1
|
Chinigò G, Ruffinatti FA, Munaron L. The potential of TRP channels as new prognostic and therapeutic targets against prostate cancer progression. Biochim Biophys Acta Rev Cancer 2024; 1879:189226. [PMID: 39586480 DOI: 10.1016/j.bbcan.2024.189226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/28/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Prostate cancer (PCa) is the second deadliest cancer among men worldwide. Particularly critical is its development towards metastatic androgen-independent forms for which the current therapies are ineffective. Indeed, the 5-year relative survival for PCa drops dramatically to 34 % in the presence of metastases. The superfamily of Transient Receptor Potential (TRP) channels could answer the urgent request to identify new prognostic and therapeutic tools against metastatic PCa. Indeed, this class of ion channels revealed an appealing de-regulation during PCa development and its progression towards aggressive forms. Altered expression and/or functionality of several TRPs have been associated with the PCa metastatic cascade by significantly impacting tumor growth, invasiveness, and angiogenesis. In this review, we will dissect the contribution of TRP channels in such hallmarks of PCa and then discuss their applicability as new prognostic and therapeutic agents in the fight against metastatic PCa. In particular, the great potential of TRPM8, TRPV6, and TRPA1 in opening the way to new treatment perspectives will be highlighted.
Collapse
Affiliation(s)
- Giorgia Chinigò
- University of Turin, Department of Life Sciences and Systems Biology, via Accademia Albertina 13, 10123 Turin, Italy.
| | | | - Luca Munaron
- University of Turin, Department of Life Sciences and Systems Biology, via Accademia Albertina 13, 10123 Turin, Italy.
| |
Collapse
|
2
|
Hashim AR, Bashir DW, Rashad E, Galal MK, Rashad MM, Deraz NM, Drweesh EA, El-Gharbawy SM. Alleviative effect of betaine against copper oxide nanoparticles-induced hepatotoxicity in adult male albino rats: histopathological, biochemical, and molecular studies. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2024; 13:47. [DOI: 10.1186/s43088-024-00505-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/13/2024] [Indexed: 08/14/2024] Open
Abstract
AbstractBackgroundCopper oxide nanoparticles (CuO-NPs) have gained interest due to their availability, efficiency, and their cost-effectiveness. Betaine is an essential methyl donor and takes part in various physiological activities inside the body; it is found to have protective and curative effects against various liver diseases. The present study aimed to evaluate the hepatotoxic effect of CuO-NPs on adult male albino rats and the ability of betaine to alleviate such hepatotoxicity.MethodsForty adult male albino Wister rats were grouped into 4 groups (10 rats/group): group I a negative control, group II (CuO-NPs) injected with CuO-NPs intra peritoneal by insulin needle (0.5 mg/kg/day), group III (betaine + CuO-NPs) administered betaine orally by gavage needle (250 mg/kg/day 1 h before CuO-NPs) and CuO-NPs (0.5 mg/kg/day) finally, group IV (betaine) administered betaine orally by gavage needle (250 mg/kg/day) for consecutive 28 days. Blood and liver samples were gathered and processed for biochemical, molecular, histopathological, and immunohistochemical investigations.ResultsGroup II displayed a marked rise in alanine aminotransferase (ALT), aspartate aminotransferase (AST), and malondialdehyde (MDA) levels. Furthermore, there is an excessive upregulation of the inflammatory biomarkers interleukin1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). On the other hand, substantial reduction in glutathione (GSH) levels and significant downregulation at glutathione peroxidase (GPx) mRNA gene expression. Regarding the histopathological deviations, there were severe congestion, dilatation and hyalinization of blood vessels, steatosis, hydropic degeneration, hepatocytic necrosis, increased binucleation, degenerated bile ducts, hyperplasia of ducts epithelial lining, and inflammatory cells infiltration. Immunohistochemically, there was a pronounced immunoreactivity toward IL-1β. Luckily, the pre-administration of betaine was able to mitigate these changes. MDA was dramatically reduced, resulting in the downregulation of IL-1β and TNF-α. Additionally, there was a considerable rise in GSH levels and an upregulation of GPx. Histopathological deviations were substantially improved as diminished dilatation, hyalinization and congestion of blood vessels, hepatocytes, and bile ducts are normal to some extent. In addition, IL-1β immunohistochemical analysis revealed marked decreased intensity.ConclusionBetaine can effectively reduce the hepatotoxicity caused by CuO-NPs via its antioxidant properties and its ability to stimulate the cell redox system.
Collapse
|
3
|
Suarato G, Pressi S, Menna E, Ruben M, Petrini EM, Barberis A, Miele D, Sandri G, Salerno M, Schirato A, Alabastri A, Athanassiou A, Proietti Zaccaria R, Papadopoulou EL. Modified Carbon Nanotubes Favor Fibroblast Growth by Tuning the Cell Membrane Potential. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3093-3105. [PMID: 38206310 PMCID: PMC10811621 DOI: 10.1021/acsami.3c14527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
As is known, carbon nanotubes favor cell growth in vitro, although the underlying mechanisms are not yet fully elucidated. In this study, we explore the hypothesis that electrostatic fields generated at the interface between nonexcitable cells and appropriate scaffold might favor cell growth by tuning their membrane potential. We focused on primary human fibroblasts grown on electrospun polymer fibers (poly(lactic acid)─PLA) with embedded multiwall carbon nanotubes (MWCNTs). The MWCNTs were functionalized with either the p-methoxyphenyl (PhOME) or the p-acetylphenyl (PhCOMe) moiety, both of which allowed uniform dispersion in a solvent, good mixing with PLA and the consequent smooth and homogeneous electrospinning process. The inclusion of the electrically conductive MWCNTs in the insulating PLA matrix resulted in differences in the surface potential of the fibers. Both PLA and PLA/MWCNT fiber samples were found to be biocompatible. The main features of fibroblasts cultured on different substrates were characterized by scanning electron microscopy, immunocytochemistry, Rt-qPCR, and electrophysiology revealing that fibroblasts grown on PLA/MWCNT reached a healthier state as compared to pure PLA. In particular, we observed physiological spreading, attachment, and Vmem of fibroblasts on PLA/MWCNT. Interestingly, the electrical functionalization of the scaffold resulted in a more suitable extracellular environment for the correct biofunctionality of these nonexcitable cells. Finally, numerical simulations were also performed in order to understand the mechanism behind the different cell behavior when grown either on PLA or PLA/MWCNT samples. The results show a clear effect on the cell membrane potential, depending on the underlying substrate.
Collapse
Affiliation(s)
- Giulia Suarato
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Samuel Pressi
- Department
of Chemical Sciences, University of Padua, via Marzolo 1, 35131 Padova, Italy
- Interdepartmental
Centre Giorgio Levi Cases for Energy Economics and Technology, University of Padua, via Marzolo 9, 35131 Padova, Italy
| | - Enzo Menna
- Department
of Chemical Sciences, University of Padua, via Marzolo 1, 35131 Padova, Italy
- Interdepartmental
Centre Giorgio Levi Cases for Energy Economics and Technology, University of Padua, via Marzolo 9, 35131 Padova, Italy
| | - Massimo Ruben
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | | | - Andrea Barberis
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Dalila Miele
- Department
of Drug Sciences, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department
of Drug Sciences, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Marco Salerno
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Andrea Schirato
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- Dipartimento
di Fisica, Politecnico di Milano, Pizza Leonardo da Vinci 32, Milan 20133, Italy
- Department
of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Alessandro Alabastri
- Department
of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | | | | | | |
Collapse
|
4
|
Fernandez Cabada T, Ruben M, El Merhie A, Proietti Zaccaria R, Alabastri A, Petrini EM, Barberis A, Salerno M, Crepaldi M, Davis A, Ceseracciu L, Catelani T, Athanassiou A, Pellegrino T, Cingolani R, Papadopoulou EL. Electrostatic polarization fields trigger glioblastoma stem cell differentiation. NANOSCALE HORIZONS 2022; 8:95-107. [PMID: 36426604 PMCID: PMC9765404 DOI: 10.1039/d2nh00453d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Over the last few years it has been understood that the interface between living cells and the underlying materials can be a powerful tool to manipulate cell functions. In this study, we explore the hypothesis that the electrical cell/material interface can regulate the differentiation of cancer stem-like cells (CSCs). Electrospun polymer fibres, either polyamide 66 or poly(lactic acid), with embedded graphene nanoplatelets (GnPs), have been fabricated as CSC scaffolds, providing both the 3D microenvironment and a suitable electrical environment favorable for CSCs adhesion, growth and differentiation. We have investigated the impact of these scaffolds on the morphological, immunostaining and electrophysiological properties of CSCs extracted from human glioblastoma multiform (GBM) tumor cell line. Our data provide evidence in favor of the ability of GnP-incorporating scaffolds to promote CSC differentiation to the glial phenotype. Numerical simulations support the hypothesis that the electrical interface promotes the hyperpolarization of the cell membrane potential, thus triggering the CSC differentiation. We propose that the electrical cell/material interface can regulate endogenous bioelectrical cues, through the membrane potential manipulation, resulting in the differentiation of CSCs. Material-induced differentiation of stem cells and particularly of CSCs, can open new horizons in tissue engineering and new approaches to cancer treatment, especially GBM.
Collapse
Affiliation(s)
| | - Massimo Ruben
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
| | - Amira El Merhie
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
| | | | - Alessandro Alabastri
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | | | - Andrea Barberis
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
| | - Marco Salerno
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
| | - Marco Crepaldi
- Istituto Italiano di Tecnologia, via Melen 83, 16152 Genova, Italy
| | - Alexander Davis
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
| | - Luca Ceseracciu
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
| | - Tiziano Catelani
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
| | | | - Teresa Pellegrino
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
| | - Roberto Cingolani
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
| | | |
Collapse
|
5
|
Re DB, Yan B, Calderón-Garcidueñas L, Andrew AS, Tischbein M, Stommel EW. A perspective on persistent toxicants in veterans and amyotrophic lateral sclerosis: identifying exposures determining higher ALS risk. J Neurol 2022; 269:2359-2377. [PMID: 34973105 PMCID: PMC9021134 DOI: 10.1007/s00415-021-10928-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
Multiple studies indicate that United States veterans have an increased risk of developing amyotrophic lateral sclerosis (ALS) compared to civilians. However, the responsible etiological factors are unknown. In the general population, specific occupational (e.g. truck drivers, airline pilots) and environmental exposures (e.g. metals, pesticides) are associated with an increased ALS risk. As such, the increased prevalence of ALS in veterans strongly suggests that there are exposures experienced by military personnel that are disproportionate to civilians. During service, veterans may encounter numerous neurotoxic exposures (e.g. burn pits, engine exhaust, firing ranges). So far, however, there is a paucity of studies investigating environmental factors contributing to ALS in veterans and even fewer assessing their exposure using biomarkers. Herein, we discuss ALS pathogenesis in relation to a series of persistent neurotoxicants (often emitted as mixtures) including: chemical elements, nanoparticles and lipophilic toxicants such as dioxins, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. We propose these toxicants should be directly measured in veteran central nervous system tissue, where they may have accumulated for decades. Specific toxicants (or mixtures thereof) may accelerate ALS development following a multistep hypothesis or act synergistically with other service-linked exposures (e.g. head trauma/concussions). Such possibilities could explain the lower age of onset observed in veterans compared to civilians. Identifying high-risk exposures within vulnerable populations is key to understanding ALS etiopathogenesis and is urgently needed to act upon modifiable risk factors for military personnel who deserve enhanced protection during their years of service, not only for their short-term, but also long-term health.
Collapse
Affiliation(s)
- Diane B Re
- Department of Environmental Health Science, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | - Beizhan Yan
- Department of Geochemistry, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Lilian Calderón-Garcidueñas
- Department Biomedical Sciences, College of Health, University of Montana, Missoula, MT, USA
- Universidad del Valle de México, Mexico City, Mexico
| | - Angeline S Andrew
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Maeve Tischbein
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
6
|
Faraco TA, Yoshioka NA, Sábio RM, Barud HDS, Maciel IO, Quirino WG, Fragneaud B, Aguiar AMD, Ribeiro SJL, Cremona M, Legnani C. Monolayer of silica nanospheres assembled onto ITO-coated glass substrates by spin-coating. NANOTECHNOLOGY 2021; 32:205603. [PMID: 33567416 DOI: 10.1088/1361-6528/abe4fd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, we synthesized colloidal silica nanospheres with an average size of 400 nm through the modified Stöber method and successfully fabricated an ordered close-packed silica nanosphere monolayer onto ITO-coated glass substrates using a three-step spin-coating method. ITO films showed resistivity comparable to that of commercial ITO and the silica nanosphere monolayer-coated ITO/glass substrate exhibited good optical transmittance in the visible (550 nm) and near-infrared (900 nm) regions of 62% and 82%, respectively. The results suggest that this monolayer can be used in optoelectronic devices to enhance efficiency in photovoltaic cells.
Collapse
Affiliation(s)
- T A Faraco
- Grupo de Nanociência e Nanotecnologia (NANO), Departamento de Física, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG, 36036-330, Brasil
- Laboratório de Optoeletrônica Molecular (LOEM), Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, 22453-970, Brasil
| | - N A Yoshioka
- Grupo de Nanociência e Nanotecnologia (NANO), Departamento de Física, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG, 36036-330, Brasil
| | - R M Sábio
- Faculdade de Ciências Farmacêuticas, Universidade Estatual Paulista Júlio de Mesquita Filho (UNESP), Araraquara, SP, 14800-903, Brasil
| | - H da S Barud
- Laboratório de Biopolímeros e Biomateriais (BIOPOLMAT), Departamento de Biotecnologia, Universidade de Araraquara (UNIARA), Araraquara, SP, 14801-340, Brasil
| | - I O Maciel
- Grupo de Nanociência e Nanotecnologia (NANO), Departamento de Física, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG, 36036-330, Brasil
| | - W G Quirino
- Grupo de Nanociência e Nanotecnologia (NANO), Departamento de Física, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG, 36036-330, Brasil
| | - B Fragneaud
- Grupo de Nanociência e Nanotecnologia (NANO), Departamento de Física, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG, 36036-330, Brasil
| | - A M de Aguiar
- Departamento de Física, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG, 36036-330, Brasil
| | - S J L Ribeiro
- Institudo de Química, Universidade Estatual Paulista Júlio de Mesquita Filho (UNESP), Araraquara, SP, 14801-970, Brasil
| | - M Cremona
- Laboratório de Optoeletrônica Molecular (LOEM), Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, 22453-970, Brasil
| | - C Legnani
- Grupo de Nanociência e Nanotecnologia (NANO), Departamento de Física, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG, 36036-330, Brasil
- Institudo de Química, Universidade Estatual Paulista Júlio de Mesquita Filho (UNESP), Araraquara, SP, 14801-970, Brasil
| |
Collapse
|
7
|
Bilal M, Iqbal HMN. New Insights on Unique Features and Role of Nanostructured Materials in Cosmetics. COSMETICS 2020; 7:24. [DOI: 10.3390/cosmetics7020024] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The cosmetics industry has boomed in recent years as one of the markets that holds enormous growth potential. Among several industrial sectors, the cosmetics industry has considered nanotechnology-based principles and implemented in product management practices. Out of 1000 registered products available on the global market, up to 13% were referred to as products for cosmetic use. A large number of nanoscale materials with unique physicochemical properties are currently being used in the cosmetics formulations or recommended for future use as nano-systems or novel nanocarriers to encapsulate active ingredients for their efficient delivery through the skin barriers. These nano-systems have demonstrated potential in targeted-oriented drug delivery and offered remarkable features such as better stability, site-specificity, excellent encapsulation efficiency, prolonged action, enhanced skin penetration, and high drug-loading capability. Nevertheless, nanotoxicology research has raised concerns over the excessive use of nanomaterials/nanoparticles in cosmetics, as nanoparticles might enter the skin resulting in health problems. This review provides insights on the characteristic physicochemical features and the potential use of various nanostructured materials, including liposomes, noisome, nanoemulsions, nanoparticles, carbon nanomaterials (graphene, fullerenes), carbon nanotubes, dendrimers, and nanospheres in cosmeceuticals. Moreover, the regulatory aspects of nanomaterials in cosmetics, along with concluding remarks and outlook in this field, were also vetted.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey N.L. CP 64849, Mexico
| |
Collapse
|
8
|
Distasi C, Dionisi M, Ruffinatti FA, Gilardino A, Bardini R, Antoniotti S, Catalano F, Bassino E, Munaron L, Martra G, Lovisolo D. The interaction of SiO 2 nanoparticles with the neuronal cell membrane: activation of ionic channels and calcium influx. Nanomedicine (Lond) 2019; 14:575-594. [PMID: 30810075 DOI: 10.2217/nnm-2018-0256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AIM To clarify the mechanisms of interaction between SiO2 nanoparticles (NPs) and the plasma membrane of GT1-7 neuroendocrine cells, with focus on the activation of calcium-permeable channels, responsible for the long lasting calcium influx and modulation of the electrical activity in these cells. MATERIALS & METHODS Nontoxic doses of SiO2 NPs were administered to the cells. Calcium imaging and patch clamp techniques were combined with a pharmacological approach. RESULTS TRPV4, Cx and Panx-like channels are the major components of the NP-induced inward currents. Preincubation with the antioxidant N-acetyl-L-cysteine strongly reduced the [Ca2+]i increase. CONCLUSION These findings suggest that SiO2 NPs directly activate a complex set of calcium-permeable channels, possibly by catalyzing free radical production.
Collapse
Affiliation(s)
- Carla Distasi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale 'A. Avogadro', Via Bovio 6, 28100 Novara, Italy
| | - Marianna Dionisi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale 'A. Avogadro', Via Bovio 6, 28100 Novara, Italy
| | | | - Alessandra Gilardino
- Department of Life Sciences & Systems Biology, University of Torino, via Accademia Albertina 23, 10123 Torino, Italy
| | - Roberta Bardini
- Department of Life Sciences & Systems Biology, University of Torino, via Accademia Albertina 23, 10123 Torino, Italy.,Department of Control & Computer Engineering, Polytechnic University of Turin, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Susanna Antoniotti
- Department of Life Sciences & Systems Biology, University of Torino, via Accademia Albertina 23, 10123 Torino, Italy
| | - Federico Catalano
- Department of Chemistry, Torino, University of Torino, Via P. Giuria 9, 10125, Italy.,Italian Institute of Technology, Central Research Laboratories, Via Morego 30, 16163 Genova, Italy
| | - Eleonora Bassino
- Department of Life Sciences & Systems Biology, University of Torino, via Accademia Albertina 23, 10123 Torino, Italy
| | - Luca Munaron
- Department of Life Sciences & Systems Biology, University of Torino, via Accademia Albertina 23, 10123 Torino, Italy
| | - Gianmario Martra
- Department of Control & Computer Engineering, Polytechnic University of Turin, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.,NIS Interdepartmental Center, University of Torino, Italy
| | - Davide Lovisolo
- Department of Life Sciences & Systems Biology, University of Torino, via Accademia Albertina 23, 10123 Torino, Italy
| |
Collapse
|
9
|
Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. Impact of Nanoparticles on Brain Health: An Up to Date Overview. J Clin Med 2018; 7:E490. [PMID: 30486404 PMCID: PMC6306759 DOI: 10.3390/jcm7120490] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles are zero-dimensional nanomaterials and, based on their nature, they can be categorized into organic, inorganic, and composites nanoparticles. Due to their unique physical and chemical properties, nanoparticles are extensively used in a variety of fields, including medicine, pharmaceutics, and food industry. Although they have the potential to improve the diagnosis and treatment of brain diseases, it is fundamentally important to develop standardized toxicological studies, which can prevent the induction of neurotoxic effects. The focus of this review is to emphasize both the beneficial and negative effects of nanoparticles on brain health.
Collapse
Affiliation(s)
- Daniel Mihai Teleanu
- Emergency University Hospital, Bucharest, Romania, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Cristina Chircov
- Faculty of Engineering in Foreign Languages, 060042 Bucharest, Romania.
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
- ICUB-Research Institute of University of Bucharest, University of Bucharest, 36-46 M. Kogalniceanu Blvd., 050107 Bucharest, Romania.
| | - Adrian Volceanov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Raluca Ioana Teleanu
- Emergency University Hospital, Bucharest, Romania, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|