1
|
von Morze C, Blazey T, Shaw A, Spees WM, Shoghi KI, Ohliger MA. Detection of early-stage NASH using non-invasive hyperpolarized 13C metabolic imaging. Sci Rep 2024; 14:14854. [PMID: 38937567 PMCID: PMC11211431 DOI: 10.1038/s41598-024-65951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized from its early stages by a profound remodeling of the liver microenvironment, encompassing changes in the composition and activities of multiple cell types and associated gene expression patterns. Hyperpolarized (HP) 13C MRI provides a unique view of the metabolic microenvironment, with potential relevance for early diagnosis of liver disease. Previous studies have detected changes in HP 13C pyruvate to lactate conversion, catalyzed by lactate dehydrogenase (LDH), with experimental liver injury. HP ∝ -ketobutyrate ( ∝ KB) is a close molecular analog of pyruvate with modified specificity for LDH isoforms, specifically attenuated activity with their LDHA-expressed subunits that dominate liver parenchyma. Building on recent results with pyruvate, we investigated HP ∝ KB in methionine-choline deficient (MCD) diet as a model of early-stage NASH. Similarity of results between this new agent and pyruvate (~ 50% drop in cytoplasmic reducing capacity), interpreted together with gene expression data from the model, suggests that changes are mediated through broad effects on intermediary metabolism. Plausible mechanisms are depletion of the lactate pool by upregulation of gluconeogenesis (GNG) and pentose phosphate pathway (PPP) flux, and a possible shift toward increased lactate oxidation. These changes may reflect high levels of oxidative stress and/or shifting macrophage populations in NASH.
Collapse
Affiliation(s)
- Cornelius von Morze
- Mallinckrodt Institute of Radiology, Washington University, 4525 Scott Ave Rm 2303, St. Louis, MO, 63110, USA.
| | - Tyler Blazey
- Mallinckrodt Institute of Radiology, Washington University, 4525 Scott Ave Rm 2303, St. Louis, MO, 63110, USA
| | - Ashley Shaw
- Mallinckrodt Institute of Radiology, Washington University, 4525 Scott Ave Rm 2303, St. Louis, MO, 63110, USA
| | - William M Spees
- Mallinckrodt Institute of Radiology, Washington University, 4525 Scott Ave Rm 2303, St. Louis, MO, 63110, USA
| | - Kooresh I Shoghi
- Mallinckrodt Institute of Radiology, Washington University, 4525 Scott Ave Rm 2303, St. Louis, MO, 63110, USA
| | - Michael A Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
2
|
Magnetic Resonance Imaging and Spectroscopy Methods to Study Hepatic Glucose Metabolism and Their Applications in the Healthy and Diabetic Liver. Metabolites 2022; 12:metabo12121223. [PMID: 36557261 PMCID: PMC9788351 DOI: 10.3390/metabo12121223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The liver plays an important role in whole-body glucose homeostasis by taking up glucose from and releasing glucose into the blood circulation. In the postprandial state, excess glucose in the blood circulation is stored in hepatocytes as glycogen. In the postabsorptive state, the liver produces glucose by breaking down glycogen and from noncarbohydrate precursors such as lactate. In metabolic diseases such as diabetes, these processes are dysregulated, resulting in abnormal blood glucose levels. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) are noninvasive techniques that give unique insight into different aspects of glucose metabolism, such as glycogenesis, glycogenolysis, and gluconeogenesis, in the liver in vivo. Using these techniques, liver glucose metabolism has been studied in regard to a variety of interventions, such as fasting, meal intake, and exercise. Moreover, deviations from normal hepatic glucose metabolism have been investigated in both patients with type 1 and 2 diabetes, as well as the effects of antidiabetic medications. This review provides an overview of current MR techniques to measure hepatic glucose metabolism and the insights obtained by the application of these techniques in the healthy and diabetic liver.
Collapse
|
3
|
Hansen ESS, Bertelsen LB, Bøgh N, Miller J, Wohlfart P, Ringgaard S, Laustsen C. Concentration-dependent effects of dichloroacetate in type 2 diabetic hearts assessed by hyperpolarized [1- 13 C]-pyruvate magnetic resonance imaging. NMR IN BIOMEDICINE 2022; 35:e4678. [PMID: 34961990 DOI: 10.1002/nbm.4678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Personalized medicine or individualized therapy promises a paradigm shift in healthcare. This is particularly true in complex and multifactorial diseases such as diabetes and the multitude of related pathophysiological complications. Diabetic cardiomyopathy represents an emerging condition that could be effectively treated if better diagnostic and, in particular, better therapeutic monitoring tools were available. In this study, we investigate the ability to differentiate low and high doses of metabolically targeted therapy in an obese type 2 diabetic rat model. Low-dose dichloroacetate (DCA) treatment was associated with increased lactate production, while no or little change was seen in bicarbonate production. High-dose DCA treatment was associated with a significant metabolic switch towards increased bicarbonate production. These findings support further studies using hyperpolarized [1-13 C]-pyruvate magnetic resonance imaging to differentiate treatment effects and thus allow for personalized titration of therapeutics.
Collapse
Affiliation(s)
| | - Lotte Bonde Bertelsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nikolaj Bøgh
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jack Miller
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- PET Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Steffen Ringgaard
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Non-Invasive Analysis of Human Liver Metabolism by Magnetic Resonance Spectroscopy. Metabolites 2021; 11:metabo11110751. [PMID: 34822409 PMCID: PMC8623827 DOI: 10.3390/metabo11110751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
The liver is a key node of whole-body nutrient and fuel metabolism and is also the principal site for detoxification of xenobiotic compounds. As such, hepatic metabolite concentrations and/or turnover rates inform on the status of both hepatic and systemic metabolic diseases as well as the disposition of medications. As a tool to better understand liver metabolism in these settings, in vivo magnetic resonance spectroscopy (MRS) offers a non-invasive means of monitoring hepatic metabolic activity in real time both by direct observation of concentrations and dynamics of specific metabolites as well as by observation of their enrichment by stable isotope tracers. This review summarizes the applications and advances in human liver metabolic studies by in vivo MRS over the past 35 years and discusses future directions and opportunities that will be opened by the development of ultra-high field MR systems and by hyperpolarized stable isotope tracers.
Collapse
|
5
|
Nguyen NT, Bae EH, Do LN, Nguyen TA, Park I, Shin SS. In Vivo Assessment of Metabolic Abnormality in Alport Syndrome Using Hyperpolarized [1- 13C] Pyruvate MR Spectroscopic Imaging. Metabolites 2021; 11:metabo11040222. [PMID: 33917329 PMCID: PMC8067337 DOI: 10.3390/metabo11040222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 01/23/2023] Open
Abstract
Alport Syndrome (AS) is a genetic disorder characterized by impaired kidney function. The development of a noninvasive tool for early diagnosis and monitoring of renal function during disease progression is of clinical importance. Hyperpolarized 13C MRI is an emerging technique that enables non-invasive, real-time measurement of in vivo metabolism. This study aimed to investigate the feasibility of using this technique for assessing changes in renal metabolism in the mouse model of AS. Mice with AS demonstrated a significant reduction in the level of lactate from 4- to 7-week-old, while the levels of lactate were unchanged in the control mice over time. This reduction in lactate production in the AS group accompanied a significant increase of PEPCK expression levels, indicating that the disease progression in AS triggered the gluconeogenic pathway and might have resulted in a decreased lactate pool size and a subsequent reduction in pyruvate-to-lactate conversion. Additional metabolic imaging parameters, including the level of lactate and pyruvate, were found to be different between the AS and control groups. These preliminary results suggest that hyperpolarized 13C MRI might provide a potential noninvasive tool for the characterization of disease progression in AS.
Collapse
Affiliation(s)
- Nguyen-Trong Nguyen
- Department of Biomedical Science, Chonnam National University, Gwangju 61469, Korea;
| | - Eun-Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea;
| | - Luu-Ngoc Do
- Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (L.-N.D.); (T.-A.N.)
| | - Tien-Anh Nguyen
- Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (L.-N.D.); (T.-A.N.)
| | - Ilwoo Park
- Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (L.-N.D.); (T.-A.N.)
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (I.P.); (S.-S.S.); Tel.: +82-62-220-5744 (I.P.); +82-62-220-5882 (S.-S.S.)
| | - Sang-Soo Shin
- Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (L.-N.D.); (T.-A.N.)
- Correspondence: (I.P.); (S.-S.S.); Tel.: +82-62-220-5744 (I.P.); +82-62-220-5882 (S.-S.S.)
| |
Collapse
|
6
|
Alcazar O, Hernandez LF, Nakayasu ES, Nicora CD, Ansong C, Muehlbauer MJ, Bain JR, Myer CJ, Bhattacharya SK, Buchwald P, Abdulreda MH. Parallel Multi-Omics in High-Risk Subjects for the Identification of Integrated Biomarker Signatures of Type 1 Diabetes. Biomolecules 2021; 11:383. [PMID: 33806609 PMCID: PMC7999903 DOI: 10.3390/biom11030383] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Biomarkers are crucial for detecting early type-1 diabetes (T1D) and preventing significant β-cell loss before the onset of clinical symptoms. Here, we present proof-of-concept studies to demonstrate the potential for identifying integrated biomarker signature(s) of T1D using parallel multi-omics. METHODS Blood from human subjects at high risk for T1D (and healthy controls; n = 4 + 4) was subjected to parallel unlabeled proteomics, metabolomics, lipidomics, and transcriptomics. The integrated dataset was analyzed using Ingenuity Pathway Analysis (IPA) software for disturbances in the at-risk subjects compared to controls. RESULTS The final quadra-omics dataset contained 2292 proteins, 328 miRNAs, 75 metabolites, and 41 lipids that were detected in all samples without exception. Disease/function enrichment analyses consistently indicated increased activation, proliferation, and migration of CD4 T-lymphocytes and macrophages. Integrated molecular network predictions highlighted central involvement and activation of NF-κB, TGF-β, VEGF, arachidonic acid, and arginase, and inhibition of miRNA Let-7a-5p. IPA-predicted candidate biomarkers were used to construct a putative integrated signature containing several miRNAs and metabolite/lipid features in the at-risk subjects. CONCLUSIONS Preliminary parallel quadra-omics provided a comprehensive picture of disturbances in high-risk T1D subjects and highlighted the potential for identifying associated integrated biomarker signatures. With further development and validation in larger cohorts, parallel multi-omics could ultimately facilitate the classification of T1D progressors from non-progressors.
Collapse
Affiliation(s)
- Oscar Alcazar
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (O.A.); (L.F.H.)
| | - Luis F. Hernandez
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (O.A.); (L.F.H.)
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (E.S.N.); (C.D.N.); (C.A.)
| | - Carrie D. Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (E.S.N.); (C.D.N.); (C.A.)
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (E.S.N.); (C.D.N.); (C.A.)
| | - Michael J. Muehlbauer
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; (M.J.M.); (J.R.B.)
| | - James R. Bain
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; (M.J.M.); (J.R.B.)
| | - Ciara J. Myer
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.M.); (S.K.B.)
- Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sanjoy K. Bhattacharya
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.M.); (S.K.B.)
- Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Peter Buchwald
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (O.A.); (L.F.H.)
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Midhat H. Abdulreda
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (O.A.); (L.F.H.)
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.M.); (S.K.B.)
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
7
|
Marco-Rius I, Wright AJ, Hu DE, Savic D, Miller JJ, Timm KN, Tyler D, Brindle KM, Comment A. Probing hepatic metabolism of [2- 13C]dihydroxyacetone in vivo with 1H-decoupled hyperpolarized 13C-MR. MAGMA (NEW YORK, N.Y.) 2021; 34:49-56. [PMID: 32910316 PMCID: PMC7910257 DOI: 10.1007/s10334-020-00884-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/07/2020] [Accepted: 08/27/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVES To enhance detection of the products of hyperpolarized [2-13C]dihydroxyacetone metabolism for assessment of three metabolic pathways in the liver in vivo. Hyperpolarized [2-13C]DHAc emerged as a promising substrate to follow gluconeogenesis, glycolysis and the glycerol pathways. However, the use of [2-13C]DHAc in vivo has not taken off because (i) the chemical shift range of [2-13C]DHAc and its metabolic products span over 144 ppm, and (ii) 1H decoupling is required to increase spectral resolution and sensitivity. While these issues are trivial for high-field vertical-bore NMR spectrometers, horizontal-bore small-animal MR scanners are seldom equipped for such experiments. METHODS Real-time hepatic metabolism of three fed mice was probed by 1H-decoupled 13C-MR following injection of hyperpolarized [2-13C]DHAc. The spectra of [2-13C]DHAc and its metabolic products were acquired in a 7 T small-animal MR scanner using three purpose-designed spectral-spatial radiofrequency pulses that excited a spatial bandwidth of 8 mm with varying spectral bandwidths and central frequencies (chemical shifts). RESULTS The metabolic products detected in vivo include glycerol 3-phosphate, glycerol, phosphoenolpyruvate, lactate, alanine, glyceraldehyde 3-phosphate and glucose 6-phosphate. The metabolite-to-substrate ratios were comparable to those reported previously in perfused liver. DISCUSSION Three metabolic pathways can be probed simultaneously in the mouse liver in vivo, in real time, using hyperpolarized DHAc.
Collapse
Affiliation(s)
- Irene Marco-Rius
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Institute for Bioengineering of Catalonia, Barcelona, Spain.
| | - Alan J Wright
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - De-En Hu
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Dragana Savic
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Division of Medicine, University of Oxford, Oxford, UK
| | - Jack J Miller
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Division of Medicine, University of Oxford, Oxford, UK
| | - Kerstin N Timm
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Damian Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Division of Medicine, University of Oxford, Oxford, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Arnaud Comment
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- General Electric Healthcare, Chalfont St Giles, UK
| |
Collapse
|
8
|
Datta K, Spielman D. MRI of [2- 13 C]Lactate without J-coupling artifacts. Magn Reson Med 2020; 85:1522-1539. [PMID: 33058240 DOI: 10.1002/mrm.28532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/19/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Imaging of [2-13 C]lactate, a metabolic product of [2-13 C]pyruvate, is over considerable interest in hyperpolarized 13 C studies. However, artifact-free imaging of a J-coupled nuclear spin species can be challenging due to the peak-splitting induced by the spin-spin interactions. In this work, two new techniques resolving these J-modulated artifacts are presented. THEORY AND METHODS The Product Operator Formalism (POF) of density matrix theory is used to both numerically and analytically derive the coherences arising during radiofrequency excitation and readout of a J-coupled spin system. A combination of computer simulations and experiments with [2-13 C]lactate and 13 C-formate phantoms are then used to verify the performance of two imaging methods. In the first approach, a quadrature imaging technique is used to eliminate scalar coupling artifacts via the combination of in-phase and quadrature images acquired at echo times differing by 1/2J with an echoplanar readout. The second approach employs a highly narrowband RF excitation pulse to image a single peak from the J-coupled doublet. RESULTS Simulations using a numerical Shepp-Logan phantom, in vitro experiments using thermally polarized [2-13 C]lactate, thermally and hyperpolarized 13 C-formate phantoms, and in vivo imaging of [2-13 C]lactate produced in rat brain following injection of hyperpolarized [2-13 C]pyruvate show artifact-free images and demonstrate potential utility of these methods. CONCLUSION The quadrature imaging and the narrowband excitation techniques resolve the J-coupling induced ghosting and blurring artifacts present with conventional MRI of J-coupled signals such as [2-13 C]lactate.
Collapse
Affiliation(s)
- Keshav Datta
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Daniel Spielman
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
9
|
Pedersen M, Ursprung S, Jensen JD, Jespersen B, Gallagher F, Laustsen C. Hyperpolarised 13C-MRI metabolic and functional imaging: an emerging renal MR diagnostic modality. MAGMA (NEW YORK, N.Y.) 2020; 33:23-32. [PMID: 31782036 DOI: 10.1007/s10334-019-00801-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/21/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
Abstract
Magnetic resonance imaging (MRI) is a well-established modality for assessing renal morphology and function, as well as changes that occur during disease. However, the significant metabolic changes associated with renal disease are more challenging to assess with MRI. Hyperpolarized carbon-13 MRI is an emerging technique which provides an opportunity to probe metabolic alterations at high sensitivity by providing an increase in the signal-to-noise ratio of 20,000-fold or more. This review will highlight the current status of hyperpolarised 13C-MRI and its translation into the clinic and how it compares to metabolic measurements provided by competing technologies such as positron emission tomography (PET).
Collapse
Affiliation(s)
| | - Stephan Ursprung
- Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Jens Dam Jensen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Bente Jespersen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Ferdia Gallagher
- Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University Hospital, Palle Juul Jensens Boulevard, 8200, Aarhus N, Denmark.
| |
Collapse
|
10
|
Laustsen C, Lipsø K, Østergaard JA, Nielsen PM, Bertelsen LB, Flyvbjerg A, Pedersen M, Palm F, Ardenkjær-Larsen JH. High Intrarenal Lactate Production Inhibits the Renal Pseudohypoxic Response to Acutely Induced Hypoxia in Diabetes. ACTA ACUST UNITED AC 2020; 5:239-247. [PMID: 31245545 PMCID: PMC6588198 DOI: 10.18383/j.tom.2019.00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intrarenal hypoxia develops within a few days after the onset of insulinopenic diabetes in an experimental animal model (ie, a model of type-1 diabetes). Although diabetes-induced hypoxia results in increased renal lactate formation, mitochondrial function is well maintained, a condition commonly referred to as pseudohypoxia. However, the metabolic effects of significantly elevated lactate levels remain unclear. We therefore investigated in diabetic animals the response to acute intrarenal hypoxia in the presence of high renal lactate formation to delineate mechanistic pathways and compare these findings to healthy control animals. Hyperpolarized 13C-MRI and blood oxygenation level–dependent 1H-MRI was used to investigate the renal metabolism of [1-13C]pyruvate and oxygenation following acutely altered oxygen content in the breathing gas in a streptozotocin rat model of type-1 diabetes with and without insulin treatment and compared with healthy control rats. The lactate signal in the diabetic kidney was reduced by 12%–16% during hypoxia in diabetic rats irrespective of insulin supplementation. In contrast, healthy controls displayed the well-known Pasteur effect manifested as a 10% increased lactate signal following reduction of oxygen in the inspired air. Reduced expression of the monocarboxyl transporter-4 may account for altered response to hypoxia in diabetes with a high intrarenal pyruvate-to-lactate conversion. Reduced intrarenal lactate formation in response to hypoxia in diabetes shows the existence of a different metabolic phenotype, which is independent of insulin, as insulin supplementation was unable to affect the pyruvate-to-lactate conversion in the diabetic kidney.
Collapse
Affiliation(s)
- Christoffer Laustsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Kasper Lipsø
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Electrical Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Jakob Appel Østergaard
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Per Mose Nielsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Lotte Bonde Bertelsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Allan Flyvbjerg
- Steno Diabetes Center Copenhagen, The Capital Region of Denmark, Gentofte, Denmark.,University of Copenhagen, Copenhagen, Denmark
| | - Michael Pedersen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Fredrik Palm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; and
| | - Jan Henrik Ardenkjær-Larsen
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Electrical Engineering, Technical University of Denmark, Kgs Lyngby, Denmark.,GE Healthcare, Copenhagen, Denmark
| |
Collapse
|
11
|
Zero-field nuclear magnetic resonance of chemically exchanging systems. Nat Commun 2019; 10:3002. [PMID: 31278303 PMCID: PMC6611813 DOI: 10.1038/s41467-019-10787-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/24/2019] [Indexed: 12/22/2022] Open
Abstract
Zero- to ultralow-field (ZULF) nuclear magnetic resonance (NMR) is an emerging tool for precision chemical analysis. In this work, we study dynamic processes and investigate the influence of chemical exchange on ZULF NMR J-spectra. We develop a computational approach that allows quantitative calculation of J-spectra in the presence of chemical exchange and apply it to study aqueous solutions of [15N]ammonium (15N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{H}}_4^ +$$\end{document}H4+) as a model system. We show that pH-dependent chemical exchange substantially affects the J-spectra and, in some cases, can lead to degradation and complete disappearance of the spectral features. To demonstrate potential applications of ZULF NMR for chemistry and biomedicine, we show a ZULF NMR spectrum of [2-13C]pyruvic acid hyperpolarized via dissolution dynamic nuclear polarization (dDNP). We foresee applications of affordable and scalable ZULF NMR coupled with hyperpolarization to study chemical exchange phenomena in vivo and in situations where high-field NMR detection is not possible to implement. Zero-field nuclear magnetic resonance can identify species and collective behaviors in mixtures without applied magnetic fields. Here the authors demonstrate its use for resolving proton exchange in ammonium and for the detection of hyperpolarized pyruvic acid, an important imaging biomarker.
Collapse
|
12
|
Lees HJ, Swann JR, Poucher S, Holmes E, Wilson ID, Nicholson JK. Obesity and Cage Environment Modulate Metabolism in the Zucker Rat: A Multiple Biological Matrix Approach to Characterizing Metabolic Phenomena. J Proteome Res 2019; 18:2160-2174. [PMID: 30939873 DOI: 10.1021/acs.jproteome.9b00040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Obesity and its comorbidities are increasing worldwide imposing a heavy socioeconomic burden. The effects of obesity on the metabolic profiles of tissues (liver, kidney, pancreas), urine, and the systemic circulation were investigated in the Zucker rat model using 1H NMR spectroscopy coupled to multivariate statistical analysis. The metabolic profiles of the obese ( fa/ fa) animals were clearly differentiated from the two phenotypically lean phenotypes, ((+/+) and ( fa/+)) within each biological compartment studied, and across all matrices combined. No significant differences were observed between the metabolic profiles of the genotypically distinct lean strains. Obese Zucker rats were characterized by higher relative concentrations of blood lipid species, cross-compartmental amino acids (particularly BCAAs), urinary and liver metabolites relating to the TCA cycle and glucose metabolism; and lower amounts of urinary gut microbial-host cometabolites, and intermatrix metabolites associated with creatine metabolism. Further to this, the obese Zucker rat metabotype was defined by significant metabolic alterations relating to disruptions in the metabolism of choline across all compartments analyzed. The cage environment was found to have a significant effect on urinary metabolites related to gut-microbial metabolism, with additional cage-microenvironment trends also observed in liver, kidney, and pancreas. This study emphasizes the value in metabotyping multiple biological matrices simultaneously to gain a better understanding of systemic perturbations in metabolism, and also underscores the need for control or evaluation of cage environment when designing and interpreting data from metabonomic studies in animal models.
Collapse
Affiliation(s)
- Hannah J Lees
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine , Imperial College London , London , SW7 2AZ , United Kingdom
| | - Jonathan R Swann
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine , Imperial College London , London , SW7 2AZ , United Kingdom
| | - Simon Poucher
- AstraZeneca Pharmaceuticals , Mereside , Alderley Park , Macclesfield , SK10 4TG , United Kingdom
| | - Elaine Holmes
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine , Imperial College London , London , SW7 2AZ , United Kingdom
| | - Ian D Wilson
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine , Imperial College London , London , SW7 2AZ , United Kingdom
| | - Jeremy K Nicholson
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine , Imperial College London , London , SW7 2AZ , United Kingdom
| |
Collapse
|
13
|
Wang ZJ, Ohliger MA, Larson PEZ, Gordon JW, Bok RA, Slater J, Villanueva-Meyer JE, Hess CP, Kurhanewicz J, Vigneron DB. Hyperpolarized 13C MRI: State of the Art and Future Directions. Radiology 2019; 291:273-284. [PMID: 30835184 DOI: 10.1148/radiol.2019182391] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hyperpolarized (HP) carbon 13 (13C) MRI is an emerging molecular imaging method that allows rapid, noninvasive, and pathway-specific investigation of dynamic metabolic and physiologic processes that were previously inaccessible to imaging. This technique has enabled real-time in vivo investigations of metabolism that are central to a variety of diseases, including cancer, cardiovascular disease, and metabolic diseases of the liver and kidney. This review provides an overview of the methods of hyperpolarization and 13C probes investigated to date in preclinical models of disease. The article then discusses the progress that has been made in translating this technology for clinical investigation. In particular, the potential roles and emerging clinical applications of HP [1-13C]pyruvate MRI will be highlighted. The future directions to enable the adoption of this technology to advance the basic understanding of metabolism, to improve disease diagnosis, and to accelerate treatment assessment are also detailed.
Collapse
Affiliation(s)
- Zhen J Wang
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Michael A Ohliger
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Peder E Z Larson
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Jeremy W Gordon
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Robert A Bok
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - James Slater
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Javier E Villanueva-Meyer
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Christopher P Hess
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - John Kurhanewicz
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Daniel B Vigneron
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| |
Collapse
|
14
|
Qi H, Mariager CØ, Nielsen PM, Schroeder M, Lindhardt J, Nørregaard R, Klein JD, Sands JM, Laustsen C. Glucagon infusion alters the hyperpolarized 13 C-urea renal hemodynamic signature. NMR IN BIOMEDICINE 2019; 32:e4028. [PMID: 30426590 DOI: 10.1002/nbm.4028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/13/2018] [Accepted: 09/19/2018] [Indexed: 06/09/2023]
Abstract
Renal urea handling is central to the urine concentrating mechanism, and as such the ability to image urea transport in the kidney is an important potential imaging biomarker for renal functional assessment. Glucagon levels associated with changes in dietary protein intake have been shown to influence renal urea handling; however, the exact mechanism has still to be fully understood. Here we investigate renal function and osmolite distribution using [13 C,15 N] urea dynamics and 23 Na distribution before and 60 min after glucagon infusion in six female rats. Glucagon infusion increased the renal [13 C,15 N] urea mean transit time by 14%, while no change was seen in the sodium distribution, glomerular filtration rate or oxygen consumption. This change is related to the well-known effect of increased urea excretion associated with glucagon infusion, independent of renal functional effects. This study demonstrates for the first time that hyperpolarized 13 C-urea enables monitoring of renal urinary excretion effects in vivo.
Collapse
Affiliation(s)
- Haiyun Qi
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Per Mose Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marie Schroeder
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jakob Lindhardt
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rikke Nørregaard
- Water Salt Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Janet D Klein
- Renal Division, Department of Medicine, Emory University, Giorgia, USA
| | - Jeff M Sands
- Renal Division, Department of Medicine, Emory University, Giorgia, USA
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
15
|
Bertelsen LB, Nielsen PM, Qi H, Mariager CØ, Lindhardt J, Laustsen C. Renal Energy Metabolism Following Acute Dichloroacetate and 2,4-Dinitrophenol Administration: Assessing the Cumulative Action with Hyperpolarized [1- 13C]Pyruvate MRI. ACTA ACUST UNITED AC 2018; 4:105-109. [PMID: 30320210 PMCID: PMC6173791 DOI: 10.18383/j.tom.2018.00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Numerous patient groups receive >1 medication and as such represent a potential point of improvement in today's healthcare setup, as the combined or cumulative effects are difficult to monitor in an individual patient. Here we show the ability to monitor the pharmacological effect of 2 classes of medications sequentially, namely, 2,4-dinitrophenol, a mitochondrial uncoupler, and dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, both targeting the oxygen-dependent energy metabolism. We show that although the 2 drugs target 2 different metabolic pathways connected ultimately to oxygen metabolism, we could distinguish the 2 in vivo by using hyperpolarized [1-13C]pyruvate magnetic resonance imaging. A statistically significantly different pyruvate dehydrogenase flux was observed by reversing the treatment order of 2,4-dinitrophenol and dichloroacetate. The significance of this study is the demonstration of the ability to monitor the metabolic cumulative effects of 2 distinct therapeutics on an in vivo organ level using hyperpolarized magnetic resonance imaging.
Collapse
Affiliation(s)
- Lotte Bonde Bertelsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Per Mose Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Haiyun Qi
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Jakob Lindhardt
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
16
|
Affiliation(s)
- Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| |
Collapse
|