1
|
Wawruszak A, Luszczki J, Bartuzi D, Kalafut J, Okon E, Czerwonka A, Stepulak A. Selisistat, a SIRT1 inhibitor, enhances paclitaxel activity in luminal and triple-negative breast cancer: in silico, in vitro, and in vivo studies. J Enzyme Inhib Med Chem 2025; 40:2458554. [PMID: 39935420 PMCID: PMC11823383 DOI: 10.1080/14756366.2025.2458554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 12/18/2024] [Accepted: 01/05/2025] [Indexed: 02/13/2025] Open
Abstract
Sirtuins (SIRTs) are NAD+-dependent histone deacetylases, which play a key role in cancer progression; however, their prognostic values in breast cancer (BC) remain a subject of debate and controversy. Accumulative evidence suggests that each sirtuin possesses individual character, implicating its role in the regulation of multifaceted biological functions leading to BC initiation, progression and metastasis. Selisistat (EX527) is a potent, cell permeable, highly selective SIRT1 inhibitor. In the study, the tumour-suppressive effects of the SIRT1 inhibitor EX527 (selisistat) alone and in combination with paclitaxel (PAX) in different breast cancer cell lines and zebrafish xenograft models were investigated. The type of pharmacological drug-drug interaction between EX527 and PAX was determined using the isobolographic method. EX527 and PAX used individually inhibited proliferation, induced apoptosis and caused cell cycle arrest in G1 and subG1/G2 phases. Interestingly, the combination of these compounds used in the 1:1 dose-ratio augmented all these effects (IC50add 29.52 ± 3.29 - 38.45 ± 5.26). The co-treatment of EX527 with PAX generated desirable additive drug-drug interaction. The simultaneous application of EX527 and PAX induced a stronger inhibition of tumour growth compared to individual treatments in zebrafish xenografts. In silico analysis revealed a protein-protein interaction pathway (SIRT1-AKT-S1PR1-GNAI1/GNAO1-Tubulin) connecting molecular targets of both ligands. To summarise, the combination of EX527 and PAX more effectively impairs breast cancer cell growth compared to individual treatments. However, further investigations are required to clarify the specific targets and molecular mechanisms underlying the activity of EX527:PAX in other preclinical models.
Collapse
Affiliation(s)
- Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Jarogniew Luszczki
- Department of Occupational Medicine, Medical University of Lublin, Lublin, Poland
| | - Damian Bartuzi
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Laboratory, Medical University of Lublin, Lublin, Poland
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Joanna Kalafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Estera Okon
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
2
|
Karaduman A, Karoglu-Eravsar ET, Adams MM, Kafaligonul H. Passive exposure to visual motion leads to short-term changes in the optomotor response of aging zebrafish. Behav Brain Res 2024; 460:114812. [PMID: 38104637 DOI: 10.1016/j.bbr.2023.114812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Numerous studies have shown that prior visual experiences play an important role in sensory processing and adapting behavior in a dynamic environment. A repeated and passive presentation of visual stimulus is one of the simplest procedures to manipulate acquired experiences. Using this approach, we aimed to investigate exposure-based visual learning of aging zebrafish and how cholinergic intervention is involved in exposure-induced changes. Our measurements included younger and older wild-type zebrafish and achesb55/+ mutants with decreased acetylcholinesterase activity. We examined both within-session and across-day changes in the zebrafish optomotor responses to repeated and passive exposure to visual motion. Our findings revealed short-term (within-session) changes in the magnitude of optomotor response (i.e., the amount of position shift by fish as a response to visual motion) rather than long-term and persistent effects across days. Moreover, the observed short-term changes were age- and genotype-dependent. Compared to the initial presentations of motion within a session, the magnitude of optomotor response to terminal presentations decreased in the older zebrafish. There was a similar robust decrease specific to achesb55/+ mutants. Taken together, these results point to short-term (within-session) alterations in the motion detection of adult zebrafish and suggest differential effects of neural aging and cholinergic system on the observed changes. These findings further provide important insights into adult zebrafish optomotor response to visual motion and contribute to understanding this reflexive behavior in the short- and long-term stimulation profiles.
Collapse
Affiliation(s)
- Aysenur Karaduman
- Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Türkiye; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Türkiye; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Türkiye
| | - Elif Tugce Karoglu-Eravsar
- Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Türkiye; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Türkiye; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Türkiye; Department of Psychology, Selcuk University, Konya, Türkiye
| | - Michelle M Adams
- Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Türkiye; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Türkiye; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Türkiye; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Türkiye; Department of Psychology, Bilkent University, Ankara, Türkiye
| | - Hulusi Kafaligonul
- Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Türkiye; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Türkiye; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Türkiye; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Türkiye.
| |
Collapse
|
3
|
Kwiatkowska I, Hermanowicz JM, Czarnomysy R, Surażyński A, Kowalczuk K, Kałafut J, Przybyszewska-Podstawka A, Bielawski K, Rivero-Müller A, Mojzych M, Pawlak D. Assessment of an Anticancer Effect of the Simultaneous Administration of MM-129 and Indoximod in the Colorectal Cancer Model. Cancers (Basel) 2023; 16:122. [PMID: 38201550 PMCID: PMC10778160 DOI: 10.3390/cancers16010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
(1) Background: The purpose of the given study was to examine the antitumor activity of the simultaneous administration of MM-129, a 1,2,4-triazine derivative, and indoximod (IND), the kynurenine pathway inhibitor, toward colon cancer. (2) Methods: The efficiency of the co-administration of the studied compounds was assessed in xenografted zebrafish embryos. Then, the effects of the combined administration of compounds on cellular processes such as cell viability, apoptosis, and intracellular signaling pathways were evaluated. In vitro studies were performed using two colorectal cancer cell lines, namely, DLD-1 and HT-29. (3) Results: The results indicated that the simultaneous application of MM-129 and indoximod induced a stronger inhibition of tumor growth in zebrafish xenografts. The combination of these compounds intensified the process of apoptosis by lowering the mitochondrial potential, enhancing the externalization of phosphatidylserine (PS) and activation of caspases. Additionally, the expression of protein kinase B (AKT) and indoleamine 2,3-dioxygenase-(1IDO1) was disrupted under the applied compound combination. (4) Conclusions: Simultaneous targeting of ongoing cell signaling that promotes tumor progression, along with inhibition of the kynurenine pathway enzyme IDO1, results in the enhancement of the antitumor effect of the tested compounds against the colon cancer cells.
Collapse
Affiliation(s)
- Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (R.C.); (K.B.)
| | - Arkadiusz Surażyński
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Krystyna Kowalczuk
- Department of Integrated Medical Care, Medical University of Bialystok, ul. M Skłodowskiej-Curie 7A, 15-096 Bialystok, Poland;
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (J.K.); (A.P.-P.); (A.R.-M.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (J.K.); (A.P.-P.); (A.R.-M.)
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (R.C.); (K.B.)
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (J.K.); (A.P.-P.); (A.R.-M.)
| | - Mariusz Mojzych
- Faculty of Health Science, Collegium Medicum, The Mazovian Academy in Plock, Plac Dabrowskiego 2, 09-402 Plock, Poland;
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
| |
Collapse
|
4
|
Karoglu-Eravsar ET, Tuz-Sasik MU, Karaduman A, Keskus AG, Arslan-Ergul A, Konu O, Kafaligonul H, Adams MM. Long-Term Acetylcholinesterase Depletion Alters the Levels of Key Synaptic Proteins while Maintaining Neuronal Markers in the Aging Zebrafish (Danio rerio) Brain. Gerontology 2023; 69:1424-1436. [PMID: 37793352 PMCID: PMC10711754 DOI: 10.1159/000534343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
INTRODUCTION Interventions targeting cholinergic neurotransmission like acetylcholinesterase (AChE) inhibition distinguish potential mechanisms to delay age-related impairments and attenuate deficits related to neurodegenerative diseases. However, the chronic effects of these interventions are not well described. METHODS In the current study, global levels of cholinergic, cellular, synaptic, and inflammation-mediating proteins were assessed within the context of aging and chronic reduction of AChE activity. Long-term depletion of AChE activity was induced by using a mutant zebrafish line, and they were compared with the wildtype group at young and old ages. RESULTS Results demonstrated that AChE activity was lower in both young and old mutants, and this decrease coincided with a reduction in ACh content. Additionally, an overall age-related reduction in AChE activity and the AChE/ACh ratio was observed, and this decline was more prominent in wildtype groups. The levels of an immature neuronal marker were upregulated in mutants, while a glial marker showed an overall reduction. Mutants had preserved levels of inhibitory and presynaptic elements with aging, whereas glutamate receptor subunit levels declined. CONCLUSION Long-term AChE activity depletion induces synaptic and cellular alterations. These data provide further insights into molecular targets and adaptive responses following the long-term reduction of AChE activity that was also targeted pharmacologically to treat neurodegenerative diseases in human subjects.
Collapse
Affiliation(s)
- Elif Tugce Karoglu-Eravsar
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
- National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, Ankara, Turkey
- Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey
- Department of Psychology, Selcuk University, Konya, Turkey
| | - Melek Umay Tuz-Sasik
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
- National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, Ankara, Turkey
- Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey
| | - Aysenur Karaduman
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
- Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Ayse Gokce Keskus
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
- National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, Ankara, Turkey
- Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey
| | - Ayca Arslan-Ergul
- National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, Ankara, Turkey
| | - Ozlen Konu
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
- National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, Ankara, Turkey
- Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Hulusi Kafaligonul
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
- National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, Ankara, Turkey
- Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Michelle M. Adams
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
- National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, Ankara, Turkey
- Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
- Department of Psychology, Bilkent University, Ankara, Turkey
| |
Collapse
|
5
|
Karaduman A, Karoglu-Eravsar ET, Kaya U, Aydin A, Adams MM, Kafaligonul H. Zebrafish optomotor response to second-order motion illustrates that age-related changes in motion detection depend on the activated motion system. Neurobiol Aging 2023; 130:12-21. [PMID: 37419077 DOI: 10.1016/j.neurobiolaging.2023.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 07/09/2023]
Abstract
Various aspects of visual functioning, including motion perception, change with age. Yet, there is a lack of comprehensive understanding of age-related alterations at different stages of motion processing and in each motion system. To understand the effects of aging on second-order motion processing, we investigated optomotor responses (OMR) in younger and older wild-type (AB-strain) and acetylcholinesterase (achesb55/+) mutant zebrafish. The mutant fish with decreased levels of acetylcholinesterase have been shown to have delayed age-related cognitive decline. Compared to previous results on first-order motion, we found distinct changes in OMR to second-order motion. The polarity of OMR was dependent on age, such that second-order stimulation led to mainly negative OMR in the younger group while older zebrafish had positive responses. Hence, these findings revealed an overall aging effect on the detection of second-order motion. Moreover, neither the genotype of zebrafish nor the spatial frequency of motion significantly changed the response magnitude. Our findings support the view that age-related changes in motion detection depend on the activated motion system.
Collapse
Affiliation(s)
- Aysenur Karaduman
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Türkiye; Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Türkiye; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Türkiye
| | - Elif Tugce Karoglu-Eravsar
- Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Türkiye; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Türkiye; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Türkiye; Department of Psychology, Selcuk University, Konya, Türkiye
| | - Utku Kaya
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| | - Alaz Aydin
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Türkiye; Department of Cognitive Science, Informatics Institute, Middle East Technical University, Ankara, Türkiye
| | - Michelle M Adams
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Türkiye; Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Türkiye; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Türkiye; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Türkiye; Department of Psychology, Bilkent University, Ankara, Türkiye
| | - Hulusi Kafaligonul
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Türkiye; Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Türkiye; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Türkiye; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Türkiye.
| |
Collapse
|
6
|
Shimizu N, Shiraishi H, Hanada T. Zebrafish as a Useful Model System for Human Liver Disease. Cells 2023; 12:2246. [PMID: 37759472 PMCID: PMC10526867 DOI: 10.3390/cells12182246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Liver diseases represent a significant global health challenge, thereby necessitating extensive research to understand their intricate complexities and to develop effective treatments. In this context, zebrafish (Danio rerio) have emerged as a valuable model organism for studying various aspects of liver disease. The zebrafish liver has striking similarities to the human liver in terms of structure, function, and regenerative capacity. Researchers have successfully induced liver damage in zebrafish using chemical toxins, genetic manipulation, and other methods, thereby allowing the study of disease mechanisms and the progression of liver disease. Zebrafish embryos or larvae, with their transparency and rapid development, provide a unique opportunity for high-throughput drug screening and the identification of potential therapeutics. This review highlights how research on zebrafish has provided valuable insights into the pathological mechanisms of human liver disease.
Collapse
Affiliation(s)
- Nobuyuki Shimizu
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| | | | - Toshikatsu Hanada
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| |
Collapse
|
7
|
Basheer F, Dhar P, Samarasinghe RM. Zebrafish Models of Paediatric Brain Tumours. Int J Mol Sci 2022; 23:9920. [PMID: 36077320 PMCID: PMC9456103 DOI: 10.3390/ijms23179920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Paediatric brain cancer is the second most common childhood cancer and is the leading cause of cancer-related deaths in children. Despite significant advancements in the treatment modalities and improvements in the 5-year survival rate, it leaves long-term therapy-associated side effects in paediatric patients. Addressing these impairments demands further understanding of the molecularity and heterogeneity of these brain tumours, which can be demonstrated using different animal models of paediatric brain cancer. Here we review the use of zebrafish as potential in vivo models for paediatric brain tumour modelling, as well as catalogue the currently available zebrafish models used to study paediatric brain cancer pathophysiology, and discuss key findings, the unique attributes that these models add, current challenges and therapeutic significance.
Collapse
Affiliation(s)
- Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3220, Australia
| | - Poshmaal Dhar
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3220, Australia
| | - Rasika M. Samarasinghe
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
8
|
Sarmiento BE, Callegari S, Ghotme KA, Akle V. Patient-Derived Xenotransplant of CNS Neoplasms in Zebrafish: A Systematic Review. Cells 2022; 11:cells11071204. [PMID: 35406768 PMCID: PMC8998145 DOI: 10.3390/cells11071204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma and neuroblastoma are the most common central nervous system malignant tumors in adult and pediatric populations. Both are associated with poor survival. These tumors are highly heterogeneous, having complex interactions among different cells within the tumor and with the tumor microenvironment. One of the main challenges in the neuro-oncology field is achieving optimal conditions to evaluate a tumor’s molecular genotype and phenotype. In this respect, the zebrafish biological model is becoming an excellent alternative for studying carcinogenic processes and discovering new treatments. This review aimed to describe the results of xenotransplantation of patient-derived CNS tumors in zebrafish models. The reviewed studies show that it is possible to maintain glioblastoma and neuroblastoma primary cell cultures and transplant the cells into zebrafish embryos. The zebrafish is a suitable biological model for understanding tumor progression and the effects of different treatments. This model offers new perspectives in providing personalized care and improving outcomes for patients living with central nervous system tumors.
Collapse
Affiliation(s)
- Beatriz E. Sarmiento
- School of Medicine, Universidad de Los Andes, Bogotá 11711, Colombia; (B.E.S.); (S.C.)
| | - Santiago Callegari
- School of Medicine, Universidad de Los Andes, Bogotá 11711, Colombia; (B.E.S.); (S.C.)
| | - Kemel A. Ghotme
- Department of Neurosurgery, Fundación Santa Fe de Bogotá, Bogotá 111071, Colombia;
- Translational Neuroscience Research Lab, Faculty of Medicine, Universidad de La Sabana, Chía 250001, Colombia
| | - Veronica Akle
- School of Medicine, Universidad de Los Andes, Bogotá 11711, Colombia; (B.E.S.); (S.C.)
- Correspondence:
| |
Collapse
|
9
|
Shang Y, Zhang H, Cheng Y, Cao P, Cui J, Yin X, Fan S, Li Y. Fluorescent Imaging-Guided Chemo- and Photodynamic Therapy of Hepatocellular Carcinoma with HCPT@NMOFs-RGD Nanocomposites. Int J Nanomedicine 2022; 17:1381-1395. [PMID: 35369034 PMCID: PMC8964448 DOI: 10.2147/ijn.s353803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/10/2022] [Indexed: 01/10/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC), arising from hepatocytes, is the most common primary liver cancer. It is urgent to develop novel therapeutic approaches to improve the grim prognosis of advanced HCC. 10-hydroxycamptothecin (HCPT) has good antitumor activity in cells; however, its hydrophobicity limits its application in the chemotherapy of HCC. Recently, nanoscale porphyrin metal-organic frameworks have been used as drug carriers due to their low biotoxicity and photodynamic properties. Methods Nanoscale zirconium porphyrin metal-organic frameworks (NMOFs) were coated with arginine-glycine-aspartic acid (RGD) peptide to prepare NMOFs-RGD first. The HepG2 cell line, zebrafish embryos and larvae were used to test the biotoxicity and fluorescence imaging capability of NMOFs-RGD both in vitro and in vivo. Then, NMOFs were used as the skeleton, HCPT was assembled into the pores of NMOFs, while RGD peptide was wrapped around to synthesize a novel kind of nanocomposites, HCPT@NMOFs-RGD. The tissue distribution and chemo- and photodynamic therapeutic effects of HCPT@NMOFs-RGD were evaluated in a doxycycline-induced zebrafish HCC model and xenograft mouse model. Results NMOFs-RGD had low biotoxicity, good biocompatibility and excellent imaging capability. In HCC-bearing zebrafish, HCPT@NMOFs-RGD were specifically enriched in the tumor by binding specifically to integrin αvβ3 and led to a reduction in tumor volume. Moreover, the xenografts in mice were eliminated remarkably following HCPT@NMOFs-RGD treatment with laser irradiation, while little morphological change was found in other main organs. Conclusion The nanocomposites HCPT@NMOFs-RGD accomplish tumor targeting and play synergistic chemo- and photodynamic therapeutic effects on HCC, offering a novel imaging-guided drug delivery and theranostic platform.
Collapse
Affiliation(s)
- Yue Shang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People’s Republic of China
| | - Hui Zhang
- Shanghai Institute of Quality Inspection and Technical Research, Shanghai, People’s Republic of China
| | - Yajia Cheng
- Department of Pathology, Nankai University School of Medicine, Tianjin, People’s Republic of China
| | - Peipei Cao
- Department of Pathology, Nankai University School of Medicine, Tianjin, People’s Republic of China
| | - Jianlin Cui
- Department of Pathology, Nankai University School of Medicine, Tianjin, People’s Republic of China
| | - Xuebo Yin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, People’s Republic of China
| | - Saijun Fan
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People’s Republic of China
| | - Yuhao Li
- Beijing Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, People’s Republic of China
- Correspondence: Yuhao Li, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China, Tel +86-10-83198269, Email
| |
Collapse
|
10
|
Functional Therapeutic Target Validation Using Pediatric Zebrafish Xenograft Models. Cancers (Basel) 2022; 14:cancers14030849. [PMID: 35159116 PMCID: PMC8834194 DOI: 10.3390/cancers14030849] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Despite the major progress of precision and personalized oncology, a significant therapeutic benefit is only achieved in cases with directly druggable genetic alterations. This highlights the need for additional methods that reliably predict each individual patient’s response in a clinically meaningful time, e.g., through ex vivo functional drug screen profiling. Moreover, patient-derived xenograft (PDX) models are more predictive than cell culture studies, as they reconstruct cell–cell and cell–extracellular matrix (ECM) interactions and consider the tumor microenvironment, drug metabolism and toxicities. Zebrafish PDXs (zPDX) are nowadays emerging as a fast model allowing for multiple drugs to be tested at the same time in a clinically relevant time window. Here, we show that functional drug response profiling of zPDX from primary material obtained through the INdividualized Therapy FOr Relapsed Malignancies in Childhood (INFORM) pediatric precision oncology pipeline provides additional key information for personalized precision oncology. Abstract The survival rate among children with relapsed tumors remains poor, due to tumor heterogeneity, lack of directly actionable tumor drivers and multidrug resistance. Novel personalized medicine approaches tailored to each tumor are urgently needed to improve cancer treatment. Current pediatric precision oncology platforms, such as the INFORM (INdividualized Therapy FOr Relapsed Malignancies in Childhood) study, reveal that molecular profiling of tumor tissue identifies targets associated with clinical benefit in a subgroup of patients only and should be complemented with functional drug testing. In such an approach, patient-derived tumor cells are exposed to a library of approved oncological drugs in a physiological setting, e.g., in the form of animal avatars injected with patient tumor cells. We used molecularly fully characterized tumor samples from the INFORM study to compare drug screen results of individual patient-derived cell models in functional assays: (i) patient-derived spheroid cultures within a few days after tumor dissociation; (ii) tumor cells reisolated from the corresponding mouse PDX; (iii) corresponding long-term organoid-like cultures and (iv) drug evaluation with the corresponding zebrafish PDX (zPDX) model. Each model had its advantage and complemented the others for drug hit and drug combination selection. Our results provide evidence that in vivo zPDX drug screening is a promising add-on to current functional drug screening in precision medicine platforms.
Collapse
|
11
|
Targen S, Konu O. Zebrafish Xenotransplantation Models for Studying Gene Function and Drug Treatment in Hepatocellular Carcinoma. J Gastrointest Cancer 2021; 52:1248-1265. [PMID: 35031971 DOI: 10.1007/s12029-021-00782-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Zebrafish is a promising model organism for human disease including hepatocellular cancer (HCC). Recently, zebrafish has emerged also as a host for xenograft studies of liver cancer cell lines and patient derived tumors of HCC. Zebrafish embryos enable drug screening and gene function studies of xenografted cells via ease of microinjection and visualization of tumor growth and metastasis. OBJECTIVES In this review, we aimed to overview zebrafish HCC and liver cancer xenotransplantation studies focusing on 'gene functional analysis' and 'drug/chemical screening'. METHODS Herein, a comprehensive literature search was performed for liver and HCC xenografts in zebrafish on PubMed using different key words and filters for molecular modifications or drug exposure. RESULTS Our literature search revealed around 250 studies which were filtered and summarized in a table (Table 1) revealing comprehensive collection of experimental and technical details on microinjection, injected cell lines, molecular modifications of injected cells, types and doses of drug treatments as well as biological assessments. CONCLUSION This review provides a platform for HCC and liver xenografts and highlights studies performed to understand gene functionality and drug efficacy in vivo in zebrafish.
Collapse
Affiliation(s)
- Seniye Targen
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.
| |
Collapse
|
12
|
Ho JY, Lu HY, Cheng HH, Kuo YC, Lee YLA, Cheng CH. UBE2S activates NF-κB signaling by binding with IκBα and promotes metastasis of lung adenocarcinoma cells. Cell Oncol (Dordr) 2021; 44:1325-1338. [PMID: 34582005 DOI: 10.1007/s13402-021-00639-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022] Open
Abstract
PURPOSE Nuclear factor (NF)-κB signaling in cancer cells has been reported to be involved in tumorigenesis. Phosphorylation and degradation of inhibitor of NF-κBα (IκBα) is a canonical pathway of NF-κB signaling. Here, we aimed to identify and characterize noncanonical activation of NF-κB signaling by ubiquitin-conjugating enzyme E2S (UBE2S) in lung adenocarcinoma cells. METHODS TCGA and the Human Atlas Protein Database were used to analyze the survival rate of lung adenocarcinoma patients in conjunction with UBE2S expression. In addition, PC9, H460, H441 and A549 lung adenocarcinoma cells were used in this study. PC9 and H460 cells were selected for further analysis because they expressed different UBE2S protein levels. Specific IKK inhibitors, PS1145 and SC514, were used to assess IκBα phosphorylation. Western blot analysis was used to assess protein levels in PC9 and H460 cells. A scratch wound-healing assay was used to analyze the migrative abilities of PC9 and H460 cells. Overexpression and knockdown of UBE2S in H460 and PC9 cells were used to analyze their effects on downstream protein levels. Immunoprecipitation, immunofluorescent staining, glutathione S transferase (GST) pull-down and in vitro binding assays were used to analyze the interaction between UBE2S and IκBα. A luciferase assay was used to analyze activation of NF-κB signaling regulated by UBE2S. An in vivo zebrafish xenograft model was used to assess metastasis of PC9 cells regulated by UBE2S. RESULTS We found that UBE2S expression in lung adenocarcinoma patients was negatively related to survival rate. The protein level of UBE2S was higher in PC9 cells than in H460 cells, which was opposite to that observed for IκBα. PC9 cells showed a higher UBE2S expression and migrative ability than H460 cells. Phosphorylation of IκBα was not changed by treatment with the IKK-specific inhibitors PS1145 and SC514 in PC9 and H460 cells. Overexpression and knockdown of UBE2S in H460 and PC9 cells revealed that the protein levels of IκBα were inversely regulated. Immunoprecipitation, immunofluorescent staining, GST pull-down and in vitro binding assays revealed direct binding of UBE2S with IκBα. Nuclear P65 protein levels and luciferase assays showed that NF-κB signaling was regulated by UBE2S. The expression of epithelial-to-mesenchymal (EMT) markers and the migrative ability of lung adenocarcinoma cells were also regulated by UBE2S. A zebrafish xenograft tumor model showed a reduction in the metastasis of PC9 cells that was induced by UBE2S knockdown. CONCLUSIONS Higher UBE2S expression in lung adenocarcinomas may lead to increased binding with IκBα to activate NF-κB signaling and promote adenocarcinoma cell metastasis. UBE2S may serve as a potential therapeutic target for lung adenocarcinomas.
Collapse
Affiliation(s)
- Jhih-Yun Ho
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, 11031, Taipei, Taiwan
| | - Hsin-Ying Lu
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, 11031, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, Wan Fang Hospital, Taipei Medical University, 11031, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, 11031, Taipei, Taiwan
| | - Hsing-Hsien Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, 11031, Taipei, Taiwan
| | - Yu-Chieh Kuo
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Yu-Lin Amy Lee
- Departments of Medicine and Pediatrics, Duke University Hospital, Durham, NC, 27704, USA
| | - Chia-Hsiung Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, 11031, Taipei, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, 11031, Taipei, Taiwan.
| |
Collapse
|
13
|
Lee AQ, Li Y, Gong Z. Inducible Liver Cancer Models in Transgenic Zebrafish to Investigate Cancer Biology. Cancers (Basel) 2021; 13:5148. [PMID: 34680297 PMCID: PMC8533791 DOI: 10.3390/cancers13205148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/20/2022] Open
Abstract
Primary liver cancer is one of the most prevalent and deadly cancers, which incidence continues to increase while treatment response remains poor; thus, in-depth understanding of tumour events is necessary to develop more effective therapies. Animal models for liver cancer are powerful tools to reach this goal. Over the past decade, our laboratory has established multiple oncogene transgenic zebrafish lines that can be robustly induced to develop liver cancer. Histological, transcriptomic and molecular analyses validate the use of these transgenic zebrafish as experimental models for liver cancer. In this review, we provide a comprehensive summary of our findings with these inducible zebrafish liver cancer models in tumour initiation, oncogene addiction, tumour microenvironment, gender disparity, cancer cachexia, drug screening and others. Induced oncogene expression causes a rapid change of the tumour microenvironment such as inflammatory responses, increased vascularisation and rapid hepatic growth. In several models, histologically-proven carcinoma can be induced within one week of chemical inducer administration. Interestingly, the induced liver tumours show the ability to regress when the transgenic oncogene is suppressed by the withdrawal of the chemical inducer. Like human liver cancer, there is a strong bias of liver cancer severity in male zebrafish. After long-term tumour progression, liver cancer-bearing zebrafish also show symptoms of cancer cachexia such as muscle-wasting. In addition, the zebrafish models have been used to screen for anti-metastasis drugs as well as to evaluate environmental toxicants in carcinogenesis. These findings demonstrated that these inducible zebrafish liver cancer models provide rapid and convenient experimental tools for further investigation of fundamental cancer biology, with the potential for the discovery of new therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore; (A.Q.L.); (Y.L.)
| |
Collapse
|
14
|
Gurer DC, Erdogan İ, Ahmadov U, Basol M, Sweef O, Cakan-Akdogan G, Akgül B. Transcriptomics Profiling Identifies Cisplatin-Inducible Death Receptor 5 Antisense Long Non-coding RNA as a Modulator of Proliferation and Metastasis in HeLa Cells. Front Cell Dev Biol 2021; 9:688855. [PMID: 34497804 PMCID: PMC8419520 DOI: 10.3389/fcell.2021.688855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Cisplatin is a well-known cancer chemotherapeutic agent but how extensively long non-coding RNA (lncRNA) expression is modulated by cisplatin is unknown. It is imperative to employ a comprehensive approach to obtain a better account of cisplatin-mediated changes in the expression of lncRNAs. In this study, we used a transcriptomics approach to profile lncRNAs in cisplatin-treated HeLa cells, which resulted in identification of 10,214 differentially expressed lncRNAs, of which 2,500 were antisense lncRNAs. For functional analyses, we knocked down one of the cisplatin inducible lncRNAs, death receptor 5 antisense (DR5-AS) lncRNA, which resulted in a morphological change in HeLa cell shape without inducing any cell death. A second round of transcriptomics-based profiling revealed differential expression of genes associated with immune system, motility and cell cycle in DR5-AS knockdown HeLa cells. Cellular analyses showed that DR5-AS reduced cell proliferation and caused a cell cycle arrest at S and G2/M phases. Moreover, DR5-AS knockdown reduced the invasive capacity of HeLa cells in zebrafish xenograft model. These results suggest that cisplatin-mediated pleiotropic effects, such as reduction in cell proliferation, metastasis and cell cycle arrest, may be mediated by lncRNAs.
Collapse
Affiliation(s)
- Dilek Cansu Gurer
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Ízmir, Institute of Technology, Izmir, Turkey
| | - İpek Erdogan
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Ízmir, Institute of Technology, Izmir, Turkey
| | - Ulvi Ahmadov
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Ízmir, Institute of Technology, Izmir, Turkey
| | - Merve Basol
- Izmir Biomedicine and Genome Center, Ízmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Ízmir, Turkey
| | - Osama Sweef
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Ízmir, Institute of Technology, Izmir, Turkey
| | | | - Bünyamin Akgül
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Ízmir, Institute of Technology, Izmir, Turkey
| |
Collapse
|
15
|
Tonon F, Farra R, Zennaro C, Pozzato G, Truong N, Parisi S, Rizzolio F, Grassi M, Scaggiante B, Zanconati F, Bonazza D, Grassi G, Dapas B. Xenograft Zebrafish Models for the Development of Novel Anti-Hepatocellular Carcinoma Molecules. Pharmaceuticals (Basel) 2021; 14:803. [PMID: 34451900 PMCID: PMC8400454 DOI: 10.3390/ph14080803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common type of tumor and the second leading cause of tumor-related death worldwide. Liver cirrhosis is the most important predisposing factor for HCC. Available therapeutic approaches are not very effective, especially for advanced HCC, which is the most common form of the disease at diagnosis. New therapeutic strategies are therefore urgently needed. The use of animal models represents a relevant tool for preclinical screening of new molecules/strategies against HCC. However, several issues, including animal husbandry, limit the use of current models (rodent/pig). One animal model that has attracted the attention of the scientific community in the last 15 years is the zebrafish. This freshwater fish has several attractive features, such as short reproductive time, limited space and cost requirements for husbandry, body transparency and the fact that embryos do not show immune response to transplanted cells. To date, two different types of zebrafish models for HCC have been developed: the transgenic zebrafish and the zebrafish xenograft models. Since transgenic zebrafish models for HCC have been described elsewhere, in this review, we focus on the description of zebrafish xenograft models that have been used in the last five years to test new molecules/strategies against HCC.
Collapse
Affiliation(s)
- Federica Tonon
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Rossella Farra
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Cristina Zennaro
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Gabriele Pozzato
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Nhung Truong
- Stem Cell Research and Application Laboratory, VNUHCM, University of Science, Ho Chi Minh City 72711, Vietnam;
| | - Salvatore Parisi
- Pathology Unit, CRO Aviano, National Cancer Institute, IRCCS, I 33081 Aviano, Italy; (S.P.); (F.R.)
- Doctoral School in Molecular Biomedicine, University of Trieste, I 34127 Trieste, Italy
| | - Flavio Rizzolio
- Pathology Unit, CRO Aviano, National Cancer Institute, IRCCS, I 33081 Aviano, Italy; (S.P.); (F.R.)
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, I 30170 Mestre, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I 34127 Trieste, Italy;
| | - Bruna Scaggiante
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I 34149 Trieste, Italy; (B.S.); (B.D.)
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Deborah Bonazza
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Gabriele Grassi
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I 34149 Trieste, Italy; (B.S.); (B.D.)
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I 34149 Trieste, Italy; (B.S.); (B.D.)
| |
Collapse
|
16
|
Letrado P, Mole H, Montoya M, Palacios I, Barriuso J, Hurlstone A, Díez-Martínez R, Oyarzabal J. Systematic Roadmap for Cancer Drug Screening Using Zebrafish Embryo Xenograft Cancer Models: Melanoma Cell Line as a Case Study. Cancers (Basel) 2021; 13:cancers13153705. [PMID: 34359605 PMCID: PMC8345186 DOI: 10.3390/cancers13153705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Currently, there is no consensus in the scientific literature regarding the zebrafish embryo xenotransplantation procedure for drug screening. Thus, this study sets systematic guidelines for maximizing the reproducibility of drug screening in zebrafish-embryo cancer xenograft models based on evaluating every step of the procedure in a real case scenario in which the chemical properties of the compounds are unknown or not optimal. It aims to be a stepping stone to bring the versatility of zebrafish embryos to drug screening for cancer. The present work helps our group to pursue the objective of establishing zebrafish embryos as a valuable alternative to mice models; and hopefully, will help other groups in this field to progress in the same direction. Abstract Zebrafish embryo tumor transplant models are widely utilized in cancer research. Compared with traditional murine models, the small size and transparency of zebrafish embryos combined with large clutch sizes that increase statistical power and cheap husbandry make them a cost-effective and versatile tool for in vivo drug discovery. However, the lack of a comprehensive analysis of key factors impacting the successful use of these models impedes the establishment of basic guidelines for systematic screening campaigns. Thus, we explored the following crucial factors: (i) user-independent inclusion criteria, focusing on sample homogeneity; (ii) metric definition for data analysis; (iii) tumor engraftment criteria; (iv) image analysis versus quantification of human cancer cells using qPCR (RNA and gDNA); (v) tumor implantation sites; (vi) compound distribution (intratumoral administration versus alternative inoculation sites); and (vii) efficacy (intratumoral microinjection versus compound solution in media). Based on these analyses and corresponding assessments, we propose the first roadmap for systematic drug discovery screening in zebrafish xenograft cancer models using a melanoma cell line as a case study. This study aims to help the wider cancer research community to consider the adoption of this versatile model for cancer drug screening projects.
Collapse
Affiliation(s)
- Patricia Letrado
- Ikan Biotech SL, Centro Europeo de Empresas e Innovación de Navarra (CEIN), 31110 Noain, Spain;
- Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Correspondence: (P.L.); (J.O.)
| | - Holly Mole
- Division of Cancer Sciences, School of Medical Sciences, The University of Manchester, Manchester M13 9PL, UK; (H.M.); (J.B.)
| | - María Montoya
- Cellomics Unit, Spanish National Center for Cardiovascular Research (CNIC), 28029 Madrid, Spain; (M.M.); (I.P.)
| | - Irene Palacios
- Cellomics Unit, Spanish National Center for Cardiovascular Research (CNIC), 28029 Madrid, Spain; (M.M.); (I.P.)
| | - Jorge Barriuso
- Division of Cancer Sciences, School of Medical Sciences, The University of Manchester, Manchester M13 9PL, UK; (H.M.); (J.B.)
- The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Adam Hurlstone
- Division of Infection, Immunology and Respiratory Medicine, School of Biological Science, The University of Manchester, Manchester M13 9PT, UK;
| | - Roberto Díez-Martínez
- Ikan Biotech SL, Centro Europeo de Empresas e Innovación de Navarra (CEIN), 31110 Noain, Spain;
| | - Julen Oyarzabal
- Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Correspondence: (P.L.); (J.O.)
| |
Collapse
|
17
|
Iscan E, Ekin U, Yildiz G, Oz O, Keles U, Suner A, Cakan-Akdogan G, Ozhan G, Nekulova M, Vojtesek B, Uzuner H, Karakülah G, Alotaibi H, Ozturk M. TAp73β Can Promote Hepatocellular Carcinoma Dedifferentiation. Cancers (Basel) 2021; 13:cancers13040783. [PMID: 33668566 PMCID: PMC7918882 DOI: 10.3390/cancers13040783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is a highly complex and heterogeneous type of cancer. Hepatocyte dedifferentiation is one of the important steps in the development of HCC. However, its molecular mechanisms are not well known. In this study, we report that transcriptionally active TAp73 isoforms are overexpressed in HCC. We also show that TAp73β suppresses the expression of the hepatocyte markers including CYP3A4, AFP, ALB, HNF4α, while increasing the expression of several cholangiocyte markers in HCC cell lines. In conclusion, this report reveals a pro-oncogenic role for TAp73β in liver cancer. Abstract Hepatocyte dedifferentiation is a major source of hepatocellular carcinoma (HCC), but its mechanisms are unknown. We explored the p73 expression in HCC tumors and studied the effects of transcriptionally active p73β (TAp73β) in HCC cells. Expression profiles of p73 and patient clinical data were collected from the Genomic Data Commons (GDC) data portal and the TSVdb database, respectively. Global gene expression profiles were determined by pan-genomic 54K microarrays. The Gene Set Enrichment Analysis method was used to identify TAp73β-regulated gene sets. The effects of TAp73 isoforms were analyzed in monolayer cell culture, 3D-cell culture and xenograft models in zebrafish using western blot, flow cytometry, fluorescence imaging, real-time polymerase chain reaction (RT-PCR), immunohistochemistry and morphological examination. TAp73 isoforms were significantly upregulated in HCC, and high p73 expression correlated with poor patient survival. The induced expression of TAp73β caused landscape expression changes in genes involved in growth signaling, cell cycle, stress response, immunity, metabolism and development. Hep3B cells overexpressing TAp73β had lost hepatocyte lineage biomarkers including ALB, CYP3A4, AFP, HNF4α. In contrast, TAp73β upregulated genes promoting cholangiocyte lineage such as YAP, JAG1 and ZO-1, accompanied with an increase in metastatic ability. Our findings suggest that TAp73β may promote malignant dedifferentiation of HCC cells.
Collapse
Affiliation(s)
- Evin Iscan
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Umut Ekin
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Gokhan Yildiz
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon 61000, Turkey;
| | - Ozden Oz
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
- Izmir Bozyaka Education and Research Hospital, University of Health Sciences, Izmir 35000, Turkey
| | - Umur Keles
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Aslı Suner
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ege University, Izmir 35000, Turkey;
| | - Gulcin Cakan-Akdogan
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir 35000, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Marta Nekulova
- RECAMO, Masaryk Memorial Cancer Institute, 60200 Brno, Czech Republic; (M.N.); (B.V.)
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, 60200 Brno, Czech Republic; (M.N.); (B.V.)
| | - Hamdiye Uzuner
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Hani Alotaibi
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Mehmet Ozturk
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Correspondence:
| |
Collapse
|
18
|
Chen X, Li Y, Yao T, Jia R. Benefits of Zebrafish Xenograft Models in Cancer Research. Front Cell Dev Biol 2021; 9:616551. [PMID: 33644052 PMCID: PMC7905065 DOI: 10.3389/fcell.2021.616551] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
As a promising in vivo tool for cancer research, zebrafish have been widely applied in various tumor studies. The zebrafish xenograft model is a low-cost, high-throughput tool for cancer research that can be established quickly and requires only a small sample size, which makes it favorite among researchers. Zebrafish patient-derived xenograft (zPDX) models provide promising evidence for short-term clinical treatment. In this review, we discuss the characteristics and advantages of zebrafish, such as their transparent and translucent features, the use of vascular fluorescence imaging, the establishment of metastatic and intracranial orthotopic models, individual pharmacokinetics measurements, and tumor microenvironment. Furthermore, we introduce how these characteristics and advantages are applied other in tumor studies. Finally, we discuss the future direction of the use of zebrafish in tumor studies and provide new ideas for the application of it.
Collapse
Affiliation(s)
- Xingyu Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tengteng Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
19
|
Wang K, Shang F, Chen D, Cao T, Wang X, Jiao J, He S, Liang X. Protein liposomes-mediated targeted acetylcholinesterase gene delivery for effective liver cancer therapy. J Nanobiotechnology 2021; 19:31. [PMID: 33482834 PMCID: PMC7821407 DOI: 10.1186/s12951-021-00777-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/13/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Effective methods to deliver therapeutic genes to solid tumors and improve their bioavailability are the main challenges of current medical research on gene therapy. The development of efficient non-viral gene vector with tumor-targeting has very important application value in the field of cancer therapy. Proteolipid integrated with tumor-targeting potential of functional protein and excellent gene delivery performance has shown potential for targeted gene therapy. RESULTS Herein, we prepared transferrin-modified liposomes (Tf-PL) for the targeted delivery of acetylcholinesterase (AChE) therapeutic gene to liver cancer. We found that the derived Tf-PL/AChE liposomes exhibited much higher transfection efficiency than the commercial product Lipo 2000 and shown premium targeting efficacy to liver cancer SMMC-7721 cells in vitro. In vivo, the Tf-PL/AChE could effectively target liver cancer, and significantly inhibit the growth of liver cancer xenografts grafted in nude mice by subcutaneous administration. CONCLUSIONS This study proposed a transferrin-modified proteolipid-mediated gene delivery strategy for targeted liver cancer treatment, which has a promising potential for precise personalized cancer therapy.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200032, People's Republic of China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Fusheng Shang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Dagui Chen
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Tieliu Cao
- Department of Hepatobiliary-pancreatic and Integrative Oncology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, 200240, People's Republic of China
| | - Xiaowei Wang
- Department of traditional Chinese medicine, Changzheng Hospital, Shanghai, 200001, People's Republic of China
| | - Jianpeng Jiao
- Department of traditional Chinese medicine, Changzheng Hospital, Shanghai, 200001, People's Republic of China
| | - Shengli He
- Department of Hepatobiliary-pancreatic and Integrative Oncology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, 200240, People's Republic of China.
| | - Xiaofei Liang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
20
|
Karaduman A, Karoglu-Eravsar ET, Kaya U, Aydin A, Adams MM, Kafaligonul H. The optomotor response of aging zebrafish reveals a complex relationship between visual motion characteristics and cholinergic system. Neurobiol Aging 2020; 98:21-32. [PMID: 33227566 DOI: 10.1016/j.neurobiolaging.2020.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/10/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022]
Abstract
Understanding the principles underlying age-related changes in motion perception is paramount for improving the quality of life and health of older adults. However, the mechanisms underlying age-related alterations in this aspect of vision, which is essential for survival in a dynamic world, still remain unclear. Using optomotor responses to drifting gratings, we investigated age-related changes in motion detection of adult zebrafish (wild-type/AB-strain and achesb55/+ mutants with decreased levels of acetylcholinesterase). Our results pointed out negative optomotor responses that significantly depend on the spatial frequency and contrast level of stimulation, providing supporting evidence for the visual motion-driven aspect of this behavior mainly exhibited by adult zebrafish. Although there were no significant main effects of age and genotype, we found a significant three-way interaction between contrast level, age, and genotype. In the contrast domain, the changes in optomotor responses and thus in the detection of motion direction were age- and genotype-specific. Accordingly, these behavioral findings suggest a strong but complicated relationship between visual motion characteristics and the cholinergic system during neural aging.
Collapse
Affiliation(s)
- Aysenur Karaduman
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey; Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Turkey
| | - Elif Tugce Karoglu-Eravsar
- Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey
| | - Utku Kaya
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Alaz Aydin
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Michelle M Adams
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey; Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey; Department of Psychology, Bilkent University, Ankara, Turkey
| | - Hulusi Kafaligonul
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey; Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey.
| |
Collapse
|
21
|
Targen S, Kaya T, Avci ME, Gunes D, Keskus AG, Konu O. ZenoFishDb v1.1: A Database for Xenotransplantation Studies in Zebrafish. Zebrafish 2020; 17:305-318. [PMID: 32931381 DOI: 10.1089/zeb.2020.1869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Rapidly accumulating literature has proven feasibility of the zebrafish xenograft models in cancer research. Nevertheless, online databases for searching the current zebrafish xenograft literature are in great demand. Herein, we have developed a manually curated database, called ZenoFishDb v1.1 (https://konulab.shinyapps.io/zenofishdb), based on R Shiny platform aiming to provide searchable information on ever increasing collection of zebrafish studies for cancer cell line transplantation and patient-derived xenografts (PDXs). ZenoFishDb v1.1 user interface contains four modules: DataTable, Visualization, PDX Details, and PDX Charts. The DataTable and Visualization pages represent xenograft study details, including injected cell lines, PDX injections, molecular modifications of cell lines, zebrafish strains, as well as technical aspects of the xenotransplantation procedures in table, bar, and/or pie chart formats. The PDX Details module provides comprehensive information on the patient details in table format and can be searched and visualized. Overall, ZenoFishDb v1.1 enables researchers to effectively search, list, and visualize different technical and biological attributes of zebrafish xenotransplantation studies particularly focusing on the new trends that make use of reporters, RNA interference, overexpression, or mutant gene constructs of transplanted cancer cells, stem cells, and PDXs, as well as distinguished host modifications.
Collapse
Affiliation(s)
- Seniye Targen
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Tuğberk Kaya
- Interdisciplinary Program in Neuroscience, Bilkent University, Ankara, Turkey.,Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - M Ender Avci
- Izmir Biomedicine and Genome Center, Dokuz Eylul University, Izmir, Turkey
| | - Damla Gunes
- Interdisciplinary Program in Neuroscience, Bilkent University, Ankara, Turkey
| | - Ayse Gokce Keskus
- Interdisciplinary Program in Neuroscience, Bilkent University, Ankara, Turkey
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,Interdisciplinary Program in Neuroscience, Bilkent University, Ankara, Turkey.,UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| |
Collapse
|
22
|
Topel H, Bagirsakci E, Comez D, Bagci G, Cakan-Akdogan G, Atabey N. lncRNA HOTAIR overexpression induced downregulation of c-Met signaling promotes hybrid epithelial/mesenchymal phenotype in hepatocellular carcinoma cells. Cell Commun Signal 2020; 18:110. [PMID: 32650779 PMCID: PMC7353702 DOI: 10.1186/s12964-020-00602-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
Background Epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) are both reversible processes, and regulation of phenotypical transition is very important for progression of several cancers including hepatocellular carcinoma (HCC). Recently, it is defined that cancer cells can attain a hybrid epithelial/mesenchymal (hybrid E/M) phenotype. Cells with hybrid E/M phenotype comprise mixed epithelial and mesenchymal properties, they can be more resistant to therapeutics and also more capable of initiating metastatic lesions. However, the mechanisms regulating hybrid E/M in HCC are not well described yet. In this study, we investigated the role of the potential crosstalk between lncRNA HOTAIR and c-Met receptor tyrosine kinase, which are two essential regulators of EMT and MET, in acquiring of hybrid E/M phenotype in HCC. Methods Expression of c-Met and lncRNA HOTAIR were defined in HCC cell lines and patient tissues through HCC progression. lncRNA HOTAIR was overexpressed in SNU-449 cells and its effects on c-Met signaling were analyzed. c-Met was overexpressed in SNU-398 cells and its effect on HOTAIR expression was analyzed. Biological significance of HOTAIR/c-Met interplay was defined in means of adhesion, proliferation, motility behavior, invasion, spheroid formation and metastatic ability. Effect of ectopic lncRNA HOTAIR expression on phenotype was defined with investigation of molecular epithelial and mesenchymal traits. Results In vitro and in vivo experiments verified the pivotal role of lncRNA HOTAIR in acquisition of hybrid E/M phenotype through modulating expression and activation of c-Met and its membrane co-localizing partner Caveolin-1, and membrane organization to cope with the rate limiting steps of metastasis such as survival in adhesion independent microenvironment, escaping from anoikis and resisting to fluidic shear stress (FSS) in HCC. Conclusions Our work provides the first evidence suggesting a role for lncRNA HOTAIR in the modulation of c-Met to promote hybrid E/M phenotype. The balance between lncRNA HOTAIR and c-Met might be critical for cell fate decision and metastatic potential of HCC cells. Video Abstract
Collapse
Affiliation(s)
- Hande Topel
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Department of Medical Biology and Genetics, Graduate School of Health Sciences, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey.,Functional Genomics and Metabolism Unit, Department for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Ezgi Bagirsakci
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Department of Molecular Biology and Genetics, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey
| | - Dehan Comez
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Department of Molecular Biology and Genetics, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey
| | - Gulsun Bagci
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Department of Molecular Biology and Genetics, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey
| | - Gulcin Cakan-Akdogan
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey
| | - Nese Atabey
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.
| |
Collapse
|
23
|
Modeling oncolytic virus dynamics in the tumor microenvironment using zebrafish. Cancer Gene Ther 2020; 28:769-784. [PMID: 32647136 DOI: 10.1038/s41417-020-0194-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/14/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022]
Abstract
We have adapted a zebrafish (Danio rerio) tumor xenograft model for use in the study of oncolytic virotherapy. Following implantation of mammalian cancer cells into the perivitelline space of developing zebrafish embryos, both local and intravenous oncolytic virus treatments produce a tumor-specific infection with measurable antitumor effects. Tumor cells are injected at 48 h post fertilization, with oncolytic virus treatment then being administered 24 h later to allow for an initial period of tumor development and angiogenesis. Confocal fluorescent imaging is used to quantify dynamics within the tumor environment. The natural translucency of zebrafish at the embryo stage, coupled with the availability of strains with fluorescent immune and endothelial cell reporter lines, gives the model broad potential to allow for real time, in vivo investigation of important events within tumors throughout the course of virotherapy. Zebrafish xenografts offer a system with biologic fidelity to processes in human cancer development that influence oncolytic virus efficacy, and to our knowledge this is the first demonstration of the model's use in the context of virotherapy. Compared with other models, our protocol offers a powerful, inexpensive approach to evaluating novel oncolytic viruses and oncolytic virus-based combination therapies, with potential application to investigating the impacts of virotherapy on immune response, tumor vasculature, and metastatic disease.
Collapse
|
24
|
Cysteinyl leukotriene receptor 1 promotes 5-fluorouracil resistance and resistance-derived stemness in colon cancer cells. Cancer Lett 2020; 488:50-62. [PMID: 32474153 DOI: 10.1016/j.canlet.2020.05.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/22/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022]
Abstract
Colon cancer is a therapy-resistant cancer with a low 5-year survival frequency. The drug 5-fluorouracil (5-FU) has been used as a first-line therapy in metastatic colon cancer in combination with leucovorin or oxaliplatin with a >40% resistance rate. High CysLT1R expression in tumors is associated with poor survival of colon cancer patients. We sought to examine the role of CysLT1R in 5-FU resistance and established 5-FU-resistant (5-FU-R) colon cancer cells. These 5-FU-R-cells expressed increased levels of CysLT1R and showed increased survival and migration compared to nonresistant cells. Increases in thymidylate synthase and active β-catenin were also observed in the 5-FU-R-cells. LTD4/CysLT1R signaling was further increased and abolished after CYSLTR1 CRISPR-Cas9-knockdown and reduced in CysLT1R-doxycycline-knockdown experiments and CysLT1R-antagonist montelukast/5-FU-treated cells. Montelukast and 5-FU resulted in synergistic effects by reducing HT-29 cell and 5-FU-R-HT-29 cell migration and zebrafish xenograft metastasis. An increase in the stem cell markers in 5-FU-R-cells and 5-FU-R-cell-derived colonospheres and in CysLT1R-Dox-knockdown cells increased colonosphere formation and stem cell markers was noticed after 5-FU treatment. IL-4-mediated stemness in both HT-29-colonospheres and 5-FU-R-cell derived colonospheres was abolished by montelukast or montelukast + 5-FU-treatment. Targeting CysLT1R signaling by montelukast might reverse drug resistance and decrease resistance-derived stemness in colon cancer patients.
Collapse
|
25
|
Varas MA, Muñoz-Montecinos C, Kallens V, Simon V, Allende ML, Marcoleta AE, Lagos R. Exploiting Zebrafish Xenografts for Testing the in vivo Antitumorigenic Activity of Microcin E492 Against Human Colorectal Cancer Cells. Front Microbiol 2020; 11:405. [PMID: 32265865 PMCID: PMC7096547 DOI: 10.3389/fmicb.2020.00405] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
One of the approaches to address cancer treatment is to develop new drugs not only to obtain compounds with less side effects, but also to have a broader set of alternatives to tackle the resistant forms of this pathology. In this regard, growing evidence supports the use of bacteria-derived peptides such as bacteriocins, which have emerged as promising anti-cancer molecules. In addition to test the activity of these molecules on cancer cells in culture, their in vivo antitumorigenic properties must be validated in animal models. Although the standard approach for such assays employs experiments in nude mice, at the initial stages of testing, the use of high-throughput animal models would permit rapid proof-of-concept experiments, screening a high number of compounds, and thus increasing the possibilities of finding new anti-cancer molecules. A validated and promising alternative animal model are zebrafish larvae harboring xenografts of human cancer cells. Here, we addressed the anti-cancer properties of the antibacterial peptide microcin E492 (MccE492), a bacteriocin produced by Klebsiella pneumoniae, showing that this peptide has a marked cytotoxic effect on human colorectal cancer cells in vitro. Furthermore, we developed a zebrafish xenograft model using these cells to test the antitumor effect of MccE492 in vivo, demonstrating that intratumor injection of this peptide significantly reduced the tumor cell mass. Our results provide, for the first time, evidence of the in vivo antitumoral properties of a bacteriocin tested in an animal model. This evidence strongly supports the potential of this bacteriocin for the development of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Macarena A Varas
- Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Carlos Muñoz-Montecinos
- Departamento de Biología, Facultad de Ciencias, FONDAP Center for Genome Regulation, Universidad de Chile, Santiago, Chile
| | - Violeta Kallens
- Departamento de Biología, Facultad de Ciencias, FONDAP Center for Genome Regulation, Universidad de Chile, Santiago, Chile
| | - Valeska Simon
- Laboratorio de Inmunología, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Miguel L Allende
- Departamento de Biología, Facultad de Ciencias, FONDAP Center for Genome Regulation, Universidad de Chile, Santiago, Chile
| | - Andrés E Marcoleta
- Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Rosalba Lagos
- Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
26
|
Yao Y, Wang L, Wang X. Modeling of Solid-Tumor Microenvironment in Zebrafish (Danio Rerio) Larvae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:413-428. [PMID: 32130712 DOI: 10.1007/978-3-030-34025-4_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The zebrafish larvae have emerged as a powerful model for studying tumorigenesis in vivo, with remarkable conservation with mammals in genetics, molecular and cell biology. Zebrafish tumor models bear the significant advantages of optical clarity in comparison to that in the mammalian models, allowing noninvasive investigation of the tumor cell and its microenvironment at single-cell resolution. Here we review recent progressions in the field of zebrafish models of solid tumor diseases in two main categories: the genetically engineered tumor models in which all cells in the tumor microenvironment are zebrafish cells, and xenograft tumor models in which the tumor microenvironment is composed of zebrafish cells and cells from other species. Notably, the zebrafish patient-derived xenograft (zPDX) models can be used for personalized drug assessment on primary tumor biopsies, including the pancreatic cancer. For the future studies, a series of high throughput drug screenings on the library of transgenic zebrafish models of solid tumor are expected to provide systematic database of oncogenic mutation, cell-of-origin, and leading compounds; and the humanization of zebrafish in genetics and cellular composition will make it more practical hosts for zPDX modeling. Together, zebrafish tumor model systems are unique and convenient in vivo platforms, with great potential to serve as valuable tools for cancer researches.
Collapse
Affiliation(s)
- Yuxiao Yao
- Cancer Metabolism Laboratory, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lei Wang
- Cancer Metabolism Laboratory, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xu Wang
- Cancer Metabolism Laboratory, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|