1
|
Chen P, Chen M, Bu Y, Che G, Cheng C, Wang Y. Prognostic role of lymph node regression in patients with esophageal cancer undergoing neoadjuvant therapy. Pathol Oncol Res 2024; 30:1611844. [PMID: 39464231 PMCID: PMC11502349 DOI: 10.3389/pore.2024.1611844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/19/2024] [Indexed: 10/29/2024]
Abstract
Purpose To clarify the prognostic value of lymph node regression (LNR) status including the lymph node regression grade (LNRG) and N downstaging in patients with esophageal cancer receiving neoadjuvant therapy based on available evidence. Methods Several databases were searched up to 25 March 2024. The main outcomes included overall survival (OS), disease-free survival (DFS) and cancer-specific survival (CSS). Hazard ratios (HRs) and 95% confidence intervals (CIs) were combined. Subgroup analyses based on the neoadjuvant therapy and pathological type were also conducted. Results In total, 14 retrospective studies with 3,212 participants were included. Nine and five studies explored the relationship between LNRG and N downstaging and survival, respectively. Pooled results indicated that complete LNR predicted significantly improved OS (HR = 0.47, 95% CI: 0.41-0.55, P < 0.001) and DFS (HR = 0.42, 95% CI: 0.32-0.55, P < 0.001) and subgroup analysis based on neoadjuvant therapy and pathological type manifested similar results. Besides, N downstaging was also significantly related to improved OS (HR = 0.40, 95% CI: 0.21-0.77, P = 0.006) and CSS (HR = 0.27, 95% CI: 0.12-0.60, P < 0.001). Conclusion LNR could serve as a novel and reliable prognostic factor in patients with esophageal cancer receiving neoadjuvant therapy and complete LNR and N downstaging predict better survival.
Collapse
Affiliation(s)
- Pingrun Chen
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Maojia Chen
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yijie Bu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Guowei Che
- Department of Thoracic Surgery/Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Cheng
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Uccella S. Molecular Classification of Gastrointestinal and Pancreatic Neuroendocrine Neoplasms: Are We Ready for That? Endocr Pathol 2024; 35:91-106. [PMID: 38470548 PMCID: PMC11176254 DOI: 10.1007/s12022-024-09807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
In the last two decades, the increasing availability of technologies for molecular analyses has allowed an insight in the genomic alterations of neuroendocrine neoplasms (NEN) of the gastrointestinal tract and pancreas. This knowledge has confirmed, supported, and informed the pathological classification of NEN, clarifying the differences between neuroendocrine carcinomas (NEC) and neuroendocrine tumors (NET) and helping to define the G3 NET category. At the same time, the identification genomic alterations, in terms of gene mutation, structural abnormalities, and epigenetic changes differentially involved in the pathogenesis of NEC and NET has identified potential molecular targets for precision therapy. This review critically recapitulates the available molecular features of digestive NEC and NET, highlighting their correlates with pathological aspects and clinical characteristics of these neoplasms and revising their role as predictive biomarkers for targeted therapy. In this context, the feasibility and applicability of a molecular classification of gastrointestinal and pancreatic NEN will be explored.
Collapse
Affiliation(s)
- Silvia Uccella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy.
- Pathology Service IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| |
Collapse
|
3
|
Webster AP, Thirlwell C. The Molecular Biology of Midgut Neuroendocrine Neoplasms. Endocr Rev 2024; 45:343-350. [PMID: 38123518 PMCID: PMC11074790 DOI: 10.1210/endrev/bnad034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/12/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Midgut neuroendocrine neoplasms (NENs) are one of the most common subtypes of NEN, and their incidence is rising globally. Despite being the most frequently diagnosed malignancy of the small intestine, little is known about their underlying molecular biology. Their unusually low mutational burden compared to other solid tumors and the unexplained occurrence of multifocal tumors makes the molecular biology of midgut NENs a particularly fascinating field of research. This review provides an overview of recent advances in the understanding of the interplay of the genetic, epigenetic, and transcriptomic landscape in the development of midgut NENs, a topic that is critical to understanding their biology and improving treatment options and outcomes for patients.
Collapse
Affiliation(s)
- Amy P Webster
- Department of Clinical and Biomedical Science, University of Exeter College of Medicine and Health, Exeter, EX2 5DW, UK
| | - Chrissie Thirlwell
- Department of Clinical and Biomedical Science, University of Exeter College of Medicine and Health, Exeter, EX2 5DW, UK
- University of Bristol Medical School, University of Bristol, Bristol, BS8 1UD, UK
| |
Collapse
|
4
|
Wei C, Jiang T, Wang K, Gao X, Zhang H, Wang X. GEP-NETs radiomics in action: a systematical review of applications and quality assessment. Clin Transl Imaging 2024; 12:287-326. [DOI: 10.1007/s40336-024-00617-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2025]
|
5
|
Weber M, Pettersson O, Seifert R, Schaarschmidt BM, Fendler WP, Rischpler C, Lahner H, Herrmann K, Sundin A. Changes in tumor-to-blood ratio as a prognostic marker for progression-free survival and overall survival in neuroendocrine tumor patients undergoing PRRT. Eur J Nucl Med Mol Imaging 2024; 51:841-851. [PMID: 37947848 PMCID: PMC10796732 DOI: 10.1007/s00259-023-06502-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Historically, patient selection for peptide receptor radionuclide therapy (PRRT) has been performed by virtue of somatostatin receptor scintigraphy (SRS). In recent years, somatostatin receptor positron emission tomography (SSTR-PET) has gradually replaced SRS because of its improved diagnostic capacity, creating an unmet need for SSTR-PET-based selection criteria for PRRT. Tumor-to-blood ratio (TBR) measurements have shown high correlation with the net influx rate Ki, reflecting the tumor somatostatin receptor expression, to a higher degree than standardized uptake value (SUV) measurements. TBR may therefore predict treatment response to PRRT. In addition, changes in semiquantitative SSTR-PET parameters have been shown to predate morphological changes, making them a suitable metric for response assessment. METHODS The institutional database of the Department of Nuclear Medicine (University Hospital Essen) was searched for NET patients undergoing ≥ 2 PRRT cycles with available baseline and follow-up SSTR-PET. Two blinded independent readers reported the occurrence of new lesions quantified tumor uptake of up to nine lesions per patient using SUV and TBR. The association between baseline TBR and changes in uptake/occurrence of new lesions with progression-free survival (PFS) and overall survival (OS) was tested by use of a Cox regression model and log-rank test. RESULTS Patients with baseline TBR in the 1st quartile had a shorter PFS (14.4 months) than those in the 3rd (23.7 months; p = 0.03) and 4th (24.1 months; p = 0.02) quartile. Similarly, these patients had significantly shorter OS (32.5 months) than those with baseline TBR in the 2nd (41.8 months; p = 0.03), 3rd (69.2 months; p < 0.01), and 4th (42.7 months; p = 0.03) quartile. Baseline to follow-up increases in TBR were independently associated with shorter PFS when accounting for prognostic markers, e.g., RECIST response (hazard ratio = 2.91 [95%CI = 1.54-5.50]; p = 0.01). This was confirmed with regard to OS (hazard ratio = 1.64 [95%CI = 1.03-2.62]; p = 0.04). Changes in SUVmean were not associated with PFS or OS. CONCLUSIONS Baseline TBR as well as changes in TBR were significantly associated with PFS and OS and may improve patient selection and morphological response assessment. Future trials need to assess the role of TBR for therapy monitoring also during PRRT and prospectively explore TBR as a predictive marker for patient selection.
Collapse
Affiliation(s)
- Manuel Weber
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.
| | - Olof Pettersson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Robert Seifert
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Benedikt M Schaarschmidt
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Harald Lahner
- Department of Endocrinology and Metabolism, Division of Laboratory Research, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Anders Sundin
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Alcala N, Voegele C, Mangiante L, Sexton-Oates A, Clevers H, Fernandez-Cuesta L, Dayton TL, Foll M. Multi-omic dataset of patient-derived tumor organoids of neuroendocrine neoplasms. Gigascience 2024; 13:giae008. [PMID: 38451475 PMCID: PMC10919335 DOI: 10.1093/gigascience/giae008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/18/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Organoids are 3-dimensional experimental models that summarize the anatomical and functional structure of an organ. Although a promising experimental model for precision medicine, patient-derived tumor organoids (PDTOs) have currently been developed only for a fraction of tumor types. RESULTS We have generated the first multi-omic dataset (whole-genome sequencing [WGS] and RNA-sequencing [RNA-seq]) of PDTOs from the rare and understudied pulmonary neuroendocrine tumors (n = 12; 6 grade 1, 6 grade 2) and provide data from other rare neuroendocrine neoplasms: small intestine (ileal) neuroendocrine tumors (n = 6; 2 grade 1 and 4 grade 2) and large-cell neuroendocrine carcinoma (n = 5; 1 pancreatic and 4 pulmonary). This dataset includes a matched sample from the parental sample (primary tumor or metastasis) for a majority of samples (21/23) and longitudinal sampling of the PDTOs (1 to 2 time points), for a total of n = 47 RNA-seq and n = 33 WGS. We here provide quality control for each technique and the raw and processed data as well as all scripts for genomic analyses to ensure an optimal reuse of the data. In addition, we report gene expression data and somatic small variant calls and describe how they were generated, in particular how we used WGS somatic calls to train a random forest classifier to detect variants in tumor-only RNA-seq. We also report all histopathological images used for medical diagnosis: hematoxylin and eosin-stained slides, brightfield images, and immunohistochemistry images of protein markers of clinical relevance. CONCLUSIONS This dataset will be critical to future studies relying on this PDTO biobank, such as drug screens for novel therapies and experiments investigating the mechanisms of carcinogenesis in these understudied diseases.
Collapse
Affiliation(s)
- Nicolas Alcala
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon 69008, France
| | - Catherine Voegele
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon 69008, France
| | - Lise Mangiante
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon 69008, France
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexandra Sexton-Oates
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon 69008, France
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, The Netherlands
- Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, The Netherlands
| | - Lynnette Fernandez-Cuesta
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon 69008, France
| | - Talya L Dayton
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, The Netherlands
- Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, The Netherlands
| | - Matthieu Foll
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon 69008, France
| |
Collapse
|
7
|
Dayton TL, Alcala N, Moonen L, den Hartigh L, Geurts V, Mangiante L, Lap L, Dost AFM, Beumer J, Levy S, van Leeuwaarde RS, Hackeng WM, Samsom K, Voegele C, Sexton-Oates A, Begthel H, Korving J, Hillen L, Brosens LAA, Lantuejoul S, Jaksani S, Kok NFM, Hartemink KJ, Klomp HM, Borel Rinkes IHM, Dingemans AM, Valk GD, Vriens MR, Buikhuisen W, van den Berg J, Tesselaar M, Derks J, Speel EJ, Foll M, Fernández-Cuesta L, Clevers H. Druggable growth dependencies and tumor evolution analysis in patient-derived organoids of neuroendocrine neoplasms from multiple body sites. Cancer Cell 2023; 41:2083-2099.e9. [PMID: 38086335 DOI: 10.1016/j.ccell.2023.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
Neuroendocrine neoplasms (NENs) comprise well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). Treatment options for patients with NENs are limited, in part due to lack of accurate models. We establish patient-derived tumor organoids (PDTOs) from pulmonary NETs and derive PDTOs from an understudied subtype of NEC, large cell neuroendocrine carcinoma (LCNEC), arising from multiple body sites. PDTOs maintain the gene expression patterns, intra-tumoral heterogeneity, and evolutionary processes of parental tumors. Through hypothesis-driven drug sensitivity analyses, we identify ASCL1 as a potential biomarker for response of LCNEC to treatment with BCL-2 inhibitors. Additionally, we discover a dependency on EGF in pulmonary NET PDTOs. Consistent with these findings, we find that, in an independent cohort, approximately 50% of pulmonary NETs express EGFR. This study identifies an actionable vulnerability for a subset of pulmonary NETs, emphasizing the utility of these PDTO models.
Collapse
Affiliation(s)
- Talya L Dayton
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands.
| | - Nicolas Alcala
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Laura Moonen
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Lisanne den Hartigh
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Veerle Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Lise Mangiante
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Lisa Lap
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Antonella F M Dost
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Joep Beumer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Sonja Levy
- Department of Medical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Rachel S van Leeuwaarde
- Department of Endocrine Oncology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Wenzel M Hackeng
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Kris Samsom
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Catherine Voegele
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Alexandra Sexton-Oates
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Lisa Hillen
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Sylvie Lantuejoul
- Department of Biopathology, Pathology Research Platform- Synergie Lyon Cancer- CRCL, Centre Léon Bérard Unicancer, 69008 Lyon, France; Université Grenoble Alpes, Grenoble, France
| | - Sridevi Jaksani
- Hubrecht Organoid Technology, Utrecht 3584 CM, the Netherlands
| | - Niels F M Kok
- Department of Surgery, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Koen J Hartemink
- Department of Surgery, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Houke M Klomp
- Department of Surgery, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Inne H M Borel Rinkes
- Department of Endocrine Surgical Oncology, University Medical Center Utrecht, Utrecht 3508 GA, the Netherlands
| | - Anne-Marie Dingemans
- Department of Pulmonary Diseases, GROW School for Oncology and and Reproduction, Maastricht University Medical Centre, Maastricht, the Netherlands; Department of Pulmonary Medicine, Erasmus MC Cancer Institute, University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Gerlof D Valk
- Department of Endocrine Oncology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Menno R Vriens
- Department of Endocrine Surgical Oncology, University Medical Center Utrecht, Utrecht 3508 GA, the Netherlands
| | - Wieneke Buikhuisen
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - José van den Berg
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Margot Tesselaar
- Department of Medical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Jules Derks
- Department of Pulmonary Diseases, GROW School for Oncology and and Reproduction, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Ernst Jan Speel
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Matthieu Foll
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Lynnette Fernández-Cuesta
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France.
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
8
|
Postel MD, Darabi S, Howe JR, Liang WS, Craig DW, Demeure MJ. Multiomic sequencing of paired primary and metastatic small bowel carcinoids. F1000Res 2023; 12:417. [PMID: 37954063 PMCID: PMC10632590 DOI: 10.12688/f1000research.130251.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 11/14/2023] Open
Abstract
Background: Small bowel carcinoids are insidious tumors that are often metastatic when diagnosed. Limited mutation landscape studies of carcinoids indicate that these tumors have a relatively low mutational burden. The development of targeted therapies will depend upon the identification of mutations that drive the pathogenesis and metastasis of carcinoid tumors. Methods: Whole exome and RNA sequencing of 5 matched sets of normal tissue, primary small intestine carcinoid tumors, and liver metastases were investigated. Germline and somatic variants included: single nucleotide variants (SNVs), insertions/deletions (indels), structural variants, and copy number alterations (CNAs). The functional impact of mutations was predicted using Ensembl Variant Effect Predictor. Results: Large-scale CNAs were observed including the loss of chromosome 18 in all 5 metastases and 3/5 primary tumors. Certain somatic SNVs were metastasis-specific; including mutations in ATRX, CDKN1B, MXRA5 (leading to the activation of a cryptic splice site and loss of mRNA), SMARCA2, and the loss of UBE4B. Additional mutations in ATRX, and splice site loss of PYGL, leading to intron retention observed in primary and metastatic tumors. Conclusions: We observed novel mutations in primary/metastatic carcinoid tumor pairs, and some have been observed in other types of neuroendocrine tumors. We confirmed a previously observed loss of chromosome 18 and CDKN1B. Transcriptome sequencing added relevant information that would not have been appreciated with DNA sequencing alone. The detection of several splicing mutations on the DNA level and their consequences at the RNA level suggests that RNA splicing aberrations may be an important mechanism underlying carcinoid tumors.
Collapse
Affiliation(s)
- Mackenzie D. Postel
- Institute of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Sourat Darabi
- Precision Medicine, Hoag Family Cancer Institute, Newport Beach, CA, 92663, USA
| | - James R. Howe
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | - David W. Craig
- Institute of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Michael J. Demeure
- Precision Medicine, Hoag Family Cancer Institute, Newport Beach, CA, 92663, USA
- Translational Genomics Research Institute, Phoenix, AZ, USA
| |
Collapse
|
9
|
De Muzio F, Pellegrino F, Fusco R, Tafuto S, Scaglione M, Ottaiano A, Petrillo A, Izzo F, Granata V. Prognostic Assessment of Gastropancreatic Neuroendocrine Neoplasm: Prospects and Limits of Radiomics. Diagnostics (Basel) 2023; 13:2877. [PMID: 37761243 PMCID: PMC10529975 DOI: 10.3390/diagnostics13182877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Neuroendocrine neoplasms (NENs) are a group of lesions originating from cells of the diffuse neuroendocrine system. NENs may involve different sites, including the gastrointestinal tract (GEP-NENs). The incidence and prevalence of GEP-NENs has been constantly rising thanks to the increased diagnostic power of imaging and immuno-histochemistry. Despite the plethora of biochemical markers and imaging techniques, the prognosis and therapeutic choice in GEP-NENs still represents a challenge, mainly due to the great heterogeneity in terms of tumor lesions and clinical behavior. The concept that biomedical images contain information about tissue heterogeneity and pathological processes invisible to the human eye is now well established. From this substrate comes the idea of radiomics. Computational analysis has achieved promising results in several oncological settings, and the use of radiomics in different types of GEP-NENs is growing in the field of research, yet with conflicting results. The aim of this narrative review is to provide a comprehensive update on the role of radiomics on GEP-NEN management, focusing on the main clinical aspects analyzed by most existing reports: predicting tumor grade, distinguishing NET from other tumors, and prognosis assessment.
Collapse
Affiliation(s)
- Federica De Muzio
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | | | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Napoli, Italy;
| | - Salvatore Tafuto
- Unit of Sarcomi e Tumori Rari, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, 80131 Naples, Italy;
| | - Mariano Scaglione
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | - Alessandro Ottaiano
- Unit for Innovative Therapies of Abdominal Metastastes, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, 80131 Naples, Italy;
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, 80131 Naples, Italy;
| | - Francesco Izzo
- Division of Hepatobiliary Surgery, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, 80131 Naples, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, 80131 Naples, Italy;
| |
Collapse
|
10
|
Varghese DG, Del Rivero J, Bergsland E. Grade Progression and Intrapatient Tumor Heterogeneity as Potential Contributors to Resistance in Gastroenteropancreatic Neuroendocrine Tumors. Cancers (Basel) 2023; 15:3712. [PMID: 37509373 PMCID: PMC10378410 DOI: 10.3390/cancers15143712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (NENs) are a heterogenous group of tumors that are incurable when metastatic, regardless of grade. The aim of this article is to understand tumor heterogeneity and grade progression as possible contributors to drug resistance in gastroentropancreatic neuroendocrine tumors (GEP-NETs). Heterogeneity has been observed in the genetic, pathological, and imaging features of these tumors at baseline. Diagnostic challenges related to tumor sampling and the potential for changes in grade over time further confound our ability to optimize therapy for patients. A better understanding of NEN biology and tumor heterogeneity at baseline and over time could lead to the development of new therapeutic avenues.
Collapse
Affiliation(s)
- Diana Grace Varghese
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 94158, USA
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 94158, USA
| | - Emily Bergsland
- UCSF Helen Diller Family Comprehensive Cancer Center and Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
| |
Collapse
|
11
|
Reccia I, Pai M, Kumar J, Spalding D, Frilling A. Tumour Heterogeneity and the Consequent Practical Challenges in the Management of Gastroenteropancreatic Neuroendocrine Neoplasms. Cancers (Basel) 2023; 15:1861. [PMID: 36980746 PMCID: PMC10047148 DOI: 10.3390/cancers15061861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023] Open
Abstract
Tumour heterogeneity is a common phenomenon in neuroendocrine neoplasms (NENs) and a significant cause of treatment failure and disease progression. Genetic and epigenetic instability, along with proliferation of cancer stem cells and alterations in the tumour microenvironment, manifest as intra-tumoural variability in tumour biology in primary tumours and metastases. This may change over time, especially under selective pressure during treatment. The gastroenteropancreatic (GEP) tract is the most common site for NENs, and their diagnosis and treatment depends on the specific characteristics of the disease, in particular proliferation activity, expression of somatostatin receptors and grading. Somatostatin receptor expression has a major role in the diagnosis and treatment of GEP-NENs, while Ki-67 is also a valuable prognostic marker. Intra- and inter-tumour heterogeneity in GEP-NENS, however, may lead to inaccurate assessment of the disease and affect the reliability of the available diagnostic, prognostic and predictive tests. In this review, we summarise the current available evidence of the impact of tumour heterogeneity on tumour diagnosis and treatment of GEP-NENs. Understanding and accurately measuring tumour heterogeneity could better inform clinical decision making in NENs.
Collapse
Affiliation(s)
- Isabella Reccia
- General Surgical and Oncology Unit, Policlinico San Pietro, Via Carlo Forlanini, 24036 Ponte San Pietro, Italy
| | - Madhava Pai
- Division of Surgery, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Jayant Kumar
- Division of Surgery, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Duncan Spalding
- Division of Surgery, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Andrea Frilling
- Division of Surgery, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| |
Collapse
|
12
|
Mechanisms of Resistance in Gastroenteropancreatic Neuroendocrine Tumors. Cancers (Basel) 2022; 14:cancers14246114. [PMID: 36551599 PMCID: PMC9776394 DOI: 10.3390/cancers14246114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs), although curable when localized, frequently metastasize and require management with systemic therapies, including somatostatin analogues, peptide receptor radiotherapy, small-molecule targeted therapies, and chemotherapy. Although effective for disease control, these therapies eventually fail as a result of primary or secondary resistance. For small-molecule targeted therapies, the feedback activation of the targeted signaling pathways and activation of alternative pathways are prominent mechanisms, whereas the acquisition of additional genetic alterations only rarely occurs. For somatostatin receptor (SSTR)-targeted therapy, the heterogeneity of tumor SSTR expression and dedifferentiation with a downregulated expression of SSTR likely predominate. Hypoxia in the tumor microenvironment and stromal constituents contribute to resistance to all modalities. Current studies on mechanisms underlying therapeutic resistance and options for management in human GEP-NETs are scant; however, preclinical and early-phase human studies have suggested that combination therapy targeting multiple pathways or novel tyrosine kinase inhibitors with broader kinase inhibition may be promising.
Collapse
|
13
|
Lou X, Qin Y, Xu X, Yu X, Ji S. Spatiotemporal heterogeneity and clinical challenge of pancreatic neuroendocrine tumors. Biochim Biophys Acta Rev Cancer 2022; 1877:188782. [PMID: 36028148 DOI: 10.1016/j.bbcan.2022.188782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022]
Abstract
During the course of pancreatic neuroendocrine tumors (NETs), they generally become more heterogeneous with individual cells exhibiting distinct molecular fingerprints. This heterogeneity manifests itself through an unequal distribution of genetically-variant, tumor cell subpopulations within disease locations (i.e., spatial heterogeneity) or changes in the genomic landscape over time (i.e., temporal heterogeneity); these characteristics complicate clinical diagnosis and treatment. Effective, feasible tumor heterogeneity detection and eradication methods are essential to overcome the clinical challenges of pancreatic NETs. This review explores the molecular fingerprints of pancreatic NETs and the spectrum of tumoral heterogeneity. We then describe the challenges of assessing heterogeneity by liquid biopsies and imaging modalities and the therapeutic challenges for pancreatic NETs. In general, navigating these challenges, refining approaches for translational research, and ultimately improving patient care are available once we have a better understanding of intratumoral spatiotemporal heterogeneity.
Collapse
Affiliation(s)
- Xin Lou
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Yi Qin
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xiaowu Xu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Xianjun Yu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Shunrong Ji
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| |
Collapse
|
14
|
Mäkinen N, Zhou M, Zhang Z, Kasai Y, Perez E, Kim GE, Thirlwell C, Nakakura E, Meyerson M. Whole genome sequencing reveals the independent clonal origin of multifocal ileal neuroendocrine tumors. Genome Med 2022; 14:82. [PMID: 35922826 PMCID: PMC9351068 DOI: 10.1186/s13073-022-01083-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Small intestinal neuroendocrine tumors (SI-NETs) are the most common neoplasms of the small bowel. The majority of tumors are located in the distal ileum with a high incidence of multiple synchronous primary tumors. Even though up to 50% of SI-NET patients are diagnosed with multifocal disease, the mechanisms underlying multiple synchronous lesions remain elusive. METHODS We performed whole genome sequencing of 75 de-identified synchronous primary tumors, 15 metastases, and corresponding normal samples from 13 patients with multifocal ileal NETs to identify recurrent somatic genomic alterations, frequently affected signaling pathways, and shared mutation signatures among multifocal SI-NETs. Additionally, we carried out chromosome mapping of the most recurrent copy-number alterations identified to determine which parental allele had been affected in each tumor and assessed the clonal relationships of the tumors within each patient. RESULTS Absence of shared somatic variation between the synchronous primary tumors within each patient was observed, indicating that these tumors develop independently. Although recurrent copy-number alterations were identified, additional chromosome mapping revealed that tumors from the same patient can gain or lose different parental alleles. In addition to the previously reported CDKN1B loss-of-function mutations, we observed potential loss-of-function gene alterations in TNRC6B, a candidate tumor suppressor gene in a small subset of ileal NETs. Furthermore, we show that multiple metastases in the same patient can originate from either one or several primary tumors. CONCLUSIONS Our study demonstrates major genomic diversity among multifocal ileal NETs, highlighting the need to identify and remove all primary tumors, which have the potential to metastasize, and the need for optimized targeted treatments.
Collapse
Affiliation(s)
- Netta Mäkinen
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215 USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA USA
| | - Meng Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215 USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA USA
| | - Zhouwei Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215 USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA USA
| | - Yosuke Kasai
- Department of Surgery, University of California, San Francisco, CA USA
| | - Elizabeth Perez
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215 USA
| | - Grace E. Kim
- Department of Pathology, University of California, San Francisco, CA USA
| | - Chrissie Thirlwell
- Research Department of Oncology, UCL Cancer Institute, London, UK
- School of Medicine and Health, University of Exeter, RILD Building, Exeter, UK
| | - Eric Nakakura
- Department of Surgery, University of California, San Francisco, CA USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215 USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA USA
- Departments of Genetics and Medicine, Harvard Medical School, Boston, MA USA
| |
Collapse
|
15
|
Staal FCR, Aalbersberg EA, van der Velden D, Wilthagen EA, Tesselaar MET, Beets-Tan RGH, Maas M. GEP-NET radiomics: a systematic review and radiomics quality score assessment. Eur Radiol 2022; 32:7278-7294. [PMID: 35882634 DOI: 10.1007/s00330-022-08996-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/25/2022] [Accepted: 06/26/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE The number of radiomics studies in gastroenteropancreatic neuroendocrine tumours (GEP-NETs) is rapidly increasing. This systematic review aims to provide an overview of the available evidence of radiomics for clinical outcome measures in GEP-NETs, to understand which applications hold the most promise and which areas lack evidence. METHODS PubMed, Embase, and Wiley/Cochrane Library databases were searched and a forward and backward reference check of the identified studies was executed. Inclusion criteria were (1) patients with GEP-NETs and (2) radiomics analysis on CT, MRI or PET. Two reviewers independently agreed on eligibility and assessed methodological quality with the radiomics quality score (RQS) and extracted outcome data. RESULTS In total, 1364 unique studies were identified and 45 were included for analysis. Most studies focused on GEP-NET grade and differential diagnosis of GEP-NETs from other neoplasms, while only a minority analysed treatment response or long-term outcomes. Several studies were able to predict tumour grade or to differentiate GEP-NETs from other lesions with a good performance (AUCs 0.74-0.96 and AUCs 0.80-0.99, respectively). Only one study developed a model to predict recurrence in pancreas NETs (AUC 0.77). The included studies reached a mean RQS of 18%. CONCLUSION Although radiomics for GEP-NETs is still a relatively new area, some promising models have been developed. Future research should focus on developing robust models for clinically relevant aims such as prediction of response or long-term outcome in GEP-NET, since evidence for these aims is still scarce. KEY POINTS • The majority of radiomics studies in gastroenteropancreatic neuroendocrine tumours is of low quality. • Most evidence for radiomics is available for the identification of tumour grade or differentiation of gastroenteropancreatic neuroendocrine tumours from other neoplasms. • Radiomics for the prediction of response or long-term outcome in gastroenteropancreatic neuroendocrine tumours warrants further research.
Collapse
Affiliation(s)
- Femke C R Staal
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands.,The Netherlands Cancer Institute/University Medical Center Utrecht Center for Neuroendocrine Tumors, ENETS Center of Excellence, Amsterdam/Utrecht, The Netherlands
| | - Else A Aalbersberg
- The Netherlands Cancer Institute/University Medical Center Utrecht Center for Neuroendocrine Tumors, ENETS Center of Excellence, Amsterdam/Utrecht, The Netherlands.,Department of Nuclear Medicine, The Netherlands Cancer Institute Amsterdam, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Daphne van der Velden
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Erica A Wilthagen
- Scientific Information Service, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Margot E T Tesselaar
- The Netherlands Cancer Institute/University Medical Center Utrecht Center for Neuroendocrine Tumors, ENETS Center of Excellence, Amsterdam/Utrecht, The Netherlands.,Department of Medical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Regina G H Beets-Tan
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands.,Faculty of Health Sciences, University of Southern Denmark, J. B. Winsløws Vej 19, 3, 5000, Odense, Denmark
| | - Monique Maas
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Jiang M, Zhou H, Jiang S, Yu H. A Review of Circulating Tumor DNA in the Diagnosis and Monitoring of Esophageal Cancer. Med Sci Monit 2022; 28:e934106. [PMID: 35210388 PMCID: PMC8886734 DOI: 10.12659/msm.934106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Circulating tumor DNA (ctDNA) is a type of cell-free DNA released by tumor cells after necrosis and apoptosis, and it can be actively secreted by tumor cells. Since ctDNA is derived from various tumor sites, it can provide far more comprehensive genomic and epigenomic information than a single-site biopsy. Therefore, ctDNA can overcome tumor heterogeneity, which is the major limitation of a traditional tissue biopsy approach. Noninvasive ctDNA assays allow continuous real-time monitoring of the molecular status of cancers. Recently, ctDNA assays have been widely used in clinical practice, including cancer diagnosis, evaluation of therapeutic efficacy and prognosis, and monitoring of relapse and metastasis. Although ctDNA shows a high diagnostic performance in advanced esophageal cancer, it is far from satisfactory for early diagnosis of esophageal cancer. Monitoring the dynamic changes of ctDNA is beneficial for the evaluation of therapeutic efficacy and prediction of early recurrence in esophageal cancer. It is necessary to establish standards for individualized ctDNA detection in the evaluation of treatment response and surveillance of esophageal cancer and to develop clinical practice guideline for the systemic treatment of patients with "ctDNA recurrence." This review aims to provide an update on the role of ctDNA in the diagnosis and monitoring of esophageal cancer.
Collapse
Affiliation(s)
- Min Jiang
- Department of Pathology, Taizhou People’s Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, Taizhou, Jiangsu, PR China
| | - Huilin Zhou
- Department of Pathology, Taizhou People’s Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, Taizhou, Jiangsu, PR China
| | - Su Jiang
- Department of Rehabilitation, Taizhou People’s Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Taizhou, Jiangsu, PR China
| | - Hong Yu
- Department of Pathology, Taizhou People’s Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, Taizhou, Jiangsu, PR China
| |
Collapse
|
17
|
Doornebal EJ, Harris N, Riva A, Jagatia R, Pizanias M, Prachalias A, Menon K, Preziosi M, Zamalloa A, Miquel R, Zen Y, Orford MR, Eaton S, Heaton N, Ramage J, Palma E, Srirajaskanthan R, Chokshi S. Human Immunocompetent Model of Neuroendocrine Liver Metastases Recapitulates Patient-Specific Tumour Microenvironment. Front Endocrinol (Lausanne) 2022; 13:909180. [PMID: 35909511 PMCID: PMC9326114 DOI: 10.3389/fendo.2022.909180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroendocrine liver metastases (LM-NEN) develop in a considerable proportion of patients with gastroenteropancreatic neuroendocrine neoplasms. There is a paucity of experimental models that accurately recapitulate this complex metastatic human liver microenvironment precluding scientific and clinical advancements. Here, we describe the development of a novel personalised immunocompetent precision cut tumour slice (PCTS) model for LM-NEN using resected human liver tissue. The histological assessment throughout the culture demonstrated that slices maintain viability for at least 7 days and retain the cellular heterogeneity of the original tumour. Essential clinical features, such as patient-specific histoarchitecture, tumour grade, neuroendocrine differentiation and metabolic capacity, are preserved in the slices. The PCTS also replicate the tumor-specific immunological profile as shown by the innate and adaptive immunity markers analysis. Furthermore, the study of soluble immune checkpoint receptors in the culture supernatants proves that these immunomodulators are actively produced by LM-NEN and suggests that this process is epithelium-dependent. This model can be employed to investigate these pathways and provides a powerful platform for mechanistic, immunological and pre-clinical studies.
Collapse
Affiliation(s)
- Ewald Jan Doornebal
- Foundation for Liver Research, The Roger Williams Institute of Hepatology, London, United Kingdom
- King’s College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| | - Nicola Harris
- Foundation for Liver Research, The Roger Williams Institute of Hepatology, London, United Kingdom
- King’s College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| | - Antonio Riva
- Foundation for Liver Research, The Roger Williams Institute of Hepatology, London, United Kingdom
- King’s College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| | - Ravi Jagatia
- Foundation for Liver Research, The Roger Williams Institute of Hepatology, London, United Kingdom
- King’s College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| | - Michail Pizanias
- Institute of Liver Studies, King’s College Hospital and King’s College London, London, United Kingdom
| | - Andreas Prachalias
- Institute of Liver Studies, King’s College Hospital and King’s College London, London, United Kingdom
| | - Krishna Menon
- Institute of Liver Studies, King’s College Hospital and King’s College London, London, United Kingdom
| | - Melissa Preziosi
- Institute of Liver Studies, King’s College Hospital and King’s College London, London, United Kingdom
| | - Ane Zamalloa
- Institute of Liver Studies, King’s College Hospital and King’s College London, London, United Kingdom
| | - Rosa Miquel
- Liver Histopathology Laboratory, Institute of Liver Studies, King’s College Hospital, London, United Kingdom
| | - Yoh Zen
- Liver Histopathology Laboratory, Institute of Liver Studies, King’s College Hospital, London, United Kingdom
| | - Michael Robert Orford
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Simon Eaton
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Nigel Heaton
- Institute of Liver Studies, King’s College Hospital and King’s College London, London, United Kingdom
| | - John Ramage
- Institute of Liver Studies, King’s College Hospital and King’s College London, London, United Kingdom
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, King’s College Hospital, London, United Kingdom
| | - Elena Palma
- Foundation for Liver Research, The Roger Williams Institute of Hepatology, London, United Kingdom
- King’s College London, Faculty of Life Sciences and Medicine, London, United Kingdom
- *Correspondence: Shilpa Chokshi, ; Elena Palma,
| | - Rajaventhan Srirajaskanthan
- Institute of Liver Studies, King’s College Hospital and King’s College London, London, United Kingdom
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, King’s College Hospital, London, United Kingdom
| | - Shilpa Chokshi
- Foundation for Liver Research, The Roger Williams Institute of Hepatology, London, United Kingdom
- King’s College London, Faculty of Life Sciences and Medicine, London, United Kingdom
- *Correspondence: Shilpa Chokshi, ; Elena Palma,
| |
Collapse
|
18
|
Independent somatic evolution underlies clustered neuroendocrine tumors in the human small intestine. Nat Commun 2021; 12:6367. [PMID: 34737276 PMCID: PMC8568927 DOI: 10.1038/s41467-021-26581-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Small intestine neuroendocrine tumor (SI-NET), the most common cancer of the small bowel, often displays a curious multifocal phenotype with several tumors clustered together in a limited intestinal segment. SI-NET also shows an unusual absence of driver mutations explaining tumor initiation and metastatic spread. The evolutionary trajectories that underlie multifocal SI-NET lesions could provide insight into the underlying tumor biology, but this question remains unresolved. Here, we determine the complete genome sequences of 61 tumors and metastases from 11 patients with multifocal SI-NET, allowing for elucidation of phylogenetic relationships between tumors within single patients. Intra-individual comparisons revealed a lack of shared somatic single-nucleotide variants among the sampled intestinal lesions, supporting an independent clonal origin. Furthermore, in three of the patients, two independent tumors had metastasized. We conclude that primary multifocal SI-NETs generally arise from clonally independent cells, suggesting a contribution from a cancer-priming local factor.
Collapse
|
19
|
Childs A, Steele CD, Vesely C, Rizzo FM, Ensell L, Lowe H, Dhami P, Vaikkinen H, Luong TV, Conde L, Herrero J, Caplin M, Toumpanakis C, Thirlwell C, Hartley JA, Pillay N, Meyer T. Whole-genome sequencing of single circulating tumor cells from neuroendocrine neoplasms. Endocr Relat Cancer 2021; 28:631-644. [PMID: 34280125 PMCID: PMC8428071 DOI: 10.1530/erc-21-0179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/16/2021] [Indexed: 11/20/2022]
Abstract
Single-cell profiling of circulating tumor cells (CTCs) as part of a minimally invasive liquid biopsy presents an opportunity to characterize and monitor tumor heterogeneity and evolution in individual patients. In this study, we aimed to compare single-cell copy number variation (CNV) data with tissue and define the degree of intra- and inter-patient genomic heterogeneity. We performed next-generation sequencing (NGS) whole-genome CNV analysis of 125 single CTCs derived from seven patients with neuroendocrine neoplasms (NEN) alongside matched white blood cells (WBC), formalin-fixed paraffin-embedded (FFPE), and fresh frozen (FF) samples. CTC CNV profiling demonstrated recurrent chromosomal alterations in previously reported NEN copy number hotspots, including the prognostically relevant loss of chromosome 18. Unsupervised hierarchical clustering revealed CTCs with distinct clonal lineages as well as significant intra- and inter-patient genomic heterogeneity, including subclonal alterations not detectable by bulk analysis and previously unreported in NEN. Notably, we also demonstrated the presence of genomically distinct CTCs according to the enrichment strategy utilized (EpCAM-dependent vs size-based). This work has significant implications for the identification of therapeutic targets, tracking of evolutionary change, and the implementation of CTC-biomarkers in cancer.
Collapse
Affiliation(s)
- Alexa Childs
- UCL Cancer Institute, University College London, London, UK
| | | | - Clare Vesely
- UCL Cancer Institute, University College London, London, UK
| | | | - Leah Ensell
- UCL Cancer Institute, University College London, London, UK
| | - Helen Lowe
- UCL Cancer Institute, University College London, London, UK
| | - Pawan Dhami
- UCL Cancer Institute, University College London, London, UK
| | - Heli Vaikkinen
- UCL Cancer Institute, University College London, London, UK
| | - Tu Vinh Luong
- Department of Histopathology, Royal Free London NHS Foundation Trust, London, UK
| | - Lucia Conde
- UCL Cancer Institute, University College London, London, UK
| | - Javier Herrero
- UCL Cancer Institute, University College London, London, UK
| | - Martyn Caplin
- Department of Gastroenterology, Royal Free London NHS Foundation Trust, London, UK
| | - Christos Toumpanakis
- Department of Gastroenterology, Royal Free London NHS Foundation Trust, London, UK
| | - Christina Thirlwell
- UCL Cancer Institute, University College London, London, UK
- Department of Oncology, Royal Free London NHS Foundation Trust, London, UK
| | - John A Hartley
- UCL Cancer Institute, University College London, London, UK
| | - Nischalan Pillay
- Research Department of Pathology, Cancer Institute, University College London, London, UK
- Department of Cellular and Molecular Pathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, UK
| | - Tim Meyer
- UCL Cancer Institute, University College London, London, UK
- Department of Oncology, Royal Free London NHS Foundation Trust, London, UK
- Correspondence should be addressed to T Meyer:
| |
Collapse
|
20
|
van Riet J, van de Werken HJG, Cuppen E, Eskens FALM, Tesselaar M, van Veenendaal LM, Klümpen HJ, Dercksen MW, Valk GD, Lolkema MP, Sleijfer S, Mostert B. The genomic landscape of 85 advanced neuroendocrine neoplasms reveals subtype-heterogeneity and potential therapeutic targets. Nat Commun 2021; 12:4612. [PMID: 34326338 PMCID: PMC8322054 DOI: 10.1038/s41467-021-24812-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Metastatic and locally-advanced neuroendocrine neoplasms (aNEN) form clinically and genetically heterogeneous malignancies, characterized by distinct prognoses based upon primary tumor localization, functionality, grade, proliferation index and diverse outcomes to treatment. Here, we report the mutational landscape of 85 whole-genome sequenced aNEN. This landscape reveals distinct genomic subpopulations of aNEN based on primary localization and differentiation grade; we observe relatively high tumor mutational burdens (TMB) in neuroendocrine carcinoma (average 5.45 somatic mutations per megabase) with TP53, KRAS, RB1, CSMD3, APC, CSMD1, LRATD2, TRRAP and MYC as major drivers versus an overall low TMB in neuroendocrine tumors (1.09). Furthermore, we observe distinct drivers which are enriched in somatic aberrations in pancreatic (MEN1, ATRX, DAXX, DMD and CREBBP) and midgut-derived neuroendocrine tumors (CDKN1B). Finally, 49% of aNEN patients reveal potential therapeutic targets based upon actionable (and responsive) somatic aberrations within their genome; potentially directing improvements in aNEN treatment strategies.
Collapse
Affiliation(s)
- Job van Riet
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Harmen J G van de Werken
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands.
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands.
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, the Netherlands
- Hartwig Medical Foundation, Amsterdam, the Netherlands
| | - Ferry A L M Eskens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Margot Tesselaar
- Department of Medical Oncology, Cancer Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Linde M van Veenendaal
- Department of Medical Oncology, Cancer Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Heinz-Josef Klümpen
- Department of Medical Oncology, Amsterdam University Medical Centers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Marcus W Dercksen
- Department of Internal Medicine, Maxima Medisch Centrum, Veldhoven, The Netherlands
| | - Gerlof D Valk
- Department of Endocrine Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martijn P Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Center for Personalized Cancer Treatment, Rotterdam, the Netherlands
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Center for Personalized Cancer Treatment, Rotterdam, the Netherlands
| | - Bianca Mostert
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| |
Collapse
|
21
|
Target Heterogeneity in Oncology: The Best Predictor for Differential Response to Radioligand Therapy in Neuroendocrine Tumors and Prostate Cancer. Cancers (Basel) 2021; 13:cancers13143607. [PMID: 34298822 PMCID: PMC8304541 DOI: 10.3390/cancers13143607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary In the era of precision medicine, novel targets have emerged on the surface of cancer cells, which have been exploited for the purpose of radioligand therapy. However, there have been variations in the way these receptors are expressed, especially in prostate cancers and neuroendocrine tumors. This variable expression of receptors across the grades of cancers led to the concept of ‘target heterogeneity’, which has not just impacted therapeutic decisions but also their outcomes. Radiopharmaceuticals targeting receptors need to be used when there are specific indicators—either clinical, radiological, or at molecular level—warranting their use. In addition, response to these radioligands can be assessed using different techniques, whereby we can prognosticate further outcomes. We shall also discuss, in this review, the conventional as well as novel approaches of detecting heterogeneity in prostate cancers and neuroendocrine tumors. Abstract Tumor or target heterogeneity (TH) implies presence of variable cellular populations having different genomic characteristics within the same tumor, or in different tumor sites of the same patient. The challenge is to identify this heterogeneity, as it has emerged as the most common cause of ‘treatment resistance’, to current therapeutic agents. We have focused our discussion on ‘Prostate Cancer’ and ‘Neuroendocrine Tumors’, and looked at the established methods for demonstrating heterogeneity, each with its advantages and drawbacks. Also, the available theranostic radiotracers targeting PSMA and somatostatin receptors combined with targeted systemic agents, have been described. Lu-177 labeled PSMA and DOTATATE are the ‘standard of care’ radionuclide therapeutic tracers for management of progressive treatment-resistant prostate cancer and NET. These approved therapies have shown reasonable benefit in treatment outcome, with improvement in quality of life parameters. Various biomarkers and predictors of response to radionuclide therapies targeting TH which are currently available and those which can be explored have been elaborated in details. Imaging-based features using artificial intelligence (AI) need to be developed to further predict the presence of TH. Also, novel theranostic tools binding to newer targets on surface of cancer cell should be explored to overcome the treatment resistance to current treatment regimens.
Collapse
|
22
|
Hofving T, Elias E, Rehammar A, Inge L, Altiparmak G, Persson M, Kristiansson E, Johansson ME, Nilsson O, Arvidsson Y. SMAD4 haploinsufficiency in small intestinal neuroendocrine tumors. BMC Cancer 2021; 21:101. [PMID: 33509126 PMCID: PMC7841913 DOI: 10.1186/s12885-021-07786-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/02/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Patients with small intestinal neuroendocrine tumors (SINETs) frequently present with lymph node and liver metastases at the time of diagnosis, but the molecular changes that lead to the progression of these tumors are largely unknown. Sequencing studies have only identified recurrent point mutations at low frequencies with CDKN1B being the most common harboring heterozygous mutations in less than 10% of all tumors. Although SINETs are genetically stable tumors with a low frequency of point mutations and indels, they often harbor recurrent hemizygous copy number alterations (CNAs) yet the functional implications of these CNA are unclear. METHODS Utilizing comparative genomic hybridization (CGH) arrays we analyzed the CNA profile of 131 SINETs from 117 patients. Two tumor suppressor genes and corresponding proteins i.e. SMAD4, and CDKN1B, were further characterized using a tissue microarray (TMA) with 846 SINETs. Immunohistochemistry (IHC) was used to quantify protein expression in TMA samples and this was correlated with chromosome number evaluated with fluorescent in-situ hybridization (FISH). Intestinal tissue from a Smad4+/- mouse model was used to detect entero-endocrine cell hyperplasia with IHC. RESULTS Analyzing the CGH arrays we found loss of chromosome 18q and SMAD4 in 71% of SINETs and that focal loss of chromosome 12 affecting the CDKN1B was present in 9.4% of SINETs. No homozygous loss of chromosome 18 was detected. Hemizygous loss of SMAD4, but not CDKN1B, significantly correlated with reduced protein levels but hemizygous loss of SMAD4 did not induce entero-endocrine cell hyperplasia in the Smad4+/- mouse model. In addition, patients with low SMAD4 protein expression in primary tumors more often presented with metastatic disease. CONCLUSIONS Hemizygous loss of chromosome 18q and the SMAD4 gene is the most common genetic event in SINETs and our results suggests that this could influence SMAD4 protein expression and spread of metastases. Although SMAD4 haploinsufficiency alone did not induce tumor initiation, loss of chromosome 18 could represent an evolutionary advantage in SINETs explaining the high prevalence of this aberration. Functional consequences of reduced SMAD4 protein levels could hypothetically be a potential mechanism as to why loss of chromosome 18 appears to be clonally selected in SINETs.
Collapse
Affiliation(s)
- Tobias Hofving
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Box 425, SE-405 30, Gothenburg, Sweden
| | - Erik Elias
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anna Rehammar
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Linda Inge
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Box 425, SE-405 30, Gothenburg, Sweden
| | - Gülay Altiparmak
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Box 425, SE-405 30, Gothenburg, Sweden
| | - Marta Persson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Box 425, SE-405 30, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Martin E Johansson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Box 425, SE-405 30, Gothenburg, Sweden
| | - Ola Nilsson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Box 425, SE-405 30, Gothenburg, Sweden
| | - Yvonne Arvidsson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Box 425, SE-405 30, Gothenburg, Sweden.
| |
Collapse
|
23
|
Granata V, Fusco R, Avallone A, De Stefano A, Ottaiano A, Sbordone C, Brunese L, Izzo F, Petrillo A. Radiomics-Derived Data by Contrast Enhanced Magnetic Resonance in RAS Mutations Detection in Colorectal Liver Metastases. Cancers (Basel) 2021; 13:cancers13030453. [PMID: 33504085 PMCID: PMC7865653 DOI: 10.3390/cancers13030453] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary In the present study, we assessed the association of RAS mutation status and radiomics derived data by Contrast Enhanced Magnetic Resonance Imaging (CE-MRI) in liver metastases by CRC. We performed the evaluation extracting by CE-MRI both texture and morphological metrics in a 3D setting. We demonstrated that radiomics with texture parameters could add value to qualitative assessment of MR studies and with better results compared to morphological metrics, providing individualized evaluation of CRLM. Texture parameters derived by CE-MRI and combined using multivariate analysis and patter recognition approaches could allow stratifying the patients according to RAS mutation status. Abstract Purpose: To assess the association of RAS mutation status and radiomics-derived data by Contrast Enhanced-Magnetic Resonance Imaging (CE-MRI) in liver metastases. Materials and Methods: 76 patients (36 women and 40 men; 59 years of mean age and 36–80 years as range) were included in this retrospective study. Texture metrics and parameters based on lesion morphology were calculated. Per-patient univariate and multivariate analysis were made. Wilcoxon-Mann-Whitney U test, receiver operating characteristic (ROC) analysis, pattern recognition approaches with features selection approaches were considered. Results: Significant results were obtained for texture features while morphological parameters had not significant results to classify RAS mutation. The results showed that using a univariate analysis was not possible to discriminate accurately the RAS mutation status. Instead, considering a multivariate analysis and classification approaches, a KNN exclusively with texture parameters as predictors reached the best results (AUC of 0.84 and an accuracy of 76.9% with 90.0% of sensitivity and 67.8% of specificity on training set and an accuracy of 87.5% with 91.7% of sensitivity and 83.3% of specificity on external validation cohort). Conclusions: Texture parameters derived by CE-MRI and combined using multivariate analysis and patter recognition approaches could allow stratifying the patients according to RAS mutation status.
Collapse
Affiliation(s)
- Vincenza Granata
- Radiology Division, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Via Mariano Semmola, 80121 Naples, Italy; (V.G.); (A.P.)
| | - Roberta Fusco
- Radiology Division, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Via Mariano Semmola, 80121 Naples, Italy; (V.G.); (A.P.)
- Correspondence: ; Tel.: +39-081590714; Fax: +39-0815903825
| | - Antonio Avallone
- Abdominal Oncology Division, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Via Mariano Semmola, 80121 Naples, Italy; (A.A.); (A.D.S.); (A.O.)
| | - Alfonso De Stefano
- Abdominal Oncology Division, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Via Mariano Semmola, 80121 Naples, Italy; (A.A.); (A.D.S.); (A.O.)
| | - Alessandro Ottaiano
- Abdominal Oncology Division, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Via Mariano Semmola, 80121 Naples, Italy; (A.A.); (A.D.S.); (A.O.)
| | - Carolina Sbordone
- Radiology Division, Università degli Studi del Molise, Via Francesco De Sanctis, 86100 Campobasso, Italy; (C.S.); (L.B.)
| | - Luca Brunese
- Radiology Division, Università degli Studi del Molise, Via Francesco De Sanctis, 86100 Campobasso, Italy; (C.S.); (L.B.)
| | - Francesco Izzo
- Hepatobiliary Surgical Oncology Division, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Via Mariano Semmola, 80121 Naples, Italy;
| | - Antonella Petrillo
- Radiology Division, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Via Mariano Semmola, 80121 Naples, Italy; (V.G.); (A.P.)
| |
Collapse
|
24
|
Rindi G, Wiedenmann B. Neuroendocrine neoplasia of the gastrointestinal tract revisited: towards precision medicine. Nat Rev Endocrinol 2020; 16:590-607. [PMID: 32839579 DOI: 10.1038/s41574-020-0391-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
Over the past 5 years, a number of notable research advances have been made in the field of neuroendocrine cancer, specifically with regard to neuroendocrine cancer of the gastrointestinal tract. The aim of this Review is to provide an update on current knowledge that has proven effective for the clinical management of patients with these tumours. For example, for the first time in the tubular gastrointestinal tract, well-differentiated high-grade (grade 3) tumours and mixed neuroendocrine-non-neuroendocrine neoplasms (MiNENs) are defined in the WHO classification. This novel classification enables efficient identification of the most aggressive well-differentiated neuroendocrine tumours and helps in defining the degree of aggressiveness of MiNENs. The Review also discusses updates to epidemiology, cell biology (including vesicle-specific components) and the as-yet-unresolved complex genetic background that varies according to site and differentiation status. The Review summarizes novel diagnostic instruments, including molecules associated with the secretory machinery, novel radiological approaches (including pattern recognition techniques), novel PET tracers and liquid biopsy combined with DNA or RNA assays. Surgery remains the treatment mainstay; however, peptide receptor radionuclide therapy with novel radioligands and new emerging medical therapies (including vaccination and immunotherapy) are evolving and being tested in clinical trials, which are summarized and critically reviewed here.
Collapse
Affiliation(s)
- Guido Rindi
- Università Cattolica del Sacro Cuore, Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Bertram Wiedenmann
- Charité, Campus Virchow Klinikum and Charité Mitte, University Medicine Berlin, Berlin, Germany
| |
Collapse
|
25
|
Hormones Secretion and Rho GTPases in Neuroendocrine Tumors. Cancers (Basel) 2020; 12:cancers12071859. [PMID: 32664294 PMCID: PMC7408961 DOI: 10.3390/cancers12071859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroendocrine tumors (NETs) belong to a heterogeneous group of neoplasms arising from hormone secreting cells. These tumors are often associated with a dysfunction of their secretory activity. Neuroendocrine secretion occurs through calcium-regulated exocytosis, a process that is tightly controlled by Rho GTPases family members. In this review, we compiled the numerous mutations and modification of expression levels of Rho GTPases or their regulators (Rho guanine nucleotide-exchange factors and Rho GTPase-activating proteins) that have been identified in NETs. We discussed how they might regulate neuroendocrine secretion.
Collapse
|
26
|
Could the skewness and kurtosis texture parameters of lesions obtained from pretreatment Ga-68 DOTA-TATE PET/CT images predict receptor radionuclide therapy response in patients with gastroenteropancreatic neuroendocrine tumors? Nucl Med Commun 2020; 41:1034-1039. [DOI: 10.1097/mnm.0000000000001231] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Zhang Z, Mäkinen N, Kasai Y, Kim GE, Diosdado B, Nakakura E, Meyerson M. Patterns of chromosome 18 loss of heterozygosity in multifocal ileal neuroendocrine tumors. Genes Chromosomes Cancer 2020; 59:535-539. [PMID: 32291827 PMCID: PMC7384092 DOI: 10.1002/gcc.22850] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 12/21/2022] Open
Abstract
Ileal neuroendocrine tumors (NETs) represent the most common neoplasm of the small intestine. Although up to 50% of patients with ileal NETs are diagnosed with multifocal disease, the mechanisms by which multifocal ileal NETs arise are not yet understood. In this study, we analyzed genome-wide sequencing data to examine patterns of copy number variation in 40 synchronous primary ileal NETs derived from three patients. Chromosome (chr) 18 loss of heterozygosity (LOH) was the most frequent copy number alteration identified; however, not all primary tumors from the same patient had evidence of this LOH. Our data revealed three distinct patterns of chr18 allelic loss, indicating that primary tumors from the same patient can present different LOH patterns including retention of either parental allele. In conclusion, our results are consistent with the model that multifocal ileal NETs originate independently. In addition, they suggest that there is no specific germline allele on chr18 that is the target of somatic LOH.
Collapse
Affiliation(s)
- Zhouwei Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Netta Mäkinen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Yosuke Kasai
- Department of Surgery, University of California San Francisco, San Francisco, California, USA
| | - Grace E Kim
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Begoña Diosdado
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Eric Nakakura
- Department of Surgery, University of California San Francisco, San Francisco, California, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Departments of Genetics and Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Sprouffske K, Kerr G, Li C, Prahallad A, Rebmann R, Waehle V, Naumann U, Bitter H, Jensen MR, Hofmann F, Brachmann SM, Ferretti S, Kauffmann A. Genetic heterogeneity and clonal evolution during metastasis in breast cancer patient-derived tumor xenograft models. Comput Struct Biotechnol J 2020; 18:323-331. [PMID: 32099592 PMCID: PMC7026725 DOI: 10.1016/j.csbj.2020.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/04/2019] [Accepted: 01/19/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic heterogeneity within a tumor arises by clonal evolution, and patients with highly heterogeneous tumors are more likely to be resistant to therapy and have reduced survival. Clonal evolution also occurs when a subset of cells leave the primary tumor to form metastases, which leads to reduced genetic heterogeneity at the metastatic site. Although this process has been observed in human cancer, experimental models which recapitulate this process are lacking. Patient-derived tumor xenografts (PDX) have been shown to recapitulate the patient's original tumor's intra-tumor genetic heterogeneity, as well as its genomics and response to treatment, but whether they can be used to model clonal evolution in the metastatic process is currently unknown. Here, we address this question by following genetic changes in two breast cancer PDX models during metastasis. First, we discovered that mouse stroma can be a confounding factor in assessing intra-tumor heterogeneity by whole exome sequencing, thus we developed a new bioinformatic approach to correct for this. Finally, in a spontaneous, but not experimental (tail-vein) metastasis model we observed a loss of heterogeneity in PDX metastases compared to their orthotopic "primary" tumors, confirming that PDX models can faithfully mimic the clonal evolution process undergone in human patients during metastatic spreading.
Collapse
Affiliation(s)
- Kathleen Sprouffske
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Grainne Kerr
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Cheng Li
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Anirudh Prahallad
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ramona Rebmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Verena Waehle
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ulrike Naumann
- Biotherapeutic and Analytical Technologies, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Hans Bitter
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Michael R Jensen
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Francesco Hofmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Saskia M Brachmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stéphane Ferretti
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Audrey Kauffmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
29
|
Eso Y, Shimizu T, Takeda H, Takai A, Marusawa H. Microsatellite instability and immune checkpoint inhibitors: toward precision medicine against gastrointestinal and hepatobiliary cancers. J Gastroenterol 2020; 55:15-26. [PMID: 31494725 PMCID: PMC6942585 DOI: 10.1007/s00535-019-01620-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/23/2019] [Indexed: 02/04/2023]
Abstract
Recent innovations in the next-generation sequencing technologies have unveiled that the accumulation of genetic alterations results in the transformation of normal cells into cancer cells. Accurate and timely repair of DNA is, therefore, essential for maintaining genetic stability. Among various DNA repair pathways, the mismatch repair (MMR) pathway plays a pivotal role. MMR deficiency leads to a molecular feature of microsatellite instability (MSI) and predisposes to cancer. Recent studies revealed that MSI-high (MSI-H) or mismatch repair-deficient (dMMR) tumors, regardless of their primary site, have a promising response to immune checkpoint inhibitors (ICIs), leading to the approval of the anti-programmed cell death protein 1 monoclonal antibody pembrolizumab for the treatment of advanced or recurrent MSI-H/dMMR solid tumors that continue to progress after conventional chemotherapies. This new indication marks a paradigm shift in the therapeutic strategy of cancers; however, when considering the optimum indication for ICIs and their safe and effective usage, it is important for clinicians to understand the genetic and immunologic features of each tumor. In this review, we describe the molecular basis of the MMR pathway, diagnostics of MSI status, and the clinical importance of MSI status and the tumor mutation burden in developing therapeutic strategies against gastrointestinal and hepatobiliary malignancies.
Collapse
Affiliation(s)
- Yuji Eso
- grid.258799.80000 0004 0372 2033Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 6068507 Japan
| | - Takahiro Shimizu
- grid.258799.80000 0004 0372 2033Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 6068507 Japan
| | - Haruhiko Takeda
- grid.258799.80000 0004 0372 2033Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 6068507 Japan
| | - Atsushi Takai
- grid.258799.80000 0004 0372 2033Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 6068507 Japan
| | - Hiroyuki Marusawa
- grid.417000.20000 0004 1764 7409Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, 5-30 Fudegasaki-cho, Tennoji-ku, Osaka, 5438555 Japan
| |
Collapse
|
30
|
Scoville SD, Cloyd JM, Pawlik TM. New and emerging systemic therapy options for well-differentiated gastroenteropancreatic neuroendocrine tumors. Expert Opin Pharmacother 2019; 21:183-191. [PMID: 31760823 DOI: 10.1080/14656566.2019.1694003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Well-differentiated gastroenteropancreatic (GEP) neuroendocrine tumors (NETs) are a heterogeneous group of neoplasms with a wide range of clinical behavior. Multiple treatment modalities exist, including novel and emerging systemic options, and an understanding of the advantages and disadvantages of each is imperative for optimizing the outcomes of patients with GEP-NETs.Areas covered: While surgical resection remains the preferred treatment for localized well-differentiated GEP-NETs, treatment of unresectable disease depends on its extent, location, and distribution as well as underlying aspects of tumor biology. Isolated hepatic metastases can be successfully treated with liver-directed therapies such as hepatic arterial based therapies or ablation. Diffuse metastatic disease often requires systemic treatments such as molecular-targeted therapeutics, peptide receptor radionuclide therapy (PRRT), or traditional chemotherapy. Somatostatin analogs are often the primary treatment option capable of simultaneously inhibiting hormone production and slowing tumor growth.Expert opinion: Recent advances in systemic treatment options for advanced well-differentiated GEP-NETs have emerged due to an improved understanding of the molecular mechanisms responsible for tumor development and progression. Future research is needed to determine the optimal indications for and sequencing of these novel therapies.
Collapse
Affiliation(s)
- Steven D Scoville
- Department of Surgery, Division of Surgical Oncology at The Ohio State University, James Cancer Center, Columbus, OH, USA
| | - Jordan M Cloyd
- Department of Surgery, Division of Surgical Oncology at The Ohio State University, James Cancer Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology at The Ohio State University, James Cancer Center, Columbus, OH, USA.,Department of Surgery, The Urban Meyer III and Shelley Meyer Chair for Cancer Research The Ohio State University, Wexner Medical Center, Columbus, USA
| |
Collapse
|
31
|
Boons G, Vandamme T, Peeters M, Van Camp G, Op de Beeck K. Clinical applications of (epi)genetics in gastroenteropancreatic neuroendocrine neoplasms: Moving towards liquid biopsies. Rev Endocr Metab Disord 2019; 20:333-351. [PMID: 31368038 DOI: 10.1007/s11154-019-09508-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
High-throughput analysis, including next-generation sequencing and microarrays, have strongly improved our understanding of cancer biology. However, genomic data on rare cancer types, such as neuroendocrine neoplasms, has been lagging behind. Neuroendocrine neoplasms (NENs) develop from endocrine cells spread throughout the body and are highly heterogeneous in biological behavior. In this challenging disease, there is an urgent need for new therapies and new diagnostic, prognostic, follow-up and predictive biomarkers to aid patient management. The last decade, molecular data on neuroendocrine neoplasms of the gastrointestinal tract and pancreas, termed gastroenteropancreatic NENs (GEP-NENs), has strongly expanded. The aim of this review is to give an overview of the recent advances on (epi)genetic level and highlight their clinical applications to address the current needs in GEP-NENs. We illustrate how molecular alterations can be and are being used as therapeutic targets, how mutations in DAXX/ATRX and copy number variations could be used as prognostic biomarkers, how far we are in identifying predictive biomarkers and how genetics can contribute to GEP-NEN classification. Finally, we discuss recent studies on liquid biopsies in the field of GEP-NENs and illustrate how liquid biopsies can play a role in patient management. In conclusion, molecular studies have suggested multiple potential biomarkers, but further validation is ongoing.
Collapse
Affiliation(s)
- Gitta Boons
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Edegem, Belgium
| | - Timon Vandamme
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Edegem, Belgium
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Dr. Molewaterplein 50, 3015GE, Rotterdam, The Netherlands
| | - Marc Peeters
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Guy Van Camp
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium.
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Edegem, Belgium.
| | - Ken Op de Beeck
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Edegem, Belgium
| |
Collapse
|
32
|
Prognostic Significance of Somatostatin Receptor Heterogeneity in Progressive Neuroendocrine Tumor Treated with Lu-177 DOTATOC or Lu-177 DOTATATE. Eur J Nucl Med Mol Imaging 2019; 47:881-894. [PMID: 31414209 DOI: 10.1007/s00259-019-04439-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 07/11/2019] [Indexed: 12/21/2022]
Abstract
AIM One of the primary prerequisites for peptide receptor radionuclide therapy (PRRT) in patients with neuroendocrine tumors (NET) is the presence of somatostatin receptors (SSTR) on NET cells. NET are highly heterogeneous and an individual patient as well as separate metastases can harbor cells with different clones, which influence the SSTR expression on NET cells. With this background we looked into our institutional database to assess the prognostic significance of quality of SSTR expression on SSTR PET/CT imaging in patients treated with at least two cycles of Lu-177 DOTATOC or Lu-177 DOTATATE. METHOD Clinical reports and images from 65 (25 females, 40 males; 65 ± 11 years old) patients with progressive grade 1 or grade 2 NET with 2-5 therapy cycles of PRRT with an average administered dose of 6.6 ± 0.97 GBq Lu-177 DOTATOC or Lu-177 DOTATATE were analyzed. All patients were examined with baseline Ga-68 DOTATATE or Ga-68 DOTATOC PET/CT (PET). Quality of SSTR expression as a measure of heterogeneity on indexed lesions was assessed visually. Patients were followed for a median duration of 25 months after the first PRRT (range 5-77 months). RESULTS A total of 70% of the patients received three or more therapy cycles. Twenty-six patients (40%) were treated with PRRT as first or second line while 39 (60%) as third line or more. SSTR expression was heterogeneous in 28 (44.4%) and homogeneous in 35 (55.6%) patients. Disease stabilization could be achieved in 23 patients (35.4%), whereas 17 (26.1%) showed partial remission and 25 patients (38.5%) had disease progression. Median OS was not reached. The 24-month survival rate of the whole study cohort was 83%. In univariate analyses, factors influencing OS were carcinoid heart disease, carcinoid syndrome and quality of SSTR expression (p < 0.05). Patients with heterogeneous SSTR expression on target lesions had a significantly lower OS (p = 0.01). Median time to progression in total patient population was found to be 40 months. Patients with heterogeneous SSTR expression on target lesions had significantly lower TTP (26 months vs 54 months log Rank p = 0.013). By multivariate analyses, quality of SSTR was found to be the only prognostic factor for OS (p = 0.04; HR = 3.68) and also for TTP (p = 0.03; HR = 3.09). CONCLUSION Visual assessment of SSTR heterogeneity has both predictive and prognostic value in progressive grade 1 or grade 2 NET patients undergoing PRRT.
Collapse
|
33
|
Interlesional Heterogeneity of Metastatic Neuroendocrine Tumors Based on 18F-DOPA PET/CT. Clin Nucl Med 2019; 44:612-619. [DOI: 10.1097/rlu.0000000000002640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Tirosh A, Killian JK, Zhu YJ, Petersen D, Walling J, Mor-Cohen R, Neychev V, Stevenson H, Keutgen XM, Patel D, Nilubol N, Meltzer P, Kebebew E. ONCOGENE PANEL SEQUENCING ANALYSIS IDENTIFIES CANDIDATE ACTIONABLE GENES IN ADVANCED WELL-DIFFERENTIATED GASTROENTEROPANCREATIC NEUROENDOCRINE TUMORS. Endocr Pract 2019; 25:580-588. [PMID: 30865533 PMCID: PMC8170837 DOI: 10.4158/ep-2018-0603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective: To report the rate of candidate actionable somatic mutations in patients with locally advanced and metastatic gastro-enteropancreatic (GEP) neuroendocrine tumors (NET) and of other genetic alterations that may be associated with tumorigenesis. Methods: A phase II mutation targeted therapy trial was conducted in patients with advanced well-differentiated G1/G2 GEP-NET. Mutations found in the mTOR pathway-associated genes led to treatment with the mTOR inhibitor everolimus, and were defined as actionable. Tumor deoxyribonucleic acid (DNA) from GEP-NET were sequenced and compared with germline DNA, using the OncoVAR-NET assay, designed for hybrid capture sequencing of 500 tumor suppressor genes and oncogenes. Somatic variants were called and copy-number (CN) variant analysis was performed. Results: Thirty patients (14 small-intestine, 8 pancreatic, 3 unknown primary NET, and 5 of other primary sites) harbored 37 lesions (4 patients had DNA of multiple lesions sequenced). Only 2 patients with sporadic NET (n = 26) had an actionable mutation leading to treatment with everolimus. Driver somatic mutations were detected in 18 of 30 patients (21/37 lesions sequenced). In the remaining samples without a driver mutation, CN alterations were found in 11/16 tumors (10/12 patients), including CN loss of chromosome (Chr) 18 (P<.05), CN gain of Chr 5, and loss of Chr 13. CN losses in Chr 18 were more common in patients without driver mutations detected. Pronounced genetic heterogeneity was detected in patients with multiple lesions sequenced. Conclusion: Genome-wide DNA sequencing may identify candidate actionable genes and lead to the identification of novel target genes for advanced well-differentiated GEP-NET. Abbreviations: Chr = chromosome; CN = copy number; DNA = deoxyribonucleic acid; FDA = Food and Drug Administration; GEP = gastro-enteropancreatic; MEN-1 = multiple endocrine neoplasia syndrome type 1; mTOR = mammalian target of rapamycin; NET = neuroendocrine tumor; PFS = progression-free survival; PNET = pancreatic neuroendocrine tumors; SINET = small-intestine neuroendocrine tumor.
Collapse
Affiliation(s)
- Amit Tirosh
- Endocrine Oncology Bioinformatics Lab and NET Service, Endocrine Institute, Chaim Sheba Medical Centre, Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - J. Keith Killian
- Genetics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yuelin Jack Zhu
- Genetics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - David Petersen
- Genetics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jennifer Walling
- Genetics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Ronit Mor-Cohen
- Endocrine Oncology Bioinformatics Lab and NET Service, Endocrine Institute, Chaim Sheba Medical Centre, Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Vladimir Neychev
- Department of Clinical Sciences, University of Central Florida College of Medicine, Florida
| | - Holly Stevenson
- College of Natural Sciences, Center for Biomedical Research Support, University of Texas at Austin, Texas
| | - Xavier M. Keutgen
- Department of Surgery, Division of Surgical Oncology, Rush University Medical Center, Chicago, Illinois
| | - Dhaval Patel
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Naris Nilubol
- Endocrine Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Paul Meltzer
- Genetics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Electron Kebebew
- Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, California
| |
Collapse
|
35
|
Eso Y, Kou T, Nagai H, Kim YH, Kanai M, Matsumoto S, Mishima M, Arasawa S, Iguchi E, Nakamura F, Takeda H, Takai A, Takahashi K, Ueda Y, Muto M, Seno H. Utility of ultrasound-guided liver tumor biopsy for next-generation sequencing-based clinical sequencing. Hepatol Res 2019; 49:579-589. [PMID: 30645782 DOI: 10.1111/hepr.13312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/19/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
Abstract
AIM Recent advances in next-generation sequencing (NGS) technologies allow for evaluation of genetic alterations in various cancer-related genes in daily clinical practice. Archival formalin-fixed paraffin-embedded (FFPE) tumor tissue is often used for NGS-based clinical sequencing assays; however, the success rate of NGS assays using archival FFPE tumor tissue is reported to be lower than that using fresh tumor tissue. We aimed to evaluate the feasibility and safety of ultrasound (US)-guided liver tumor biopsy for NGS-based multiplex gene assays. METHODS We compared the success rate of NGS assays between archival FFPE tumor tissues and US-guided liver tumor biopsy tissues, and summarized the treatment progress of the patients. RESULTS Next-generation sequencing assays using US-guided liver biopsy samples were successful in all patients (22/22), whereas the success rate with archival FFPE tumor tissue was 84.8% (151/178, P < 0.05). At least one potentially actionable genetic alteration was identified from the US-guided liver biopsy samples in 20 of 22 patients. Among the 18 patients with actionable genetic alterations targetable with drugs approved by the US Food and Drug Administration, eight initiated mutation-driven targeted therapies. Of these eight patients, four achieved partial response or stable disease for at least 4 months, and three were not assessable for response due to short exposure. There were no biopsy-related complications requiring additional treatment. CONCLUSION Our findings suggest that US-guided liver tumor biopsy is a useful and safe method for obtaining high-quality samples for NGS-based clinical sequencing. In cases with metastatic liver tumors, US-guided biopsy should be considered to provide accurate and optimal sequencing results for patients.
Collapse
Affiliation(s)
- Yuji Eso
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tadayuki Kou
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroki Nagai
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Young Hak Kim
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masashi Kanai
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigemi Matsumoto
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masako Mishima
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Soichi Arasawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eriko Iguchi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fumiyasu Nakamura
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruhiko Takeda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Takai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Takahashi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihide Ueda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Manabu Muto
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
36
|
Mafficini A, Scarpa A. Genetics and Epigenetics of Gastroenteropancreatic Neuroendocrine Neoplasms. Endocr Rev 2019; 40:506-536. [PMID: 30657883 PMCID: PMC6534496 DOI: 10.1210/er.2018-00160] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 12/27/2018] [Indexed: 12/11/2022]
Abstract
Gastroenteropancreatic (GEP) neuroendocrine neoplasms (NENs) are heterogeneous regarding site of origin, biological behavior, and malignant potential. There has been a rapid increase in data publication during the last 10 years, mainly driven by high-throughput studies on pancreatic and small intestinal neuroendocrine tumors (NETs). This review summarizes the present knowledge on genetic and epigenetic alterations. We integrated the available information from each compartment to give a pathway-based overview. This provided a summary of the critical alterations sustaining neoplastic cells. It also highlighted similarities and differences across anatomical locations and points that need further investigation. GEP-NENs include well-differentiated NETs and poorly differentiated neuroendocrine carcinomas (NECs). NENs are graded as G1, G2, or G3 based on mitotic count and/or Ki-67 labeling index, NECs are G3 by definition. The distinction between NETs and NECs is also linked to their genetic background, as TP53 and RB1 inactivation in NECs set them apart from NETs. A large number of genetic and epigenetic alterations have been reported. Recurrent changes have been traced back to a reduced number of core pathways, including DNA damage repair, cell cycle regulation, and phosphatidylinositol 3-kinase/mammalian target of rapamycin signaling. In pancreatic tumors, chromatin remodeling/histone methylation and telomere alteration are also affected. However, also owing to the paucity of disease models, further research is necessary to fully integrate and functionalize data on deregulated pathways to recapitulate the large heterogeneity of behaviors displayed by these tumors. This is expected to impact diagnostics, prognostic stratification, and planning of personalized therapy.
Collapse
Affiliation(s)
- Andrea Mafficini
- ARC-Net Center for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy.,Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-Net Center for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy.,Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
37
|
Mulvey CK, Bergsland EK. Progress in the Evaluation and Treatment of Small Bowel Neuroendocrine Tumors. J Oncol Pract 2018; 14:487-489. [DOI: 10.1200/jop.18.00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Claire K. Mulvey
- University of California, San Francisco; University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | - Emily K. Bergsland
- University of California, San Francisco; University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| |
Collapse
|
38
|
Kyriakopoulos G, Mavroeidi V, Chatzellis E, Kaltsas GA, Alexandraki KI. Histopathological, immunohistochemical, genetic and molecular markers of neuroendocrine neoplasms. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:252. [PMID: 30069454 DOI: 10.21037/atm.2018.06.27] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuroendocrine neoplasms (NENs) arise from cells of the neuroendocrine system located in many sites amongst which most common are the gastrointestinal (GI) system and the lung. The efforts to assess the specific site of origin or predict the biological behavior of NENs is based upon a detailed study of neoplasm's architectural pattern, immunohistochemical, genetic and molecular profile. Immunohistochemistry is used to characterize the aggressivity of NENs, by assessing the proliferation index Ki-67, as well as the neuroendocrine differentiation by assessing chromogranin A (CgA) and CD56. Basal panels of immunohistochemical markers such as CDX-2, Isl-1, TTF-1, PAX6/8 are currently being used to allocate the neoplasms, while in dubious cases new markers are investigating. Unraveling the genetic and molecular mechanisms of NENs pathogenesis along with shedding light on the molecular heterogeneity of neoplasms and the individual patterns of molecular lesions, underlining these neoplasms may provide new tools in terms of diagnostics and therapeutics. Molecular targeted therapies (MTTs) such as everolimus and sunitinib have been the first example of druggable molecular targets implicated in NENs that have been approved for NEN treatment. New investigational drugs are developing along with genetic tests that may allow the identification of the specific subset of patients that will respond to each individual MTT. Multiparametrical molecular and genetic analysis such as the NETest and the MASTER are already in trials shedding light in a step-by-step management of NENs that allow not only the selection of an appropriate therapeutic option but also the identification of response to treatment or early relapse allowing an early amendment of the strategy. Summarizing the combination of histopathological, immunohistochemical, genetic and molecular profile of a NEN opens new horizons in the efficient management of NENs.
Collapse
Affiliation(s)
| | - Vasiliki Mavroeidi
- Endocrine Unit, 1st Department of Propaedeutic Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios Chatzellis
- Endocrine Unit, 1st Department of Propaedeutic Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gregory A Kaltsas
- Endocrine Unit, 1st Department of Propaedeutic Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Krystallenia I Alexandraki
- Endocrine Unit, 1st Department of Propaedeutic Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|