DOI: 10.3390/ijms24087061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/01/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Simulated-daylight photodynamic therapy (SD-PDT) may be an efficacious strategy for treating melanoma because it can overcome the severe stinging pain, erythema, and edema experienced during conventional PDT. However, the poor daylight response of existing common photosensitizers leads to unsatisfactory anti-tumor therapeutic effects and limits the development of daylight PDT. Hence, in this study, we utilized Ag nanoparticles to adjust the daylight response of TiO2, acquire efficient photochemical activity, and then enhance the anti-tumor therapeutic effect of SD-PDT on melanoma. The synthesized Ag-doped TiO2 showed an optimal enhanced effect compared to Ag-core TiO2. Doping Ag into TiO2 produced a new shallow acceptor impurity level in the energy band structure, which expanded optical absorption in the range of 400-800 nm, and finally improved the photodamage effect of TiO2 under SD irradiation. Plasmonic near-field distributions were enhanced due to the high refractive index of TiO2 at the Ag-TiO2 interface, and then the amount of light captured by TiO2 was increased to induce the enhanced SD-PDT effect of Ag-core TiO2. Hence, Ag could effectively improve the photochemical activity and SD-PDT effect of TiO2 through the change in the energy band structure. Generally, Ag-doped TiO2 is a promising photosensitizer agent for treating melanoma via SD-PDT.
Collapse
Affiliation(s)
- Jing Xin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an 710048, China
| | - Jing Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an 710048, China
| | - Yuanping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an 710048, China
| | - Sijia Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an 710048, China
| | - Zhenxi Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an 710048, China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an 710048, China
| |
Collapse
|
14
|
Hyaluronic acid-covered piezoelectric nanocomposites as tumor microenvironment modulators for piezoelectric catalytic therapy of melanoma. Int J Biol Macromol 2023; 236:124020. [PMID: 36921829 DOI: 10.1016/j.ijbiomac.2023.124020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023]
Abstract
Increasing the formation of reactive oxygen species (ROS) and reducing the elimination of ROS are the two main objectives in the development of novel inorganic sonosensitizers for use in sonodynamic therapy (SDT). Therefore, BTO-Pd-MnO2-HA nanocomplexes with targeted tumor cells and degradable oxygen-producing shells were designed as piezoelectric sonosensitizers for enhancing SDT. The deposition of palladium particles (Pd NPs) leads to the formation of Schottky junctions, promoting the separation of electron-hole pairs and thereby increasing the efficiency of toxic ROS generation in SDT. The tumor microenvironment (TME) triggers the degradation of MnO2, and the released Mn2+ ions catalyze the generation of hydroxyl radicals (•OH) from H2O2 through a Fenton-like reaction. BTO-Pd-MnO2-HA can continuously consume glutathione (GSH) and generate O2, thereby improving the efficiency of SDT and chemodynamic therapy (CDT). A multistep enhanced SDT process mediated by the piezoelectric sonosensitizers BTO-Pd-MnO2-HA was designed, targeted by hyaluronic acid (HA), activated by decomposition in TME, and amplified by deposition of Pd. This procedure not only presents a new alternative for the improvement of sonosensitizers but also widens the application of piezoelectric nanomaterials in biomedicine.
Collapse
|
15
|
Maleki A, Seyedhamzeh M, Yuan M, Agarwal T, Sharifi I, Mohammadi A, Kelicen-Uğur P, Hamidi M, Malaki M, Al Kheraif AA, Cheng Z, Lin J. Titanium-Based Nanoarchitectures for Sonodynamic Therapy-Involved Multimodal Treatments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206253. [PMID: 36642806 DOI: 10.1002/smll.202206253] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Sonodynamic therapy (SDT) has considerably revolutionized the healthcare sector as a viable noninvasive therapeutic procedure. It employs a combination of low-intensity ultrasound and chemical entities, known as a sonosensitizer, to produce cytotoxic reactive oxygen species (ROS) for cancer and antimicrobial therapies. With nanotechnology, several unique nanoplatforms are introduced as a sonosensitizers, including, titanium-based nanomaterials, thanks to their high biocompatibility, catalytic efficiency, and customizable physicochemical features. Additionally, developing titanium-based sonosensitizers facilitates the integration of SDT with other treatment modalities (for example, chemotherapy, chemodynamic therapy, photodynamic therapy, photothermal therapy, and immunotherapy), hence increasing overall therapeutic results. This review summarizes the most recent developments in cancer therapy and tissue engineering using titanium nanoplatforms mediated SDT. The synthesis strategies and biosafety aspects of Titanium-based nanoplatforms for SDT are also discussed. Finally, various challenges and prospects for its further development and potential clinical translation are highlighted.
Collapse
Affiliation(s)
- Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology School of pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - Mohammad Seyedhamzeh
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology School of pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, 721302, India
| | - Ibrahim Sharifi
- Department of Materials Engineering, Faculty of Engineering, Shahrekord University, Shahrekord, 64165478, Iran
| | - Abbas Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Pelin Kelicen-Uğur
- Faculty of Pharmacy, Department of Pharmacology, Hacettepe University, Sıhhiye, Ankara, 06430, Turkey
| | - Mehrdad Hamidi
- Department of Pharmaceutical Nanotechnology, School of pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
- Trita Nanomedicine Research & Technology Development Center (TNRTC), Zanjan Health Technology Park, Zanjan, 45156-13191, Iran
| | - Massoud Malaki
- Department of Mechanical Engineering, Faculty of Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Abdulaziz A Al Kheraif
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
16
|
Venu Sreekala S, Parola A, Thayumani V, Puthenveedu Sadasivan Pillai H, Thoppil Ramakrishnan R. Efficient nitrate reduction in water using an integrated photocatalyst adsorbent based on chitosan-titanium dioxide nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38014-38030. [PMID: 36575259 DOI: 10.1007/s11356-022-24895-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Globally, there exists a huge concern on the increased discharge of nitrates to the natural water resources out of various anthropogenic activities as it causes serious environmental pollution and associated harmful effects. In the present work, sol-gel-derived functional nanocomposites based on silver (Ag) and nitrogen (N)-doped titanium dioxide (TiO2)-coated chitosan nanocomposites were successfully synthesized in the form of beads, and their application for the reduction of nitrates in water was studied. The synthesized nanocomposite beads were characterized for their structural, textural, and morphological features using X-ray diffraction analysis, Fourier transform infrared spectroscopy, UV-visible spectroscopy, BET surface area analysis, Scanning electron microscopy, Transmission electron microscopy, and X-ray photoelectron spectroscopy. A uniform coating of doped titania species on the chitosan porous structure was achieved through electrostatic interaction. Adsorption/photocatalytic reduction of nitrates was further carried out using functional nanocomposite beads by monitoring the nitrate concentration of the model contaminated water, in an adsorption study under dark condition and photocatalytic study under UV/sunlight for a definite time period. Drying conditions of the nanocomposite beads were found to have a significant effect on the adsorption cum photocatalytic efficiencies of the nanocomposite. The freeze-dried chitosan-titania nanocomposite beads containing 0.5 mol% Ag exhibited an adsorption efficiency of ~ 43.5% (under dark for 30 min) and photocatalytic reduction capability of ~ 95% (under sunlight for 2 h), whereas the oven dried beads of the same composition exhibits adsorption and photocatalytic efficiencies of 40% (under dark for 30 min) and 70% (under UV light for 2 h) respectively, towards the reduction of nitrate ions in an aqueous solution. Continuous flow adsorption cum photocatalytic study using the oven-dried nanocomposite beads was also carried out with the help of an experimental setup fabricated in-house and under varying experimental conditions such as flow rate, bed height, and concentration of feed solution. Nitrate reduction efficiency of 87.6% and an adsorption capacity of 7.9 mg g-1 were obtained for the nanocomposite beads in the continuous flow adsorption cum photocatalysis experiment for up to 8 h when using an inlet concentration of 100 ppm, bed height 12 cm, and flow rate 5.0 mL min-1. A representative fixed-bed column adsorption experiment performed with oven dried nanocomposite beads in a real groundwater sample collected from the Palakkad District of Kerala shows promising results for nitrate reduction (85.9% efficiency) along with a significant removal rate for the other anions as well. Thus, the adsorption cum photocatalytic nitrate reduction efficiency of the functional nanocomposite material makes them suitable for the reduction of nitrates from water/wastewater through an integrated nanocomposite approach.
Collapse
Affiliation(s)
- Smitha Venu Sreekala
- Ecology and Environment Research Group, Centre for Water Resources Development and Management, Kunnamangalam P.O., Calicut, 673571, Kerala, India.
| | - Athulya Parola
- Ecology and Environment Research Group, Centre for Water Resources Development and Management, Kunnamangalam P.O., Calicut, 673571, Kerala, India
| | - Vimala Thayumani
- Ecology and Environment Research Group, Centre for Water Resources Development and Management, Kunnamangalam P.O., Calicut, 673571, Kerala, India
| | | | - Resmi Thoppil Ramakrishnan
- Ecology and Environment Research Group, Centre for Water Resources Development and Management, Kunnamangalam P.O., Calicut, 673571, Kerala, India
| |
Collapse
|
17
|
Ahamed M, Lateef R, Khan MAM, Rajanahalli P, Akhtar MJ. Biosynthesis, Characterization, and Augmented Anticancer Activity of ZrO 2 Doped ZnO/rGO Nanocomposite. J Funct Biomater 2023; 14:jfb14010038. [PMID: 36662085 PMCID: PMC9861721 DOI: 10.3390/jfb14010038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Fabrication of ZnO nanoparticles (NPs) via green process has received enormous attention for its application in biomedicine. Here, a simple and cost-effective green route is reported for the synthesis of ZrO2-doped ZnO/reduced graphene oxide nanocomposites (ZnO/ZrO2/rGO NCs) exploiting ginger rhizome extract. Our aim was to improve the anticancer performance of ZnO/ZrO2/rGO NCs without toxicity to normal cells. The preparation of pure ZnO NPs, ZnO/ZrO2 NCs, and ZnO/ZrO2/rGO NCs was confirmed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), photoluminescence (PL), and dynamic light scattering (DLS). XRD spectra of ZnO/ZrO2/rGO NCs exhibited two distinct sets of diffraction peaks, ZnO wurtzite structure, and ZrO2 phases (monoclinic + tetragonal). The SEM and TEM data show that ZrO2-doped ZnO particles were uniformly distributed on rGO sheets with the excellent quality of lattice fringes without alterations. PL spectra intensity and particle size of ZnO decreased after ZrO2-doping and rGO addition. DLS data demonstrated that green prepared samples show excellent colloidal stability in aqueous suspension. Biological results showed that ZnO/ZrO2/rGO NCs display around 3.5-fold higher anticancer efficacy in human lung cancer (A549) and breast cancer (MCF7) cells than ZnO NPs. A mechanistic approach suggested that the anticancer response of ZnO/ZrO2/rGO NCs was mediated via oxidative stress evident by the induction of the intracellular reactive oxygen species level and the reduction of the glutathione level. Moreover, green prepared nanostructures display good cytocompatibility in normal cell lines; human lung fibroblasts (IMR90) and breast epithelial (MCF10A) cells. However, the cytocompatibility of ZnO/ZrO2/rGO NCs in normal cells was better than those of pure ZnO NPs and ZnO/ZrO2 NCs. Augmented anticancer potential and improved cytocompatibility of ZnO/ZrO2/rGO NCs was due to ginger extract mediated beneficial synergism between ZnO, ZrO2, and rGO. This novel investigation emphasizes the significance of medicinal herb mediated ZnO-based NCs synthesis for biomedical research.
Collapse
Affiliation(s)
- Maqusood Ahamed
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Rashid Lateef
- Department of Biochemistry, Faculty of Science, Veer Bahadur Singh Purvanchal University, Jaunpur 222003, Uttar Pradesh, India
| | - M. A. Majeed Khan
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Mohd Javed Akhtar
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
18
|
Alaizeri ZM, Alhadlaq HA, Aldawood S, Akhtar MJ, Ahamed M. Photodeposition mediated synthesis of silver-doped indium oxide nanoparticles for improved photocatalytic and anticancer performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6055-6067. [PMID: 35986850 DOI: 10.1007/s11356-022-22594-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Indium oxide nanoparticles (In2O3 NPs) are being investigated for a number of applications including gas-sensing, environmental remediation, and biomedicine. We aimed to examine the effect of silver (Ag) doping on photocatalytic and anticancer activity of In2O3 NPs. The Ag-doped (2%, 4%, and 6%weight) In2O3 NPs were synthesized by the photodeposition method. Prepared samples were characterized via X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), UV-Vis spectroscopy, and the photoluminescence (PL). XRD data showed that Ag-doping increases the crystallinity of In2O3 NPs. SEM and TEM images indicated that In2O3 NPs have spherical morphology with smooth surfaces, and Ag-doping increases the size without affecting the particle's shape. XPS spectra showed the oxidation state and the presence of Ag in In2O3 NPs. Band gap energy of In2O3 NPs decreases with increasing the concentration of Ag (3.41 eV to 3.12 eV). The peak intensity of PL spectra of In2O3 NPs also reduces with the increment of Ag ions suggesting the hindrance of the recombination rate of e-/h+. The photocatalytic activity was measured by the degradation of Rh B dye under UV irradiation. The degradation efficiency of Ag-doped (6%) In2O3 NPs was 92%. Biochemical data indicated that Ag-doping enhances the anticancer performance of In2O3 NPs against human lung cancer cells (A549). Moreover, Ag-doped In2O3 NPs displayed excellent biocompatibility in normal human lung fibroblasts (IMR90). Overall, this study demonstrated that Ag-doping enhances the photocatalytic activity and anticancer efficacy of In2O3 NPs. This study warrants further investigation on the environmental and biomedical applications of Ag-In2O3 NPs.
Collapse
Affiliation(s)
- ZabnAllah M Alaizeri
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hisham A Alhadlaq
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saad Aldawood
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohd Javed Akhtar
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Maqusood Ahamed
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
19
|
Papadopoulou-Fermeli N, Lagopati N, Pippa N, Sakellis E, Boukos N, Gorgoulis VG, Gazouli M, Pavlatou EA. Composite Nanoarchitectonics of Photoactivated Titania-Based Materials with Anticancer Properties. Pharmaceutics 2022; 15:135. [PMID: 36678763 PMCID: PMC9864881 DOI: 10.3390/pharmaceutics15010135] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023] Open
Abstract
The synthesis of titania-based composite materials with anticancer potential under visible-light irradiation is the aim of this study. In specific, titanium dioxide (TiO2) nanoparticles (NPs) chemically modified with silver were embedded in a stimuli-responsive microgel (a crosslinked interpenetrating network (IP) network that was synthesized by poly (N-Isopropylacrylamide) and linear chains of polyacrylic acid sodium salt, forming composite particles. The ultimate goal of this research, and for our future plans, is to develop a drug-delivery system that uses optical fibers that could efficiently photoactivate NPs, targeting cancer cells. The produced Ag-TiO2 NPs, the microgel and the composite materials were characterized through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), micro-Raman spectroscopy, ultraviolet-visible spectroscopy (UV-Vis), dynamic light scattering (DLS) and transmission electron microscopy (TEM). Our results indicated that Ag-TiO2 NPs were successfully embedded within the thermoresponsive microgel. Either Ag-TiO2 NPs or the composite materials exhibited high photocatalytic degradation efficiency on the pollutant rhodamine B and significant anticancer potential under visible-light irradiation.
Collapse
Affiliation(s)
- Nefeli Papadopoulou-Fermeli
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15789 Zografou, Greece
| | - Nefeli Lagopati
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15789 Zografou, Greece
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Elias Sakellis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, 15310 Agia Paraskevi, Greece
| | - Nikos Boukos
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, 15310 Agia Paraskevi, Greece
| | - Vassilis G. Gorgoulis
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Clinical Molecular Pathology, Medical School, University of Dundee, Dundee DD1 9SY, UK
- Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7YH, UK
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15789 Zografou, Greece
| |
Collapse
|
20
|
Nyankson E, Awuzah D, Tiburu EK, Efavi JK, Agyei-Tuffour B, Paemka L. Curcumin loaded Ag-TiO 2-halloysite nanotubes platform for combined chemo-photodynamic therapy treatment of cancer cells. RSC Adv 2022; 12:33108-33123. [PMID: 36425174 PMCID: PMC9672909 DOI: 10.1039/d2ra05777h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/15/2022] [Indexed: 07/30/2023] Open
Abstract
The use of naturally occurring anticancer materials in combination with doped metal oxide has emerged as one of the most promising ways for improving anticancer treatment efficacy. In this study, the anticancer potential of curcumin-loaded Ag-TiO2-halloysite nanotubes (curcumin-loaded Ag-TiO2-HNTs) was examined. Ag-TiO2-HNTs with different wt% of Ag-TiO2 were synthesized and characterized using XRD, TGA, FT-IR, UV-Vis spectroscopy, and SEM-EDX. The XRD results revealed the presence of crystalline TiO2. However, the presence of Ag was detected through the SEM-EDX analysis. Cyclic voltammetry measurements suggested the enhancement of the release of ROS from TiO2 upon deposition with Ag. FT-IR and TGA analysis confirmed the successful loading of curcumin inside the nanotubes of the halloysite. In vitro drug released studies revealed the release of approximately 80-99% curcumin within 48 hours. Kinetic model studies revealed that the release of curcumin from HNT and Ag-TiO2-HNT followed the first-order and Higuchi models, respectively. The light irradiated curcumin-loaded Ag-TiO2-HNTs samples exhibited considerable anticancer potential as compared to the free curcumin, irradiated Ag-TiO2 NPs samples, and unirradiated curcumin loaded Ag-TiO2-HNTs samples. The obtained results revealed that combined chemo- and photodynamic therapy using curcumin-loaded Ag-TiO2-HNTs nanomaterial has the potential as an effective anticancer treatment method.
Collapse
Affiliation(s)
- Emmanuel Nyankson
- Department of Materials Science and Engineering, University of Ghana LG 77 Legon-Accra Ghana
| | - Dominic Awuzah
- Department of Materials Science and Engineering, University of Ghana LG 77 Legon-Accra Ghana
| | - Elvis K Tiburu
- Department of Biomedical Engineering, University of Ghana LG 77 Legon-Accra Ghana
| | - Johnson K Efavi
- Department of Materials Science and Engineering, University of Ghana LG 77 Legon-Accra Ghana
| | - Benjamin Agyei-Tuffour
- Department of Materials Science and Engineering, University of Ghana LG 77 Legon-Accra Ghana
| | - Lily Paemka
- Department Biochemistry, Cell and Molecular Biology, University of Ghana P.O. Box LG54 Legon Ghana
| |
Collapse
|
21
|
Shenoy RUK, Rama A, Govindan I, Naha A. The purview of doped nanoparticles: Insights into their biomedical applications. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
22
|
Zn-doped titania nanoparticles as building blocks for solid foam filters of water and air via photocatalytic oxidation. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Norouzi M, Fazeli A, Tavakoli O. Photocatalytic degradation of phenol under visible light using electrospun Ag/TiO2 as a 2D nano-powder: Optimizing calcination temperature and promoter content. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
24
|
Biogenesis of Heneicosane Mediated ZnO Nanoparticles: Characterization and Biological Efficiency. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00509-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Li Y, Huang J, Yu H, Zhao Y, Xu Z, Kang Y, Xue P. Zirconia-Platinum Nanohybrids for Ultrasound-Activated Sonodynamic-Thermodynamic Bimodal Therapy by Inducing Intense Intracellular Oxidative Stress. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203080. [PMID: 35989099 DOI: 10.1002/smll.202203080] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The therapeutic exploration of nano-zirconia semiconductor largely remains untouched in the field of fundamental science to date. Here, a robust nano-sonosensitizer of ZrO2- x @Pt is strategically formulated by in situ growth of Pt nanocrystal onto the surface of oxygen-deficient ZrO2- x . Compared to 3.09 eV of nano-ZrO2- x , the bandgap of ZrO2- x @Pt Schottky junction is narrowed down to 2.74 eV. The band bending and bandgap narrowing enables an enhanced e- /h+ separation in the presence of aPt electron sink, which facilitates a high yield of singlet oxygen (1 O2 ) and hydroxyl radicals (·OH) under ultrasound (US) irradiation. Moreover, nanozyme Pt with catalase-mimic activity can promote 1 O2 generation by relieving the hypoxic tumor microenvironment. Upon further modification of 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH), US-stimulated local thermal shock can disintegrate AIPH to create cytotoxic alkyl radicals (• R). US-triggered reactive oxygen species generation and hyperthermia-induced alkyl radical production lead to severe and irreversible tumor cell death. Such combinatorial sonodynamic-thermodynamic therapy benefits the tumor eradication and metastasis inhibition at the animal level, with the aid of immunogenetic cell death and immune checkpoint blockade. Taken together, this proof-of-concept paradigm expands the medical use of nano-zirconia and provides useful insights for its therapeutic perspectives.
Collapse
Affiliation(s)
- Yongcan Li
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Jiansen Huang
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Honglian Yu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Yinmin Zhao
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Yuejun Kang
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Peng Xue
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| |
Collapse
|
26
|
Si C, Ou Y, Ma D, Hei L, Wang X, Du R, Yang H, Liao Y, Zhao J. Cytotoxic Effect of the Essential oils from Erigeron Canadensis L. on Human Cervical Cancer HeLa Cells in Vitro. Chem Biodivers 2022; 19:e202200436. [PMID: 36005296 DOI: 10.1002/cbdv.202200436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/15/2022] [Indexed: 11/08/2022]
Abstract
Erigeron Canadensis L. (E. canadensis) is a widely distributed invasive weed species in China. Potentially anti-cancer qualities may exist in its essential oils (EOs). The purpose of this study was to analyze the components of the EOs of E. canadensis and their effects on the normal liver cell lines L02 and the human cervical cancer cell lines HeLa. The EOs from the upper region of E. canadensis were prepared, its components were identified by GC/MS. Cell viability, cell morphology observation, AO/EB dual fluorescence staining assay, flow cytometry, mitochondrial membrane potential, western blot, caspase inhibitor test, and oxidative stress tests were used to investigate the impact of the EOs on HeLa cells. Network pharmacological analysis was employed to study the potential mechanism of the EOs in the treatment of cervical cancer. According to the findings, the EOs had 21 chemical components, of which limonene made up 65.68 %. After being exposed to the EOs, the cell viability of HeLa and L02 dramatically declined. The inhibition of EOs was more effective than that of limonene when used in an amount equivalent to that in the EOs. L02 cells were less susceptible to the cytotoxicity of EOs than HeLa cells were. Furthermore, EOs altered the cell cycle in HeLa cells and caused oxidative stress and apoptosis. Compared with the control group, the reactive oxygen species (ROS) levels increased in HeLa cells at first and then decreased, total superoxide dismutase (SOD) and catalase (CAT) activities in HeLa cells significantly decreased. G1 phase cells decreased whereas G2/M phase cells increased. The rate of apoptosis rose. Reduced mitochondrial membrane potential and Caspase-3, -9, and -12 protein expression were both observed. Nerolidol, dextroparaffinone, and α-pinene were shown to be the primary components for the suppression of HeLa cells, according to the results of the prediction of pharmacologic targets. In conclusion, findings of this study indicated the EOs may have the potential to curb the growth of cervical cancer cells. Further research is needed to explore the in vivo effect of EOs.
Collapse
Affiliation(s)
- Chaojin Si
- College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, P. R. China
| | - Yangsong Ou
- Department of Orthopedics and Traumatology of Traditional Chinese Medicine, Sichuan 2nd Hospital of Traditional Chinese Medicine, 610031, Chengdu, Sichuan, P. R. China
| | - Danwei Ma
- College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, P. R. China
| | - Lei Hei
- College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, P. R. China
| | - Xiaoyan Wang
- College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, P. R. China
| | - Runyuan Du
- College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, P. R. China
| | - Hongjun Yang
- Department of Geriatrics, Sichuan 2nd Hospital of Traditional Chinese Medicine, 610031, Chengdu, Sichuan, P. R. China
| | - Ying Liao
- College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, P. R. China
| | - Jiayuan Zhao
- College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, P. R. China
| |
Collapse
|
27
|
Zhao Y, Liu J, He M, Dong Q, Zhang L, Xu Z, Kang Y, Xue P. Platinum-Titania Schottky Junction as Nanosonosensitizer, Glucose Scavenger, and Tumor Microenvironment-Modulator for Promoted Cancer Treatment. ACS NANO 2022; 16:12118-12133. [PMID: 35904186 DOI: 10.1021/acsnano.2c02540] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To date, the construction of heterogeneous interfaces between sonosensitizers and other semiconductors or noble metals has aroused increasing attention, owing to an enhanced interface charge transfer, augmented spin-flip, and attenuated activation energy of oxygen. Here, a smart therapeutic nanoplatform is constructed by surface immobilization of glucose oxidase (GOx) onto a TiO2@Pt Schottky junction. The sonodynamic therapy (SDT) and starvation therapy (ST) mediated by TiO2@Pt/GOx (TPG) promote systemic tumor suppression upon hypoxia alleviation in tumor microenvironment. The band gap of TiO2@Pt is outstandingly decreased to 2.9 eV, in contrast to that of pristine TiO2. The energy structure optimization enables a more rapid generation of singlet oxygen (1O2) and hydroxyl radicals (•OH) by TiO2@Pt under ultrasound irradiation, resulting from an enhanced separation of hole-electron pair for redox utilization. The tumorous reactive oxygen species (ROS) accumulation and GOx-mediated glucose depletion facilitate oxidative damage and energy exhaustion of cancer cells, both of which can be tremendously amplified by Pt-catalyzed oxygen self-supply. Importantly, the combinatorial therapy triggers intense immunogenetic cell death, which favors a follow-up suppression of distant tumor and metastasis by evoking antitumor immunity. Collectively, this proof-of-concept paradigm provides an insightful strategy for highly efficient SDT/ST, which possesses good clinical potential for tackling cancer.
Collapse
Affiliation(s)
- Yinmin Zhao
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Jiahui Liu
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Mengting He
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Qi Dong
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Lei Zhang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yuejun Kang
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Peng Xue
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| |
Collapse
|
28
|
Selective adsorption of epigallocatechin gallate onto highly reusable gallium doped mesoporous TiO2 nanoparticles adsorbent. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Liu S, Chen X, Yu M, Li J, Liu J, Xie Z, Gao F, Liu Y. Applications of Titanium Dioxide Nanostructure in Stomatology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123881. [PMID: 35745007 PMCID: PMC9229536 DOI: 10.3390/molecules27123881] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Breakthroughs in the field of nanotechnology, especially in nanochemistry and nanofabrication technologies, have been attracting much attention, and various nanomaterials have recently been developed for biomedical applications. Among these nanomaterials, nanoscale titanium dioxide (nano-TiO2) has been widely valued in stomatology due to the fact of its excellent biocompatibility, antibacterial activity, and photocatalytic activity as well as its potential use for applications such as dental implant surface modification, tissue engineering and regenerative medicine, drug delivery carrier, dental material additives, and oral tumor diagnosis and treatment. However, the biosafety of nano-TiO2 is controversial and has become a key constraint in the development of nano-TiO2 applications in stomatology. Therefore, in this review, we summarize recent research regarding the applications of nano-TiO2 in stomatology, with an emphasis on its performance characteristics in different fields, and evaluations of the biological security of nano-TiO2 applications. In addition, we discuss the challenges, prospects, and future research directions regarding applications of nano-TiO2 in stomatology that are significant and worthy of further exploration.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Xingzhu Chen
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Mingyue Yu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Jianing Li
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Jinyao Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Zunxuan Xie
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Fengxiang Gao
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130000, China
- Correspondence: (F.G.); (Y.L.); Tel.: +86-13756189633 (F.G.); +86-13756466950 (Y.L.)
| | - Yuyan Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
- Correspondence: (F.G.); (Y.L.); Tel.: +86-13756189633 (F.G.); +86-13756466950 (Y.L.)
| |
Collapse
|
30
|
Sharma B, Samperi M, Jain A, Chaudhary GR, Kaur G, Pérez-García L. Gemini Surfactant Mediated Catansomes for Enhanced Singlet Oxygen Generation of Rose Bengal and Their Phototoxicity against Cancer Cells. ACS Biomater Sci Eng 2022; 8:1878-1891. [PMID: 35412794 DOI: 10.1021/acsbiomaterials.2c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Photodynamic therapy (PDT) is an innovative technique for cancer treatment with minimal side effects, based on the use of a photosensitizer, oxygen, and light. Photosensitizers (PSs) have several limitations, that may limit their clinical use, like poor solubilization, self-aggregation, and lack of specific targeting, which can be addressed with the use of nanomaterials. Herein, a unique type of catansomes (CaSs) was prepared using a gemini imidazolium-based surfactant (1,3-bis[(3-octadecyl-1-imidazolio)methyl]benzene dibromide (GBIB) and a double chain surfactant, diaoctyl sodium sulfosuccinate or Aerosol OT (AOT). The formation of CaS GBIB/AOT was optimized in various ethanol/water (E/W) solvent ratios by employing a facile, quick, and most reliable solution-solution mixing method. The CaS was characterized by dynamic light scattering (DLS) and field emission gun scanning electron microscopy (FEG-SEM) techniques. The experimental results reveal that stable CaSs with a spherical shape were obtained at lower concentration (100 μM). Rose Bengal (RB), a PS of the xanthene family, was incorporated into these prepared CaSs, as proven by fluorescence spectroscopy, UV-visible absorption spectroscopy, and confocal laser scanning microscopy. Singlet oxygen (1O2) generation studies revealed the relevant role of the E/W solvent ratio as there was a 4-fold boost in the 1O2 production for GBIB/AOT in E/W = 50:50 and around 3-fold in E/W = 30:70. Also, the GBIB-rich 80:20 fraction was more efficient in increasing the 1O2 generation as compared to the AOT rich fraction (20:80). Further, their phototoxicity was tested in a water-rich solvent ratio (E/W = 30:70) against MCF-7 cells. Upon irradiation with a 532 nm laser (50 mW) for 5 min, RB@GBIB/AOT(20:80) fraction caused 50% decrease in the metabolic activity of MCF-7 cells, and RB@GBIB/AOT(80:20) fraction produced a maximum 85% decrease in cell viability. Furthermore, the enhancement in intracellular 1O2 generation by RB@GBIB/AOT, as compared to pure RB, was confirmed with singlet oxygen sensor green (SOSG). This new type of CaS based on gemini surfactants exhibiting a large amount of 1O2 generation, holds great interest for several applications, such as use in photomedicine in future.
Collapse
Affiliation(s)
- Bunty Sharma
- Department of Chemistry, Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.,Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Mario Samperi
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Akhil Jain
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Ganga Ram Chaudhary
- Department of Chemistry, Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Gurpreet Kaur
- Department of Chemistry, Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Lluïsa Pérez-García
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.,Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain.,Institut de Nanociència i Nanotecnologia UB (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
31
|
Mokhtar S, Khattab SN, Elkhodairy KA, Teleb M, Bekhit AA, Elzoghby AO, Sallam MA. Methotrexate-Lactoferrin Targeted Exemestane Cubosomes for Synergistic Breast Cancer Therapy. Front Chem 2022; 10:847573. [PMID: 35392419 PMCID: PMC8980280 DOI: 10.3389/fchem.2022.847573] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/16/2022] [Indexed: 01/01/2023] Open
Abstract
While the treatment regimen of certain types of breast cancer involves a combination of hormonal therapy and chemotherapy, the outcomes are limited due to the difference in the pharmacokinetics of both treatment agents that hinders their simultaneous and selective delivery to the cancer cells. Herein, we report a hybrid carrier system for the simultaneous targeted delivery of aromatase inhibitor exemestane (EXE) and methotrexate (MTX). EXE was physically loaded within liquid crystalline nanoparticles (LCNPs), while MTX was chemically conjugated to lactoferrin (Lf) by carbodiimide reaction. The anionic EXE-loaded LCNPs were then coated by the cationic MTX–Lf conjugate via electrostatic interactions. The Lf-targeted dual drug-loaded LCNPs exhibited a particle size of 143.6 ± 3.24 nm with a polydispersity index of 0.180. It showed excellent drug loading with an EXE encapsulation efficiency of 95% and an MTX conjugation efficiency of 33.33%. EXE and MTX showed synergistic effect against the MCF-7 breast cancer cell line with a combination index (CI) of 0.342. Furthermore, the Lf-targeted dual drug-loaded LCNPs demonstrated superior synergistic cytotoxic activity with a combination index (CI) of 0.242 and a dose reduction index (DRI) of 34.14 and 4.7 for EXE and MTX, respectively. Cellular uptake studies demonstrated higher cellular uptake of Lf-targeted LCNPs into MCF-7 cancer cells than non-targeted LCNPs after 4 and 24 h. Collectively, the targeted dual drug-loaded LCNPs are a promising candidate offering combinational hormonal therapy/chemotherapy for breast cancer.
Collapse
Affiliation(s)
- Sarah Mokhtar
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sherine N. Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- *Correspondence: Sherine N. Khattab, , ; Ahmed O. Elzoghby,
| | - Kadria A. Elkhodairy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohamed Teleb
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Adnan A. Bekhit
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Pharmacy Program, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Al-Manamah, Bahrain
| | - Ahmed O. Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- *Correspondence: Sherine N. Khattab, , ; Ahmed O. Elzoghby,
| | - Marwa A. Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
32
|
Ahamed M, Akhtar MJ, Khan MM, Alhadlaq HA. Enhanced Anticancer Performance of Eco-Friendly-Prepared Mo-ZnO/RGO Nanocomposites: Role of Oxidative Stress and Apoptosis. ACS OMEGA 2022; 7:7103-7115. [PMID: 35252701 PMCID: PMC8892848 DOI: 10.1021/acsomega.1c06789] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/02/2022] [Indexed: 05/13/2023]
Abstract
ZnO nanoparticles (NPs) have attracted great attention in cancer therapy because of their novel and tailorable physicochemical features. Pure ZnO NPs, molybdenum (Mo)-doped ZnO NPs, and Mo-ZnO/reduced graphene oxide nanocomposites (Mo-ZnO/RGO NCs) were prepared using a facile, inexpensive, and eco-friendly approach using date palm (Phoenix dactylifera L.) fruit extract. Anticancer efficacy of green synthesized NPs/NCs was examined in two different cancer cells. The potential mechanism of the anticancer activity of green synthesized NPs/NCs was explored through oxidative stress and apoptosis. The syntheses of pure ZnO NPs, Mo-ZnO NPs, and Mo-ZnO/RGO NCs were confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and photoluminescence (PL). Dynamic light scattering (DLS) study indicated the excellent colloidal stability of green prepared samples. Mo-ZnO/RGO NCs exhibited threefold higher anticancer activity in human colon (HCT116) and breast (MCF7) cancer cells as compared to pure ZnO NPs. The anticancer activity of Mo-ZnO/RGO NCs was mediated through reactive oxygen species, p53, and the caspase-3 pathway. Moreover, cytocompatibility of Mo-ZnO/RGO NCs in human normal colon epithelial (NCM460) and normal breast epithelial cells (MCF10A) was much better than those of pure ZnO NPs. Altogether, green stabilized Mo-ZnO/RGO NCs exhibited enhanced anticancer performance and improved cytocompatibility because of green mediated good synergism between ZnO, Mo, and RGO. This study suggested the high nutritional value fruit-based facile preparation of ZnO-based nanocomposites for cancer therapy.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King
Abdullah Institute for Nanotechnology, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Javed Akhtar
- King
Abdullah Institute for Nanotechnology, King
Saud University, Riyadh 11451, Saudi Arabia
| | - M.A. Majeed Khan
- King
Abdullah Institute for Nanotechnology, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Hisham A. Alhadlaq
- King
Abdullah Institute for Nanotechnology, King
Saud University, Riyadh 11451, Saudi Arabia
- Department
of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
33
|
Nica IC, Miu BA, Stan MS, Diamandescu L, Dinischiotu A. Could Iron-Nitrogen Doping Modulate the Cytotoxicity of TiO 2 Nanoparticles? NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:770. [PMID: 35269258 PMCID: PMC8912011 DOI: 10.3390/nano12050770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/04/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are found in several products on the market that include paints, smart textiles, cosmetics and food products. Besides these, TiO2 NPs are intensively researched for their use in biomedicine, agriculture or installations to produce energy. Taking into account that several risks have been associated with the use of TiO2 NPs, our aim was to provide TiO2 NPs with improved qualities and lower toxicity to humans and the environment. Pure TiO2 P25 NPs and the same NPs co-doped with iron (1%) and nitrogen atoms (P25-Fe(1%)-N NPs) by hydrothermal treatment to increase the photocatalytic activity in the visible light spectrum were in vitro evaluated in the presence of human lung cells. After 24 and 72 h of incubation, the oxidative stress was initiated in a time- and dose-dependent manner with major differences between pure P25 and P25-Fe(1%)-N NPs as revealed by malondialdehyde and reactive oxygen species levels. Additionally, a lower dynamic of autophagic vacuoles formation was observed in cells exposed to Fe-N-doped P25 NPs compared to the pure ones. Therefore, our results suggest that Fe-N doping of TiO2 NPs can represent a valuable alternative to the conventional P25 Degussa particles in industrial and medical applications.
Collapse
Affiliation(s)
- Ionela Cristina Nica
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (I.C.N.); (B.A.M.); (A.D.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Bogdan Andrei Miu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (I.C.N.); (B.A.M.); (A.D.)
| | - Miruna S. Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (I.C.N.); (B.A.M.); (A.D.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Lucian Diamandescu
- National Institute of Materials Physics (NIMP), Atomistilor 405A, Magurele, 077125 Bucharest, Romania;
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (I.C.N.); (B.A.M.); (A.D.)
| |
Collapse
|
34
|
Yang SW, Chen YJ, Chen CJ, Liu JT, Yang CY, Tsai JH, Lu HE, Chen SY, Chang SJ. High-Density Horizontal Stacking of Chondrocytes via the Synergy of Biocompatible Magnetic Gelatin Nanocarriers and Internal Magnetic Navigation for Enhancing Cartilage Repair. Polymers (Basel) 2022; 14:809. [PMID: 35215722 PMCID: PMC8963011 DOI: 10.3390/polym14040809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a globally occurring articular cartilage degeneration disease that adversely affects both the physical and mental well-being of the patient, including limited mobility. One major pathological characteristic of OA is primarily related to articular cartilage defects resulting from abrasion and catabolic and proinflammatory mediators in OA joints. Although cell therapy has hitherto been regarded as a promising treatment for OA, the therapeutic effects did not meet expectations due to the outflow of implanted cells. Here, we aimed to explore the repair effect of magnetized chondrocytes using magnetic amphiphilic-gelatin nanocarrier (MAGNC) to enhance cellular anchored efficiency and cellular magnetic guidance (MG) toward the superficial zone of damaged cartilage. The results of in vitro experiments showed that magnetized chondrocytes could be rapidly guided along the magnetic force line to form cellular amassment. Furthermore, the Arg-Gly-Asp (RGD) motif of gelatin in MAGNC could integrate the interaction among cells to form cellular stacking. In addition, MAGNCs upregulated the gene expression of collagen II (Col II), aggrecan, and downregulated that of collagen I (Col I) to reduce cell dedifferentiation. In animal models, the magnetized chondrocytes can be guided into the superficial zone with the interaction between the internal magnetic field and MAGNC to form cellular stacking. In vivo results showed that the intensity of N-sulfated-glycosaminoglycans (sGAG) and Col II in the group of magnetized cells with magnetic guiding was higher than that in the other groups. Furthermore, smooth closure of OA cartilage defects was observed in the superficial zone after 8 weeks of implantation. The study revealed the significant potential of MAGNC in promoting the high-density stacking of chondrocytes into the cartilage surface and retaining the biological functions of implanted chondrocytes for OA cartilage repair.
Collapse
Affiliation(s)
- Shan-Wei Yang
- Department of Orthopedics, Kaohsiung Veterans General Hospital, Kaohsiung City 813414, Taiwan;
| | - Yong-Ji Chen
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 813414, Taiwan; (Y.-J.C.); (C.-Y.Y.); (J.-H.T.)
| | - Ching-Jung Chen
- School of Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Jen-Tsai Liu
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Chin-Yi Yang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 813414, Taiwan; (Y.-J.C.); (C.-Y.Y.); (J.-H.T.)
| | - Jen-Hao Tsai
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 813414, Taiwan; (Y.-J.C.); (C.-Y.Y.); (J.-H.T.)
| | - Huai-En Lu
- Food Industry Research and Development Institute, Hsinchu 300193, Taiwan
| | - San-Yuan Chen
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu City 300093, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung City 406040, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung City 813414, Taiwan
| | - Shwu-Jen Chang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 813414, Taiwan; (Y.-J.C.); (C.-Y.Y.); (J.-H.T.)
| |
Collapse
|
35
|
Ramachandran P, Khor BK, Lee CY, Doong RA, Oon CE, Thanh NTK, Lee HL. N-Doped Graphene Quantum Dots/Titanium Dioxide Nanocomposites: A Study of ROS-Forming Mechanisms, Cytotoxicity and Photodynamic Therapy. Biomedicines 2022; 10:421. [PMID: 35203630 PMCID: PMC8962365 DOI: 10.3390/biomedicines10020421] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/12/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have been proven to be potential candidates in cancer therapy, particularly photodynamic therapy (PDT). However, the application of TiO2 NPs is limited due to the fast recombination rate of the electron (e-)/hole (h+) pairs attributed to their broader bandgap energy. Thus, surface modification has been explored to shift the absorption edge to a longer wavelength with lower e-/h+ recombination rates, thereby allowing penetration into deep-seated tumors. In this study, TiO2 NPs and N-doped graphene quantum dots (QDs)/titanium dioxide nanocomposites (N-GQDs/TiO2 NCs) were synthesized via microwave-assisted synthesis and the two-pot hydrothermal method, respectively. The synthesized anatase TiO2 NPs were self-doped TiO2 (Ti3+ ions), have a small crystallite size (12.2 nm) and low bandgap energy (2.93 eV). As for the N-GQDs/TiO2 NCs, the shift to a bandgap energy of 1.53 eV was prominent as the titanium (IV) tetraisopropoxide (TTIP) loading increased, while maintaining the anatase tetragonal crystal structure with a crystallite size of 11.2 nm. Besides, the cytotoxicity assay showed that the safe concentrations of the nanomaterials were from 0.01 to 0.5 mg mL-1. Upon the photo-activation of N-GQDs/TiO2 NCs with near-infrared (NIR) light, the nanocomposites generated reactive oxygen species (ROS), mainly singlet oxygen (1O2), which caused more significant cell death in MDA-MB-231 (an epithelial, human breast cancer cells) than in HS27 (human foreskin fibroblast). An increase in the N-GQDs/TiO2 NCs concentrations elevates ROS levels, which triggered mitochondria-associated apoptotic cell death in MDA-MB-231 cells. As such, titanium dioxide-based nanocomposite upon photoactivation has a good potential as a photosensitizer in PDT for breast cancer treatment.
Collapse
Affiliation(s)
- Pravena Ramachandran
- Nanomaterials Research Group, School of Chemical Sciences, Universiti Sains Malaysia (USM), Gelugor 11800, Penang, Malaysia;
| | - Boon-Keat Khor
- School of Pharmaceutical Sciences, Universiti Sains Malaysia (USM), Gelugor 11800, Penang, Malaysia; (B.-K.K.); (C.Y.L.)
| | - Chong Yew Lee
- School of Pharmaceutical Sciences, Universiti Sains Malaysia (USM), Gelugor 11800, Penang, Malaysia; (B.-K.K.); (C.Y.L.)
| | - Ruey-An Doong
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), Gelugor 11800, Penang, Malaysia;
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
| | - Hooi Ling Lee
- Nanomaterials Research Group, School of Chemical Sciences, Universiti Sains Malaysia (USM), Gelugor 11800, Penang, Malaysia;
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
36
|
Hamidian K, Sarani M, Barani M, Khakbaz F. Cytotoxic performance of green synthesized Ag and Mg dual doped ZnO NPs using Salvadora persica extract against MDA-MB-231 and MCF-10 cells. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103792] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
37
|
Mundekkad D, Cho WC. Nanoparticles in Clinical Translation for Cancer Therapy. Int J Mol Sci 2022; 23:1685. [PMID: 35163607 PMCID: PMC8835852 DOI: 10.3390/ijms23031685] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
The advent of cancer therapeutics brought a paradigm shift from conventional therapy to precision medicine. The new therapeutic modalities accomplished through the properties of nanomaterials have extended their scope in cancer therapy beyond conventional drug delivery. Nanoparticles can be channeled in cancer therapy to encapsulate active pharmaceutical ingredients and deliver them to the tumor site in a more efficient manner. This review enumerates various types of nanoparticles that have entered clinical trials for cancer treatment. The obstacles in the journey of nanodrug from clinic to market are reviewed. Furthermore, the latest developments in using nanoparticles in cancer therapy are also highlighted.
Collapse
Affiliation(s)
- Deepa Mundekkad
- Centre for NanoBioTechnology (CNBT), Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India;
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| |
Collapse
|
38
|
Tonde S, More S, Hazra C, Kundu D, Joshi S, Satdive A, Tayde S, Bornare D, Toksha B, Naik J, Chatterjee A. 1D sub 10 nm nanofabrication of ultrahydrophobic Ag@TiO2 nanowires and their photocatalytic, UV shielding and antibacterial properties. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2021.103404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Vembu S, Vijayakumar S, Nilavukkarasi M, Vidhya E, Punitha V. Phytosynthesis of TiO2 nanoparticles in diverse applications: What is the exact mechanism of action? SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
40
|
The Anticancer Effect of Magnetic Selenium-Based Nanocomposites on Tongue Carcinoma Stem Cells (In Vitro Study). BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Amina M, Al Musayeib NM, Alarfaj NA, El-Tohamy MF, Al-Hamoud GA. Antibacterial and Anticancer Potentials of Presynthesized Photosensitive Plectranthus cylindraceus Oil/TiO 2/Polyethylene Glycol Polymeric Bionanocomposite. Bioinorg Chem Appl 2021; 2021:5562206. [PMID: 34754300 PMCID: PMC8572642 DOI: 10.1155/2021/5562206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
The present study is concerned with the fabrication of the bifunctional Plectranthus cylindraceus oil/TiO2/polyethylene glycol polymeric film for antibacterial and anticancer activities. The suggested film is based on the utility of naturally extracted P. cylindraceus oil in the formation of the polymeric bionanocomposite film decorated with TiO2 nanoparticles. The bionanocomposite film was fabricated by incorporating 15 w% of P. cylindraceus oil with 10 w% polyethylene glycol and 5 w% TiO2 nanoparticles. The active components of P. cylindraceus oil were verified using gas chromatography coupled with mass spectrometry (GC-MS). The surface morphology of the resulted bionanocomposite film was characterized by various spectroscopic and microscopic techniques. The antibacterial potential of the fabricated bionanocomposite film was investigated against four pathogenic strains. The obtained results revealed excellent sensitivity against the bacterial strains, particularly E. coli and S. aureus, with minimum inhibitory concentration 320 µg mL-1 and minimum bactericidal concentration 640 and 1280 µg mL-1 for E. coli and S. aureus, respectively. Polymeric bionanocomposite exerted significant cytotoxicity against human lung carcinoma cell lines in a concentration-dependent manner with an IC50 value of 42.7 ± 0.25 μg mL-1. Safety assessment test against peripheral blood mononuclear cells (PBMCs) demonstrated that the bionanocomposite is nontoxic in nature. Bionanocomposite also showed potent photocatalytic effects. Overall, the results concluded that the bionanocomposite has expressed scope for multifaceted biomedical applications.
Collapse
Affiliation(s)
- Musarat Amina
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nawal M. Al Musayeib
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nawal A. Alarfaj
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia
| | - Maha F. El-Tohamy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia
| | - Gadah A. Al-Hamoud
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
42
|
Rani N, Rawat K, Saini M, Shrivastava A, Kandasamy G, Saini K, Maity D. Rod-shaped ZnO nanoparticles: synthesis, comparison and in vitro evaluation of their apoptotic activity in lung cancer cells. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01942-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
43
|
Abstract
Ag–TiO2 nanostructures were prepared by electrospinning, followed by calcination at 400 °C, and their photocatalytic and antibacterial actions were studied. Morphological characterization revealed the presence of one-dimensional uniform Ag–TiO2 nanostructured nanofibers, with a diameter from 65 to 100 nm, depending on the Ag loading, composed of small crystals interconnected with each other. Structural characterization indicated that Ag was successfully integrated as small nanocrystals without affecting much of the TiO2 crystal lattice. Moreover, the presence of nano Ag was found to contribute to reducing the band gap energy, which enables the activation by the absorption of visible light, while, at the same time, it delays the electron–hole recombination. Tests of their photocatalytic activity in methylene blue, amaranth, Congo red and orange II degradation revealed an increase by more than 20% in color removal efficiency at an almost double rate for the case of 0.1% Ag–TiO2 nanofibers with respect to pure TiO2. Moreover, the minimum inhibitory concentration was found as low as 2.5 mg/mL for E. coli and 5 mg/mL against S. aureus for the 5% Ag–TiO2 nanofibers. In general, the Ag–TiO2 nanostructured nanofibers were found to exhibit excellent structure and physical properties and to be suitable for efficient photocatalytic and antibacterial uses. Therefore, these can be suitable for further integration in various important applications.
Collapse
|
44
|
Metformin and sodium dichloroacetate effects on proliferation, apoptosis, and metabolic activity tested alone and in combination in a canine prostate and a bladder cancer cell line. PLoS One 2021; 16:e0257403. [PMID: 34570803 PMCID: PMC8476037 DOI: 10.1371/journal.pone.0257403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/31/2021] [Indexed: 01/26/2023] Open
Abstract
An important approach in tumor therapy is combining substances with different action mechanisms aiming to enhance the antineoplastic effect, decrease the therapeutic dosage, and avoid resistance mechanisms. Moreover, evaluating compounds already approved for the treatment of non-neoplastic diseases is promising for new antineoplastic therapies. Sodium dichloroacetate (DCA) reactivates oxidative phosphorylation in the cancer cell mitochondria, reducing apoptosis resistance in cancer cells. Furthermore, metformin inhibits the proliferation of tumor cells and CD133+ cancer -stem-like cells. In the present study, we evaluated the independent and synergistic effect of metformin and DCA on the metabolic activity, cell proliferation, and apoptosis of a canine prostate adenocarcinoma (Adcarc1258) and a transitional cell carcinoma cell line (TCC1506) in comparison to a primary canine fibroblast culture. Determining metformin uptake in tumor cells was performed by quantitative HPLC. Depending on the dosage, metformin as a single agent inhibited the metabolic activity and cell proliferation of the tumor cells, showing only minor effects on the fibroblasts. Furthermore, 1 mM metformin increased apoptosis over 96 h in the tumor cell lines but not in fibroblasts. Additionally, metformin uptake into the tumor cells in vitro was measurable by quantitative HPLC. Synergistic effects for the combination therapy were observed in both neoplastic cell lines as well as in the fibroblasts. Based on these results, metformin might be a promising therapeutic agent for canine urogenital tumors. Further studies on kinetics, toxicology, bioavailability, and application of metformin in dogs are necessary.
Collapse
|
45
|
Maleki P, Nemati F, Gholoobi A, Hashemzadeh A, Sabouri Z, Darroudi M. Green facile synthesis of silver-doped cerium oxide nanoparticles and investigation of their cytotoxicity and antibacterial activity. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108762] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
Chakhtouna H, Benzeid H, Zari N, Qaiss AEK, Bouhfid R. Recent progress on Ag/TiO 2 photocatalysts: photocatalytic and bactericidal behaviors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44638-44666. [PMID: 34212334 PMCID: PMC8249049 DOI: 10.1007/s11356-021-14996-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/15/2021] [Indexed: 05/23/2023]
Abstract
For many decades, titanium dioxide (TiO2) semiconductor has been extensively applied in several environmental applications due to its higher photocatalytic performances toward different organic pollutants, pharmaceutical compounds, and bacteria. However, its shortfall response to visible light, and the expeditious recombination rate of the photogenerated electron-hole pairs, hampers its utilization. Doping TiO2 semiconductor with silver nanoparticles is a sound strategy to (1) extend its photocatalytic activity to visible light, (2) prevent the electron/holes pairs recombination due to the formation of the Schottky barrier at the interfaces with TiO2 that act as an electron-trapping center, and (3) enhance its bactericide performances. This review focuses on the recent progress on silver-doped titanium dioxide (Ag/TiO2)-based photocatalysts. It addresses a wide range of Ag/TiO2 synthesis techniques, their physicochemical properties and discusses thoroughly the important role of silver (Ag) nanoparticles in enhancing the removal capacity and antibacterial performances of the Ag/TiO2 photocatalysts.
Collapse
Affiliation(s)
- Hanane Chakhtouna
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100, Rabat, Morocco
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Hanane Benzeid
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Nadia Zari
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100, Rabat, Morocco
| | - Abou El Kacem Qaiss
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100, Rabat, Morocco
| | - Rachid Bouhfid
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100, Rabat, Morocco.
| |
Collapse
|
47
|
Ahamed M, Akhtar MJ, Khan MAM, Alaizeri ZM, Alhadlaq H. Facile Synthesis of Zn-Doped Bi 2O 3 Nanoparticles and Their Selective Cytotoxicity toward Cancer Cells. ACS OMEGA 2021; 6:17353-17361. [PMID: 34278121 PMCID: PMC8280700 DOI: 10.1021/acsomega.1c01467] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/03/2021] [Indexed: 05/18/2023]
Abstract
Bismuth (III) oxide nanoparticles (Bi2O3 NPs) have shown great potential for biomedical applications because of their tunable physicochemical properties. In this work, pure and Zn-doped (1 and 3 mol %) Bi2O3 NPs were synthesized by a facile chemical route and their cytotoxicity was examined in cancer cells and normal cells. The X-ray diffraction results show that the tetragonal phase of β-Bi2O3 remains unchanged after Zn-doping. Transmission electron microscopy and scanning electron microscopy images depicted that prepared particles were spherical with smooth surfaces and the homogeneous distribution of Zn in Bi2O3 with high-quality lattice fringes without distortion. Photoluminescence spectra revealed that intensity of Bi2O3 NPs decreases with increasing level of Zn-doping. Biological data showed that Zn-doped Bi2O3 NPs induce higher cytotoxicity to human lung (A549) and liver (HepG2) cancer cells as compared to pure Bi2O3 NPs, and cytotoxic intensity increases with increasing concentration of Zn-doping. Mechanistic data indicated that Zn-doped Bi2O3 NPs induce cytotoxicity in both types of cancer cells through the generation of reactive oxygen species and caspase-3 activation. On the other hand, biocompatibility of Zn-doped Bi2O3 NPs in normal cells (primary rat hepatocytes) was greater than that of pure Bi2O3 NPs and biocompatibility improves with increasing level of Zn-doping. Altogether, this is the first report highlighting the role of Zn-doping in the anticancer activity of Bi2O3 NPs. This study warrants further research on the antitumor activity of Zn-doped Bi2O3 NPs in suitable in vivo models.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King
Abdullah Institute for Nanotechnology, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Javed Akhtar
- King
Abdullah Institute for Nanotechnology, King
Saud University, Riyadh 11451, Saudi Arabia
| | - M. A. Majeed Khan
- King
Abdullah Institute for Nanotechnology, King
Saud University, Riyadh 11451, Saudi Arabia
| | - ZabnAllah M. Alaizeri
- Department
of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hisham Alhadlaq
- King
Abdullah Institute for Nanotechnology, King
Saud University, Riyadh 11451, Saudi Arabia
- Department
of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
48
|
Breast Cancer Inhibition by Biosynthesized Titanium Dioxide Nanoparticles Is Comparable to Free Doxorubicin but Appeared Safer in BALB/c Mice. MATERIALS 2021; 14:ma14123155. [PMID: 34201266 PMCID: PMC8229371 DOI: 10.3390/ma14123155] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 12/24/2022]
Abstract
Cancer remains a global health burden prompting affordable, target-oriented, and safe chemotherapeutic agents to reduce its incidence rate worldwide. In this study, a rapid, cost-effective, and green synthesis of titanium dioxide (TiO2) nanoparticles (NPs) has been carried out; Ex vivo and in vivoevaluation of their safety and anti-tumor efficacy compared to doxorubicin (DOX), a highly efficient breast anti-cancer agent but limited by severe cardiotoxicity in many patients.Thereby,TiO2 NPs were eco-friendly synthetized using aqueous leaf extract of the tropical medicinal shrub Zanthoxylum armatum as a reducing agent. Butanol was used as a unique template. TiO2 NPs were physically characterized by ultraviolet-visible (UV-Vis) spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscope (SEM), X-ray powder diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) as routine state-of-the art techniques. The synthesized TiO2 NPs were then evaluated for their cytotoxicity (by MTT, FACS, and oxidative stress assays) in 4T1 breast tumor cells, and their hemocompatibility (by hemolysis assay). In vivo anti-tumor efficacy and safety of the TiO2 NPs were further assessed using subcutaneous 4T1 breast BALB/c mouse tumor model.The greenly prepared TiO2 NPs were small, spherical, and crystalline in nature. Interestingly, they were hemocompatible and elicited a strong DOX-like concentration-dependent cytotoxicity-induced apoptosis both ex vivo and in vivo (with a noticeable tumor volume reduction). The underlying molecular mechanism was, at least partially, mediated through reactive oxygen species (ROS) generation (lipid peroxidation). Unlike DOX (P < 0.05), it is important to mention that no cardiotoxicity or altered body weight were observed in both the TiO2 NPs-treated tumor-bearing mouse group and the PBS-treated mouse group (P > 0.05). Taken together, Z. armatum-derived TiO2 NPs are cost-effective, more efficient, and safer than DOX. The present findings shall prompt clinical trials using green TiO2 NPs, at least as a possible alternative modality to DOX for effective breast cancer therapy.
Collapse
|
49
|
Green Synthesis of TiFe2O4@Ag Nanocomposite Using Spirulina platensis; Characterization of Their Anticancer Activity and Evaluation of Their Effect on the Expression of Bax, p53, and Bcl-2 Genes in AGS cell line. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
Lagopati N, Kotsinas A, Veroutis D, Evangelou K, Papaspyropoulos A, Arfanis M, Falaras P, Kitsiou PV, Pateras I, Bergonzini A, Frisan T, Kyriazis S, Tsoukleris DS, Tsilibary EPC, Gazouli M, Pavlatou EA, Gorgoulis VG. Biological Effect of Silver-modified Nanostructured Titanium Dioxide in Cancer. Cancer Genomics Proteomics 2021; 18:425-439. [PMID: 33994365 PMCID: PMC8240036 DOI: 10.21873/cgp.20269] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND/AIM Nanomedicine is a promising scientific field that exploits the unique properties of innovative nanomaterials, providing alternative solutions in diagnostics, prevention and therapeutics. Titanium dioxide nanoparticles (TiO2 NPs) have a great spectrum of photocatalytic antibacterial and anticancer applications. The chemical modification of TiO2 optimizes its bioactive performance. The aim of this study was the development of silver modified NPs (Ag/TiO2 NPs) with anticancer potential. MATERIALS AND METHODS Ag/TiO2 NPs were prepared through the sol-gel method, were fully characterized and were tested on cultured breast cancer epithelial cells (MCF-7 and MDA-MB-231). The MTT colorimetric assay was used to estimate cellular viability. Western blot analysis of protein expression along with a DNA-laddering assay were employed for apoptosis detection. RESULTS AND CONCLUSION We show that photo-activated Ag/TiO2 NPs exhibited significant cytotoxicity on the highly malignant MDA-MB-231 cancer cells, inducing apoptosis, while MCF-7 cells that are characterized by low invasive properties were unaffected under the same conditions.
Collapse
Affiliation(s)
- Nefeli Lagopati
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, Athens, Greece
- Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Athanassios Kotsinas
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Veroutis
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Konstantinos Evangelou
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Angelos Papaspyropoulos
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Michalis Arfanis
- Institute of Nanoscience and Nanotechnology, Laboratory of Nanotechnology Processes for Solar Energy Conversion and Environmental Protection, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Polycarpos Falaras
- Institute of Nanoscience and Nanotechnology, Laboratory of Nanotechnology Processes for Solar Energy Conversion and Environmental Protection, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Paraskevi V Kitsiou
- Institute of Biosciences and Applications, Laboratory of Biochemistry/Cell & Matrix Pathobiology, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Ioannis Pateras
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Bergonzini
- Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Teresa Frisan
- Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Spyridon Kyriazis
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios S Tsoukleris
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, Athens, Greece
- NanoViis Company, Athens, Greece
| | | | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia A Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, Athens, Greece;
| | - Vassilis G Gorgoulis
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Medical School, National and Kapodistrian University of Athens, Athens, Greece;
- Biomedical Research Foundation Academy of Athens, Athens, Greece
- Faculty of Biology, Medicine and Health Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, U.K
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|