1
|
Saravanan V, Palani SP, Chagaleti BK, Gao QZ, Valsaladevi AG, Kumaradoss KM. Molecular dynamics simulation reveals structural insights into isozyme selectivity of carbonic anhydrase XII inhibitors in hypoxic tumor microenvironment. Biochem Biophys Res Commun 2025; 753:151471. [PMID: 39965264 DOI: 10.1016/j.bbrc.2025.151471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/23/2024] [Accepted: 02/08/2025] [Indexed: 02/20/2025]
Abstract
Human carbonic anhydrase (CA) isoenzymes IX and XII are overexpressed in cancer cells, contributing to tumor microenvironment acidification and representing important targets for cancer therapy. In this study, we identified compound V35 (ZINC09419065) as a selective inhibitor of CA IX and CA XII with enhanced binding stability and selectivity compared to standard inhibitors. We analyzed conserved regions in CA I, CA II, CA IX, and CA XII to investigate their isozyme selectivity, revealing critical selectivity determinants at positions 95, 141, and 203. Molecular docking results indicated that V35 interacts robustly with CA XII, forming a metal ion coordination complex with Zn via HIS94, HIS96, HIS119, and THR199, similar to the interaction pattern of standard inhibitor SLC-0111. Molecular dynamics (MD) simulations conducted over 500 ns under hypoxic conditions showed that V35 has high binding stability, with root mean square deviation (RMSD) and fluctuation (RMSF) values comparable to SLC-0111, demonstrating its conformational stability in CA XII. Binding free energy calculations using the MMGBSA method showed that V35 achieves binding free energy of -44.17 kcal/mol with CA XII, closely matching SLC-0111 (-49.41 kcal/mol). Density functional theory (DFT) calculations further highlighted V35's electrostatic potential distribution, supporting its isozyme selectivity. Post-dynamics analysis indicated that the ester functional groups and the inward movement of HIS64 stabilize V35's interactions in CA XII, a feature absent in CA I.
Collapse
Affiliation(s)
- Venkatesan Saravanan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, India
| | - Sathiya Priya Palani
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, India
| | - Bharath Kumar Chagaleti
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, India
| | - Quan-Ze Gao
- National Applied Research Laboratories, National Centre for High-Performance Computing, Hsinchu City, 30076, Taiwan
| | - Anjana Gopi Valsaladevi
- Dr APJ Abdul Kalam Lab, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, India.
| | - Kathiravan Muthu Kumaradoss
- Dr APJ Abdul Kalam Lab, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, India.
| |
Collapse
|
2
|
Zaigham ZH, Ullah S, Pelletier J, Sévigny J, Iqbal J, Hassan A. Synthesis and biological evaluation of sulfamoyl benzamide derivatives as selective inhibitors for h-NTPDases. RSC Adv 2023; 13:20909-20915. [PMID: 37441049 PMCID: PMC10335114 DOI: 10.1039/d3ra03874b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of this research work is the synthesis of sulfamoyl-benzamides as a selective inhibitor for h-NTPDases. Sulfonamides are synthesized in aqueous medium from chlorosulfonylbenzoic acid while carboxamides are synthesized using carbodiimide coupling decorated with different biologically relevant substituents such as n-butyl, cyclopropyl, benzylamine, morpholine, and substituted anilines. In addition, sulfonamide-carboxamide derivatives were synthesized having the same substituents on either side. These compounds were screened against h-NTPDase activity, a main family of ectonucleotidases. Among the eight discovered isoforms of the h-NTPDases, four isoforms, h-NTPDase1, -2, -3, and -8, are involved in various physiological and pathological functions, for instance thrombosis, diabetes, inflammation, and cancer. The compound N-(4-bromophenyl)-4-chloro-3-(morpholine-4-carbonyl)benzenesulfonamide (3i) was found to be the most potent inhibitor of h-NTPDase1 with an IC50 value of 2.88 ± 0.13 μM. Similarly, the compounds N-(4-methoxyphenyl)-3-(morpholinosulfonyl)benzamide (3f), 5-(N-benzylsulfamoyl)-2-chloro-N-(4-methoxyphenyl)benzamide (3j) and 2-chloro-N-cyclopropyl-5-(N-cyclopropylsulfamoyl)benzamide (4d) reduced the activity of the h-NTPDases2 with IC50 in sub-micromolar concentrations. Against the h-NTPDase3, 3i was the potent compound with an IC50 concentration of 0.72 ± 0.11 μM. The h-NTPDase8 was selectively blocked by the most potent inhibitor 2-chloro-5-(N-cyclopropylsulfamoyl)benzoic acid (2d) with (IC50 = 0.28 ± 0.07 μM). Moreover, the molecular docking studies of the potent inhibitors showed significant interactions with the amino acids of the respective h-NTPDase homology model proteins.
Collapse
Affiliation(s)
| | - Saif Ullah
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus Abbottabad Pakistan
| | - Julie Pelletier
- Centre de recherche du CHU de Québec-Université Laval Québec City QC Canada
| | - Jean Sévigny
- Centre de recherche du CHU de Québec-Université Laval Québec City QC Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval Québec City QC Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus Abbottabad Pakistan
| | - Abbas Hassan
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| |
Collapse
|
3
|
Vadlamani VMK, Gunasinghe KKJ, Chee XW, Rahman T, Harper MT. Human soluble CD39 displays substrate inhibition in a substrate-specific manner. Sci Rep 2023; 13:8958. [PMID: 37268726 DOI: 10.1038/s41598-023-36257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023] Open
Abstract
CD39 (ectonucleoside triphosphate diphosphohydrolase-1; ENTPD1) metabolizes extracellular ATP and ADP to AMP. AMP is subsequently metabolized by CD79 to adenosine. CD39 activity is therefore a key regulator of purinergic signalling in cancer, thrombosis, and autoimmune diseases. In this study we demonstrate that soluble, recombinant CD39 shows substrate inhibition with ADP or ATP as the substrate. Although CD39 activity initially increased with increasing substrate concentration, at high concentrations of ATP or ADP, CD39 activity was markedly reduced. Although the reaction product, AMP, inhibits CD39 activity, insufficient AMP was generated under our conditions to account for the substrate inhibition seen. In contrast, inhibition was not seen with UDP or UTP as substrates. 2-methylthio-ADP also showed no substrate inhibition, indicating the nucleotide base is an important determinant of substrate inhibition. Molecular dynamics simulations revealed that ADP can undergo conformational rearrangements within the CD39 active site that were not seen with UDP or 2-methylthio-ADP. Appreciating the existence of substrate inhibition of CD39 will help the interpretation of studies of CD39 activity, including investigations into drugs that modulate CD39 activity.
Collapse
Affiliation(s)
- Venkat M K Vadlamani
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | | | - Xavier W Chee
- Swinburne University of Technology Sarawak, Kuching, Malaysia
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Matthew T Harper
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
4
|
Synthesis, biological evaluation, and molecular modeling studies of a new series of imidazothiazole or imidazooxazole derivatives as inhibitors of ectonucleoside triphosphate diphosphohydrolases (NTPDases). Med Chem Res 2022. [DOI: 10.1007/s00044-022-03000-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Identification of thienopyrimidine glycinates as selective inhibitors for h-NTPDases. Bioorg Chem 2022; 129:106196. [DOI: 10.1016/j.bioorg.2022.106196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022]
|
6
|
Hognon C, Marazzi M, García-Iriepa C. Atomistic-Level Description of the Covalent Inhibition of SARS-CoV-2 Papain-like Protease. Int J Mol Sci 2022; 23:5855. [PMID: 35628665 PMCID: PMC9143025 DOI: 10.3390/ijms23105855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/13/2022] [Accepted: 05/21/2022] [Indexed: 12/25/2022] Open
Abstract
Inhibition of the papain-like protease (PLpro) of SARS-CoV-2 has been demonstrated to be a successful target to prevent the spreading of the coronavirus in the infected body. In this regard, covalent inhibitors, such as the recently proposed VIR251 ligand, can irreversibly inactivate PLpro by forming a covalent bond with a specific residue of the catalytic site (Cys111), through a Michael addition reaction. An inhibition mechanism can therefore be proposed, including four steps: (i) ligand entry into the protease pocket; (ii) Cys111 deprotonation of the thiol group by a Brønsted-Lowry base; (iii) Cys111-S- addition to the ligand; and (iv) proton transfer from the protonated base to the covalently bound ligand. Evaluating the energetics and PLpro conformational changes at each of these steps could aid the design of more efficient and selective covalent inhibitors. For this aim, we have studied by means of MD simulations and QM/MM calculations the whole mechanism. Regarding the first step, we show that the inhibitor entry in the PLpro pocket is thermodynamically favorable only when considering the neutral Cys111, that is, prior to the Cys111 deprotonation. For the second step, MD simulations revealed that His272 would deprotonate Cys111 after overcoming an energy barrier of ca. 32 kcal/mol (at the QM/MM level), but implying a decrease of the inhibitor stability inside the protease pocket. This information points to a reversible Cys111 deprotonation, whose equilibrium is largely shifted toward the neutral Cys111 form. Although thermodynamically disfavored, if Cys111 is deprotonated in close proximity to the vinylic carbon of the ligand, then covalent binding takes place in an irreversible way (third step) to form the enolate intermediate. Finally, due to Cys111-S- negative charge redistribution over the bound ligand, proton transfer from the initially protonated His272 is favored, finally leading to an irreversibly modified Cys111 and a restored His272. These results elucidate the selectivity of Cys111 to enable formation of a covalent bond, even if a weak proton acceptor is available, as His272.
Collapse
Affiliation(s)
- Cécilia Hognon
- Grupo de Reactividad y Estructura Molecular (RESMOL), Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, 28801 Madrid, Spain;
| | - Marco Marazzi
- Grupo de Reactividad y Estructura Molecular (RESMOL), Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, 28801 Madrid, Spain;
- Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, Alcalá de Henares, 28801 Madrid, Spain
| | - Cristina García-Iriepa
- Grupo de Reactividad y Estructura Molecular (RESMOL), Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, 28801 Madrid, Spain;
- Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, Alcalá de Henares, 28801 Madrid, Spain
| |
Collapse
|
7
|
Singh A, Pandey AK, Dubey SK. Genome sequencing and in silico analysis of isoprene degrading monooxygenase enzymes of Sphingobium sp. BHU LFT2. J Biomol Struct Dyn 2022; 41:3821-3834. [PMID: 35380094 DOI: 10.1080/07391102.2022.2057360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The whole genome sequencing of a novel isoprene degrading strain of Sphingobium sp. BHU LFT2, its in silico analysis for identifying and characterizing enzymes, especially isoprene monooxygenases (IsoMO), which initiate the degradation process, and in vitro validation with cell extract of optimal temperature and pH and analysis for utilizing isoprene as the preferential substrate, were conducted. The most efficient monooxygenase was identified through comparative analyses using molecular docking followed by molecular dynamics simulation approach. The in silico results revealed high thermostability for most of the monooxygenases. Most potent monooxygenase with locus ID JQK15_20300 exhibiting high sequence similarity with known monooxygenases of isoprene-degrading Rhodococcus sp. LB1 and SC4 strains was identified. Interaction energy of -17.25 kJ/mol for JQK15_20300 with isoprene, was almost similar as that analysed for above-mentioned similar known counterparts, was exhibited by the molecular docking. Molecular dynamic simulation of 100 ns and free energy analysis of JQK15_20300 in the complex with isoprene gave persistent interaction of isoprene with JQK15_20300 during the simulation with high average binding energy of -47.13 kJ/mol thus proving higher affinity of JQK15_20300 for isoprene. The study revealed that the highly efficient isoprene degrading strain of Sphingobium sp. BHU LFT2 having effective monooxygenase could be utilized for large-scale applications including detoxification of air contaminated with isoprene in closed working systems.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhishek Singh
- Molecular Ecology Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anand Kumar Pandey
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, India
| | - Suresh Kumar Dubey
- Molecular Ecology Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
8
|
Faba-Rodriguez R, Gu Y, Salmon M, Dionisio G, Brinch-Pedersen H, Brearley CA, Hemmings AM. Structure of a cereal purple acid phytase provides new insights to phytate degradation in plants. PLANT COMMUNICATIONS 2022; 3:100305. [PMID: 35529950 PMCID: PMC9073318 DOI: 10.1016/j.xplc.2022.100305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Grain phytate, a mixed metal ion salt of inositol hexakisphosphate, accounts for 60%-80% of stored phosphorus in plants and is a potent antinutrient of non-ruminant animals including humans. Through neofunctionalization of purple acid phytases (PAPhy), some cereals such as wheat and rye have acquired particularly high mature grain phytase activity. As PAPhy activity supplies phosphate, liberates metal ions necessary for seedling emergence, and obviates antinutrient effects of phytate, its manipulation and control are targeted crop traits. Here we show the X-ray crystal structure of the b2 isoform of wheat PAPhy induced during germination. This high-resolution crystal structure suggests a model for phytate recognition that, validated by molecular dynamics simulations, implicates elements of two sequence inserts (termed PAPhy motifs) relative to a canonical metallophosphoesterase (MPE) domain in forming phytate-specific substrate specificity pockets. These motifs are well conserved in PAPhys from monocot cereals, enzymes which are characterized by high specificity for phytate. Tested by mutagenesis, residues His229 in PAPhy motif 4 and Lys410 in the MPE domain, both conserved in PAPhys, are found to strongly influence phytase activity. These results explain the observed phytase activity of cereal PAPhys and open the way to the rational engineering of phytase activity in planta.
Collapse
Affiliation(s)
- Raquel Faba-Rodriguez
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Yinghong Gu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Melissa Salmon
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Giuseppe Dionisio
- Department of Agroecology, Research Center Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark
| | - Henrik Brinch-Pedersen
- Department of Agroecology, Research Center Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark
| | - Charles A. Brearley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Andrew M. Hemmings
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
9
|
Paes-Vieira L, Gomes-Vieira AL, Meyer-Fernandes JR. E-NTPDases: Possible Roles on Host-Parasite Interactions and Therapeutic Opportunities. Front Cell Infect Microbiol 2021; 11:769922. [PMID: 34858878 PMCID: PMC8630654 DOI: 10.3389/fcimb.2021.769922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
Belonging to the GDA1/CD39 protein superfamily, nucleoside triphosphate diphosphohydrolases (NTPDases) catalyze the hydrolysis of ATP and ADP to the monophosphate form (AMP) and inorganic phosphate (Pi). Several NTPDase isoforms have been described in different cells, from pathogenic organisms to animals and plants. Biochemical characterization of nucleotidases/NTPDases has revealed the existence of isoforms with different specificities regarding divalent cations (such as calcium and magnesium) and substrates. In mammals, NTPDases have been implicated in the regulation of thrombosis and inflammation. In parasites, such as Trichomonas vaginalis, Trypanosoma spp., Leishmania spp., Schistosoma spp. and Toxoplasma gondii, NTPDases were found on the surface of the cell, and important processes like growth, infectivity, and virulence seem to depend on their activity. For instance, experimental evidence has indicated that parasite NTPDases can regulate the levels of ATP and Adenosine (Ado) of the host cell, leading to the modulation of the host immune response. In this work, we provide a comprehensive review showing the involvement of the nucleotidases/NTPDases in parasites infectivity and virulence, and how inhibition of NTPDases contributes to parasite clearance and the development of new antiparasitic drugs.
Collapse
Affiliation(s)
- Lisvane Paes-Vieira
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luiz Gomes-Vieira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Abbas S, Afzal S, Nadeem H, Hussain D, Langer P, Sévigny J, Ashraf Z, Iqbal J. Synthesis, characterization and biological evaluation of thiadiazole amide derivatives as nucleoside triphosphate diphosphohydrolases (NTPDases) inhibitors. Bioorg Chem 2021; 118:105456. [PMID: 34800887 DOI: 10.1016/j.bioorg.2021.105456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/21/2021] [Accepted: 10/23/2021] [Indexed: 11/17/2022]
Abstract
Importance of extracellular nucleotides is widely understood. These nucleotides act as ligand for P2X and P2Y receptors and modulate a variety of biological functions. However, their extracellular concentration is maintained by a chain of enzymes termed as ecto-nucleotidases. Amongst them, nucleoside triphosphate diphosphohydrolases (NTPDases) is an important enzyme family responsible for the dephosphorylation of these nucleotides. Overexpression of NTPDases leads to many pathological conditions such as cancer and thrombosis. So far, only a few NTPDase inhibitors have been reported. Considering this scarcity of (NTPDase) inhibitors, a number of thiadiazole amide derivatives were synthesized and screened against human (h)-NTPDases. Several compounds showed promising inhibitory activity; compound 5a (IC50 (µM); 0.05 ± 0.008) and 5g (IC50 (µM); 0.04 ± 0.006) appeared to be the most distinguished molecules corresponding to h-NTPDase1 and -2. However, h-NTPDase3 was the least susceptible isozyme and only three compounds (5d, 5e, 5j) strongly inhibited h-NTPDase3. Interestingly, compound 5e was recognized as the most active compound that showed dual inhibition against h-NTPDase3 as well as against h-NTPDase8. For better comprehension of binding mode of these inhibitors, most potent inhibitors were docked with their respective isozyme.
Collapse
Affiliation(s)
- Sadia Abbas
- Department of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
| | - Saira Afzal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Humaira Nadeem
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Dilawar Hussain
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Peter Langer
- Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany; Leibniz Institut für Katalyse an der Universität Rostock e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Zaman Ashraf
- Department of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan.
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| |
Collapse
|
11
|
Spatola BN, Lerner AG, Wong C, Dela Cruz T, Welch M, Fung W, Kovalenko M, Losenkova K, Yegutkin GG, Beers C, Corbin J, Soros VB. Fully human anti-CD39 antibody potently inhibits ATPase activity in cancer cells via uncompetitive allosteric mechanism. MAbs 2021; 12:1838036. [PMID: 33146056 PMCID: PMC7646477 DOI: 10.1080/19420862.2020.1838036] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The extracellular ATP/adenosine axis in the tumor microenvironment (TME) has emerged as an important immune-regulatory pathway. Nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), otherwise known as CD39, is highly expressed in the TME, both on infiltrating immune cells and tumor cells across a broad set of cancer indications. CD39 processes pro-inflammatory extracellular ATP to ADP and AMP, which is then processed by Ecto-5ʹ-nucleotidase/CD73 to immunosuppressive adenosine. Directly inhibiting the enzymatic function of CD39 via an antibody has the potential to unleash an immune-mediated anti-tumor response via two mechanisms: 1) increasing the availability of immunostimulatory extracellular ATP released by damaged and/or dying cells, and 2) reducing the generation and accumulation of suppressive adenosine within the TME. Tizona Therapeutics has engineered a novel first-in-class fully human anti-CD39 antibody, TTX-030, that directly inhibits CD39 ATPase enzymatic function with sub-nanomolar potency. Further characterization of the mechanism of inhibition by TTX-030 using CD39+ human melanoma cell line SK-MEL-28 revealed an uncompetitive allosteric mechanism (α < 1). The uncompetitive mechanism of action enables TTX-030 to inhibit CD39 at the elevated ATP concentrations reported in the TME. Maximal inhibition of cellular CD39 ATPase velocity was 85%, which compares favorably to results reported for antibody inhibitors to other enzyme targets. The allosteric mechanism of TTX-030 was confirmed via mapping the epitope to a region of CD39 distant from its active site, which suggests possible models for how potent inhibition is achieved. In summary, TTX-030 is a potent allosteric inhibitor of CD39 ATPase activity that is currently being evaluated in clinical trials for cancer therapy.
Collapse
Affiliation(s)
- Bradley N Spatola
- Antibody Development, Tizona Therapeutics , South San Francisco, CA, USA
| | - Alana G Lerner
- Immunology, Tizona Therapeutics , South San Francisco, CA, USA
| | - Clifford Wong
- Antibody Development, Tizona Therapeutics , South San Francisco, CA, USA
| | - Tracy Dela Cruz
- Immunology, Tizona Therapeutics , South San Francisco, CA, USA.,Immunology, Trishula Therapeutics, South San Francisco , CA, USA
| | - Megan Welch
- Immunology, Tizona Therapeutics , South San Francisco, CA, USA
| | - Wanchi Fung
- Antibody Development, Tizona Therapeutics , South San Francisco, CA, USA
| | | | | | | | - Courtney Beers
- Immunology, Tizona Therapeutics , South San Francisco, CA, USA
| | - John Corbin
- Antibody Development, Tizona Therapeutics , South San Francisco, CA, USA
| | - Vanessa B Soros
- Antibody Development, Tizona Therapeutics , South San Francisco, CA, USA
| |
Collapse
|
12
|
Murtaza A, Afzal S, Zaman G, Saeed A, Pelletier J, Sévigny J, Iqbal J, Hassan A. Divergent synthesis and elaboration of structure activity relationship for quinoline derivatives as highly selective NTPDase inhibitor. Bioorg Chem 2021; 115:105240. [PMID: 34416508 DOI: 10.1016/j.bioorg.2021.105240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/25/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023]
Abstract
Quinoline derivatives have interesting biological profile. In continuation for the comprehensive evaluations of substituted quinoline derivatives against human nucleoside triphosphate diphosphohydrolases (h-NTPDases) a series of substituted quinoline derivatives (2a-g, 3a-f, 4, 5a-c, 6) was synthesized. The inhibitory activities of the synthesized compounds were evaluated against four isoenzymes of human nucleoside triphosphate diphosphohydrolases (h-NTPDases). These quinoline derivatives had IC50 (µM) values in the range of 0.20-1.75, 0.77-2.20, 0.36-5.50 and 0.90-1.82 for NTPDase1, NTPDase2, NTPDase3 and NTPDase8, respectively. The derivative 3f was the most active compound against NTPDase1 (IC50, 0.20 ± 0.02 µM) that also possessed selectivity towards NTPDase1. Similarly, derivative 3b (IC50, 0.77 ± 0.06), 2h (IC50, 0.36 ± 0.01) and 2c (IC50, 0.90 ± 0.08) displayed excellent activity corresponding to NTPDase2, NTPDase3 and NTPdase8. The compound 5c emerged as a selective inhibitor of NTPDase8. The most active compounds were then investigated to determine their mode of inhibition and finally binding interactions of the active compounds were analyzed through molecular docking studies. The obtained results strongly support the quinoline scaffold's potential as potent and selective NTPDase inhibitor.
Collapse
Affiliation(s)
- Amna Murtaza
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Saira Afzal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Gohar Zaman
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Julie Pelletier
- Centre de recherche du CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Jean Sévigny
- Centre de recherche du CHU de Québec - Université Laval, Québec City, QC, Canada; Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan.
| | - Abbas Hassan
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
13
|
Synthesis, In-vitro evaluation and molecular docking studies of oxoindolin phenylhydrazine carboxamides as potent and selective inhibitors of ectonucleoside triphosphate diphosphohydrolase (NTPDase). Bioorg Chem 2021; 112:104957. [PMID: 34020240 DOI: 10.1016/j.bioorg.2021.104957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022]
Abstract
Members of the ectonucleoside triphosphate diphosphohydrolases (NTPDases) constitute the major family of enzymes responsible for the maintenance of extracellular levels of nucleotides and nucleosides by catalyzing the hydrolysis of nucleoside triphosphate (NTP) and nucleoside diphosphates (NDP) to nucleoside monophosphate (NMP). Although, NTPDase inhibitors can act as potential drug candidates for the treatment of various diseases, there is lack of potent as well as selective inhibitors of NTPDases. The current study describes the synthesis of a number of carboxamide derivatives that were tested on recombinant human (h) NTPDases. The most promising inhibitors were 2h (h-NTPDase1, IC50: 0.12 ± 0.03 µM), 2d (h-NTPDase2, IC50: 0.15 ± 0.01 µM) and 2a (h-NTPDase3, IC50: 0.30 ± 0.04 µM; h-NTPDase8, IC50: 0.16 ± 0.02 µM). Four compounds (2e, 2f, 2g and 2h) were associated with the selective inhibition of h-NTPDase1 while 2b was identified as a selective h-NTPDase3 inhibitor. Considering the importance of NTPDase3 in the regulation of insulin release, the NTPDase3 inhibitors were further investigated to elucidate their role in the insulin release. The obtained data suggested that compound 2a was actively participating in regulating the insulin release without producing any effect on NTPDase3 mRNA. Moreover, the most potent inhibitors were docked within the active site of respective enzyme and the observed interactions were in compliance with in vitro results. Hence, these compounds can be used as pharmacological tool to further investigate the role of NTPDase3 coupled to insulin release.
Collapse
|
14
|
Afzal S, Zaib S, Jafari B, Langer P, Lecka J, Sévigny J, Iqbal J. Highly Potent and Selective Ectonucleoside Triphosphate Diphosphohydrolase (ENTPDase1, 2, 3 and 8) Inhibitors Having 2-substituted-7- trifluoromethyl-thiadiazolopyrimidones Scaffold. Med Chem 2021; 16:689-702. [PMID: 31203806 DOI: 10.2174/1573406415666190614095821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND The ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) terminate nucleotide signaling via the hydrolysis of extracellular nucleoside-5'-triphosphate and nucleoside- 5'-diphosphate, to nucleoside-5'-monophosphate and composed of eight Ca2+/Mg2+ dependent ectonucleotidases (NTPDase1-8). Extracellular nucleotides are involved in a variety of physiological mechanisms. However, they are rapidly inactivated by ectonucleotidases that are involved in the sequential removal of phosphate group from nucleotides with the release of inorganic phosphate and their respective nucleoside. Ectonucleoside triphosphate diphosphohydrolases (NTPDases) represent the key enzymes responsible for nucleotides hydrolysis and their overexpression has been related to certain pathological conditions. Therefore, the inhibitors of NTPDases are of particular importance in order to investigate their potential to treat various diseases e.g., cancer, ischemia and other disorders of the cardiovascular and immune system. METHODS Keeping in view the importance of NTPDase inhibitors, a series of thiadiazolopyrimidones were evaluated for their potential inhibitory activity towards NTPDases by the malachite green assay. RESULTS The results suggested that some of the compounds were found as non-selective inhibitors of isozyme of NTPDases, however, most of the compounds act as potent and selective inhibitors. In case of substituted amino derivatives (4c-m), the compounds 4m (IC50 = 1.13 ± 0.09 μM) and 4g (IC50 = 1.72 ± 0.08 μM) were found to be the most potent inhibitors of h-NTPDase1 and 2, respectively. Whereas, compound 4d showed the best inhibitory potential for both h-NTPDase3 (IC50 = 1.25 ± 0.06 μM) and h-NTPDase8 (0.21 ± 0.02 μM). Among 5a-t derivatives, compounds 5e (IC50 = 2.52 ± 0.15 μM), 5p (IC50 = 3.17 ± 0.05 μM), 5n (IC50 = 1.22 ± 0.06 μM) and 5b (IC50 = 0.35 ± 0.001 μM) were found to be the most potent inhibitors of h-NTPDase1, 2, 3 and 8, respectively. Interestingly, the inhibitory concentration values of above-mentioned inhibitors were several folds greater than suramin, a reference control. In order to determine the binding interactions, molecular docking studies of the most potent inhibitors were conducted into the homology models of NTPDases and the putative binding analysis further confirmed that selective and potent compounds bind deep inside the active pocket of the respective enzymes. CONCLUSION The docking analysis proposed that the inhibitory activity correlates with the hydrogen bonds inside the binding pocket. Thus, these derivatives are of interest and may further be investigated for their importance in medicinal chemistry.
Collapse
Affiliation(s)
- Saira Afzal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Behzad Jafari
- Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Peter Langer
- Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany,Leibniz Institut für Katalyse an der Universität Rostock e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Joanna Lecka
- Département de Microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada,Centre de Recherche du CHU de Québec – Université Laval, Québec, QC, G1V 4G2, Canada
| | - Jean Sévigny
- Département de Microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada,Centre de Recherche du CHU de Québec – Université Laval, Québec, QC, G1V 4G2, Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| |
Collapse
|
15
|
Afzal S, Al-Rashida M, Hameed A, Pelletier J, Sévigny J, Iqbal J. Functionalized Oxoindolin Hydrazine Carbothioamide Derivatives as Highly Potent Inhibitors of Nucleoside Triphosphate Diphosphohydrolases. Front Pharmacol 2020; 11:585876. [PMID: 33328992 PMCID: PMC7734281 DOI: 10.3389/fphar.2020.585876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Ectonucleoside triphosphate diphosphohydrolases (NTPDases) are ectoenzymes that play an important role in the hydrolysis of nucleoside triphosphate and diphosphate to nucleoside monophosphate. NTPDase1, -2, -3 and -8 are the membrane bound members of this enzyme family that are responsible for regulating the levels of nucleotides in extracellular environment. However, the pathophysiological functions of these enzymes are not fully understood due to lack of potent and selective NTPDase inhibitors. Herein, a series of oxoindolin hydrazine carbothioamide derivatives is synthesized and screened for NTPDase inhibitory activity. Four compounds were identified as selective inhibitors of h-NTPDase1 having IC50 values in lower micromolar range, these include compounds 8b (IC50 = 0.29 ± 0.02 µM), 8e (IC50 = 0.15 ± 0.009 µM), 8f (IC50 = 0.24 ± 0.01 µM) and 8l (IC50 = 0.30 ± 0.03 µM). Similarly, compound 8k (IC50 = 0.16 ± 0.01 µM) was found to be a selective h-NTPDase2 inhibitor. In case of h-NTPDase3, most potent inhibitors were compounds 8c (IC50 = 0.19 ± 0.02 µM) and 8m (IC50 = 0.38 ± 0.03 µM). Since NTPDase3 has been reported to be associated with the regulation of insulin secretion, we evaluated our synthesized NTPDase3 inhibitors for their ability to stimulate insulin secretion in isolated mice islets. Promising results were obtained showing that compound 8m potently stimulated insulin secretion without affecting the NTPDase3 gene expression. Molecular docking studies of the most potent compounds were also carried out to rationalize binding site interactions. Hence, these compounds are useful tools to study the role of NTPDase3 in insulin secretion.
Collapse
Affiliation(s)
- Saira Afzal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Abdul Hameed
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.,Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| |
Collapse
|
16
|
Adams LE, Rynkiewicz P, Babbitt GA, Mortensen JS, North RA, Dobson RCJ, Hudson AO. Comparative Molecular Dynamics Simulations Provide Insight Into Antibiotic Interactions: A Case Study Using the Enzyme L,L-Diaminopimelate Aminotransferase (DapL). Front Mol Biosci 2020; 7:46. [PMID: 32274387 PMCID: PMC7113581 DOI: 10.3389/fmolb.2020.00046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/04/2020] [Indexed: 12/03/2022] Open
Abstract
The L,L-diaminopimelate aminotransferase (DapL) pathway, a recently discovered variant of the lysine biosynthetic pathway, is an attractive pipeline to identify targets for the development of novel antibiotic compounds. DapL is a homodimer that catalyzes the conversion of tetrahydrodipicolinate to L,L-diaminopimelate in a single transamination reaction. The penultimate and ultimate products of the lysine biosynthesis pathway, meso-diaminopimelate and lysine, are key components of the Gram-negative and Gram-positive bacterial peptidoglycan cell wall. Humans are not able to synthesize lysine, and DapL has been identified in 13% of bacteria whose genomes have been sequenced and annotated to date, thus it is an attractive target for the development of narrow spectrum antibiotics through the prevention of both lysine biosynthesis and peptidoglycan crosslinking. To address the common lack of structural information when conducting compound screening experiments and provide support for the use of modeled structures, our analyses utilized inferred structures from related homologous enzymes. Using a comprehensive and comparative molecular dynamics (MD) software package-DROIDS (Detecting Relative Outlier Impacts in Dynamic Simulations) 2.0, we investigated the binding dynamics of four previously identified antagonistic ligands of DapL from Verrucomicrobium spinosum, a non-pathogenic relative of Chlamydia trachomatis. Here, we present putative docking positions of the four ligands and provide confirmatory comparative molecular dynamics simulations supporting the conformations. The simulations performed in this study can be applied to evaluate putative targets to predict compound effectiveness prior to in vivo and in vitro experimentation. Moreover, this approach has the potential to streamline the process of antibiotic development.
Collapse
Affiliation(s)
- Lily E. Adams
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Patrick Rynkiewicz
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Gregory A. Babbitt
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Jamie S. Mortensen
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States
| | - Rachel A. North
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
17
|
Hayat K, Afzal S, Saeed A, Murtaza A, Ur Rahman S, Khan KM, Saeed A, Zaib S, Lecka J, Sévigny J, Iqbal J, Hassan A. Investigation of new quinoline derivatives as promising inhibitors of NTPDases: Synthesis, SAR analysis and molecular docking studies. Bioorg Chem 2019; 87:218-226. [PMID: 30903944 DOI: 10.1016/j.bioorg.2019.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/21/2019] [Accepted: 03/09/2019] [Indexed: 02/07/2023]
Abstract
Nucleoside triphosphate diphosphohydrolases (NTPDases), an important class of ectonucleotidases, are responsible for the sequential hydrolysis of extracellular nucleotides. However, over-expression of NTPDases has been linked with various pathological diseases e.g. cancer. Thus, to treat these diseases, the inhibitors of this class of enzyme are of interest. The significance of this class of enzyme encouraged us to synthesize a new class of quinoline derivatives with the aim to find selective and potent inhibitors of NTPDases. Therefore, a mild and efficient synthetic route was established for the synthesis of quinoline derivatives. The reaction was catalyzed by molecular iodine to afford the substituted quinoline derivatives. All the synthetic derivatives (3a-3w) were evaluated for their potential to inhibit the h-NTPDase1, 2, 3 and 8. Most of the compounds were identified as dual inhibitors of h-NTPDase1 and 8 with lower effects on h-NTPDase2 and 3. Two compounds i.e.3f and 3t were identified as selective inhibitor of h-NTPDase1 whereas the compound 3s inhibited the h-NTPDase8 selectively. Moreover, the compounds 3p (IC50 = 0.23 ± 0.01 µM), 3j (IC50 = 21.0 ± 0.03 µM) 3d (IC50 = 5.38 ± 0.21 µM) and 3c (IC50 = 1.13 ± 0.04 µM) were found to be the most potent inhibitors of h-NTPDase1, 2, 3 and 8, respectively. To determine the binding interaction, molecular docking studies were also carried out.
Collapse
Affiliation(s)
- Komal Hayat
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Saira Afzal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Altaf Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Amna Murtaza
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shafiq Ur Rahman
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Khalid Mohammed Khan
- H.E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75720 Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Joanna Lecka
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec - Université Laval, Québec, QC G1V 4G2, Canada
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec - Université Laval, Québec, QC G1V 4G2, Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| | - Abbas Hassan
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
18
|
Muhammed MT, Aki-Yalcin E. Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chem Biol Drug Des 2018; 93:12-20. [PMID: 30187647 DOI: 10.1111/cbdd.13388] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Accepted: 08/04/2018] [Indexed: 02/06/2023]
Abstract
Homology modeling is one of the computational structure prediction methods that are used to determine protein 3D structure from its amino acid sequence. It is considered to be the most accurate of the computational structure prediction methods. It consists of multiple steps that are straightforward and easy to apply. There are many tools and servers that are used for homology modeling. There is no single modeling program or server which is superior in every aspect to others. Since the functionality of the model depends on the quality of the generated protein 3D structure, maximizing the quality of homology modeling is crucial. Homology modeling has many applications in the drug discovery process. Since drugs interact with receptors that consist mainly of proteins, protein 3D structure determination, and thus homology modeling is important in drug discovery. Accordingly, there has been the clarification of protein interactions using 3D structures of proteins that are built with homology modeling. This contributes to the identification of novel drug candidates. Homology modeling plays an important role in making drug discovery faster, easier, cheaper, and more practical. As new modeling methods and combinations are introduced, the scope of its applications widens.
Collapse
Affiliation(s)
- Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey.,Department of Basic Biotechnology, Institute of Biotechnology, Ankara University, Ankara, Turkey
| | - Esin Aki-Yalcin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|