1
|
Quan Y, Wang Y, Gao S, Yuan S, Song S, Liu B, Wang Y. Breaking the fortress: a mechanistic review of meningitis-causing bacteria breaching tactics in blood brain barrier. Cell Commun Signal 2025; 23:235. [PMID: 40399897 PMCID: PMC12096492 DOI: 10.1186/s12964-025-02248-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 05/13/2025] [Indexed: 05/23/2025] Open
Abstract
The blood-brain barrier is a physiological protective barrier around blood vessels in the brain. It prevents most bacteria and harmful substances from entering the brain through the blood. However, when bacterial meningitis occurs, bacteria enter the brain either from the circulation or by direct invasion from neighbouring structures, causing an inflammatory response that in severe cases may lead to death. High morbidity and mortality are prominent features of the disease. Many pathogenic bacteria can break through the blood-brain barrier and cause meningitis, such as Streptococcus pneumoniae, Group B Streptococcus, Streptococcus suis, Neisseria meningitidis, meningitis-associated Escherichia coli, etc. This article reviews the mechanisms by which these bacteria cross the blood-brain barrier when causing meningitis and the interactions between bacteria and host cells to help pathogens invade the brain. Clarifying the mechanism by which pathogens cross the blood-brain barrier can provide new ideas for developing effective treatments for bacterial meningitis.
Collapse
Affiliation(s)
- Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shenao Song
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Baobao Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
2
|
Moreira RS, Benetti Filho V, Maia GA, Soratto TAT, Kawagoe EK, Russi BC, Miletti LC, Wagner G. FastProtein-an automated software for in silico proteomic analysis. PeerJ 2024; 12:e18309. [PMID: 39494269 PMCID: PMC11531748 DOI: 10.7717/peerj.18309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/24/2024] [Indexed: 11/05/2024] Open
Abstract
Although various tools provide proteomic information, each tool has limitations related to execution platforms, libraries, versions, and data output format. Integrating data generated from different software is a laborious process that can prolong analysis time. Here, we present FastProtein, a protein analysis pipeline that is user-friendly, easily installable, and outputs important information about subcellular location, transmembrane domains, signal peptide, molecular weight, isoelectric point, hydropathy, aromaticity, gene ontology, endoplasmic reticulum retention domains, and N-glycosylation domains. It also helps determine the presence of glycosylphosphatidylinositol and obtain functional information from InterProScan, PANTHER, Pfam, and alignment-based annotation searches. FastProtein provides the scientific community with an easy-to-use computational tool for proteomic data analysis. It is applicable to both small datasets and proteome-wide studies. It can be used through the command line interface mode or a web interface installed on a local server. FastProtein significantly enhances proteomics analysis workflows by producing multiple results in a single-step process, thereby streamlining and accelerating the overall analysis. The software is open-source and freely available. Installation and execution instructions, as well as the source code and test files generated for tool validation, are available at https://github.com/bioinformatics-ufsc/FastProtein.
Collapse
Affiliation(s)
- Renato Simões Moreira
- Instituto Federal de Santa Catarina, Gaspar, Santa Catarina, Brazil
- Departamento de Microbiologia, Parasitologia e Imunologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Vilmar Benetti Filho
- Departamento de Microbiologia, Parasitologia e Imunologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Guilherme Augusto Maia
- Departamento de Microbiologia, Parasitologia e Imunologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Tatiany Aparecida Teixeira Soratto
- Departamento de Microbiologia, Parasitologia e Imunologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Eric Kazuo Kawagoe
- Departamento de Microbiologia, Parasitologia e Imunologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Luiz Cláudio Miletti
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina, Lages, Santa Catarina, Brazil
| | - Glauber Wagner
- Departamento de Microbiologia, Parasitologia e Imunologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
3
|
Huang G, Yang S, Long T, Gao Y, Lin G. Proteomic analysis of brain tissue from ducks with meningitis caused by Riemerella anatipestifer infection. Poult Sci 2024; 103:104059. [PMID: 39068696 PMCID: PMC11338091 DOI: 10.1016/j.psj.2024.104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Riemerella anatipestifer is a Gram-negative, rod-shaped bacterium that is flagellated, non-budded, and encapsulated, measuring approximately 0.4 μm × 0.7 μm. After infecting ducklings with R. anatipestifer, the hosts exhibited pathological changes, such as bacterial meningitis, fibrinous pericarditis, and fibrinous peripheral hepatitis. The pathogenesis of meningitis caused by R. anatipestifer has not yet been elucidated. To investigate the key molecules or proteins involved in R. anatipestifer's penetration of the blood-brain barrier (BBB) and the subsequent development of duck meningitis, a duck meningitis model was established and characterized. Duckling brain tissues were collected and analyzed using 4D label-free proteomic technology. Differentially expressed proteins were analyzed using a series of bioinformatics methods and verified using RT-qPCR and Western-Blot. The results showed that the differentially expressed proteins were primarily related to intracellular transport, transport protein activity, and transmembrane transport protein activity, and were mainly enriched in pathways associated with reducing intercellular connections and adhesion and increasing cell migration and apoptosis. Thus, it is suggested that R. anatipestifer may penetrate the BBB via transcellular and paracellular pathways, causing neurological diseases such as meningitis. This study is the first to analyze R. anatipestifer-infected duckling brain tissue using proteomics, thus providing a direction for further research into the mechanisms of R. anatipestifer's penetration of the BBB.
Collapse
Affiliation(s)
- Guoliang Huang
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China
| | - Shengmei Yang
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China
| | - Ting Long
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China
| | - Yuhan Gao
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China
| | - Guozhen Lin
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China.
| |
Collapse
|
4
|
Haubrich BA, Nayyab S, Gallati M, Hernandez J, Williams C, Whitman A, Zimmerman T, Li Q, Chen Y, Zhou CZ, Basu A, Reid CW. Inhibition of Streptococcus pneumoniae growth by masarimycin. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35467499 DOI: 10.1099/mic.0.001182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Despite renewed interest, development of chemical biology methods to study peptidoglycan metabolism has lagged in comparison to the glycobiology field in general. To address this, a panel of diamides were screened against the Gram-positive bacterium Streptococcus pneumoniae to identify inhibitors of bacterial growth. The screen identified the diamide masarimycin as a bacteriostatic inhibitor of S. pneumoniae growth with an MIC of 8 µM. The diamide inhibited detergent-induced autolysis in a concentration-dependent manner, indicating perturbation of peptidoglycan degradation as the mode-of-action. Cell based screening of masarimycin against a panel of autolysin mutants, identified a higher MIC against a ΔlytB strain lacking an endo-N-acetylglucosaminidase involved in cell division. Subsequent biochemical and phenotypic analyses suggested that the higher MIC was due to an indirect interaction with LytB. Further analysis of changes to the cell surface in masarimycin treated cells identified the overexpression of several moonlighting proteins, including elongation factor Tu which is implicated in regulating cell shape. Checkerboard assays using masarimycin in concert with additional antibiotics identified an antagonistic relationship with the cell wall targeting antibiotic fosfomycin, which further supports a cell wall mode-of-action.
Collapse
Affiliation(s)
- Brad A Haubrich
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA.,Department of Basic Sciences, Touro University Nevada, College of Osteopathic Medicine, Henderson, NV 89014, USA
| | - Saman Nayyab
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA.,Amherst Department of Molecular and Cellular Biology, University of Massachusetts, 230 Stockbridge Rd Amherst, MA, USA
| | - Mika Gallati
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA
| | - Jazmeen Hernandez
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA
| | - Caroline Williams
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA
| | - Andrew Whitman
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA
| | - Tahl Zimmerman
- Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, NC, USA
| | - Qiong Li
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Yuxing Chen
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Cong-Zhao Zhou
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Amit Basu
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Christopher W Reid
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA
| |
Collapse
|
5
|
Hruškovicová J, Bhide K, Petroušková P, Tkáčová Z, Mochnáčová E, Čurlík J, Bhide M, Kulkarni A. Engineering the Single Domain Antibodies Targeting Receptor Binding Motifs Within the Domain III of West Nile Virus Envelope Glycoprotein. Front Microbiol 2022; 13:801466. [PMID: 35432292 PMCID: PMC9012491 DOI: 10.3389/fmicb.2022.801466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
West Nile virus (WNV) is a mosquito-borne neurotrophic flavivirus causing mild febrile illness to severe encephalitis and acute flaccid paralysis with long-term or permanent neurological disorders. Due to the absence of targeted therapy or vaccines, there is a growing need to develop effective anti-WNV therapy. In this study, single-domain antibodies (sdAbs) were developed against the domain III (DIII) of WNV’s envelope glycoprotein to interrupt the interaction between DIII and the human brain microvascular endothelial cells (hBMEC). The peripheral blood mononuclear cells of the llama immunized with recombinant DIIIL297–S403 (rDIII) were used to generate a variable heavy chain only (VHH)-Escherichia coli library, and phage display was performed using the M13K07ΔpIII Hyperphages system. Phages displaying sdAbs against rDIII were panned with the synthetic analogs of the DIII receptor binding motifs, DIII-1G299–K307 and DIII-2V371–R388, and the VHH gene from the eluted phages was subcloned into E. coli SHuffle. Soluble sdAbs purified from 96 E. coli SHuffle clones were screened to identify 20 candidates strongly binding to the synthetic analogs of DIII-1G299–K307 and DIII-2V371–R388 on a dot blot assay. Among them, sdAbA1, sdAbA6, sdAbA9, and sdAbA10 blocked the interaction between rDIII and human brain microvascular endothelial cells (hBMECs) on Western blot and cell ELISA. However, optimum stability during the overexpression was noticed only for sdAbA10 and it also neutralized the WNV–like particles (WNV-VLP) in the Luciferase assay with an half maximal effective concentration (EC50) of 1.48 nm. Furthermore, the hemocompatibility and cytotoxicity of sdAbA10 were assessed by a hemolytic assay and XTT-based hBMEC proliferation assay resulting in 0.1% of hemolytic activity and 82% hBMEC viability, respectively. Therefore, the sdAbA10 targeting DIII-2V371–R388 of the WNV envelope glycoprotein is observed to be suitable for in vivo trials as a specific therapy for WNV–induced neuropathogenesis.
Collapse
Affiliation(s)
- Jana Hruškovicová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Patrícia Petroušková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Zuzana Tkáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Evelína Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Ján Čurlík
- Department of Breeding and Diseases of Game, Fish and Bees, Ecology and Cynology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- *Correspondence: Amod Kulkarni,
| |
Collapse
|
6
|
Rauner M, Foessl I, Formosa MM, Kague E, Prijatelj V, Lopez NA, Banerjee B, Bergen D, Busse B, Calado Â, Douni E, Gabet Y, Giralt NG, Grinberg D, Lovsin NM, Solan XN, Ostanek B, Pavlos NJ, Rivadeneira F, Soldatovic I, van de Peppel J, van der Eerden B, van Hul W, Balcells S, Marc J, Reppe S, Søe K, Karasik D. Perspective of the GEMSTONE Consortium on Current and Future Approaches to Functional Validation for Skeletal Genetic Disease Using Cellular, Molecular and Animal-Modeling Techniques. Front Endocrinol (Lausanne) 2021; 12:731217. [PMID: 34938269 PMCID: PMC8686830 DOI: 10.3389/fendo.2021.731217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022] Open
Abstract
The availability of large human datasets for genome-wide association studies (GWAS) and the advancement of sequencing technologies have boosted the identification of genetic variants in complex and rare diseases in the skeletal field. Yet, interpreting results from human association studies remains a challenge. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary. Multiple unknowns exist for putative causal genes, including cellular localization of the molecular function. Intermediate traits ("endophenotypes"), e.g. molecular quantitative trait loci (molQTLs), are needed to identify mechanisms of underlying associations. Furthermore, index variants often reside in non-coding regions of the genome, therefore challenging for interpretation. Knowledge of non-coding variance (e.g. ncRNAs), repetitive sequences, and regulatory interactions between enhancers and their target genes is central for understanding causal genes in skeletal conditions. Animal models with deep skeletal phenotyping and cell culture models have already facilitated fine mapping of some association signals, elucidated gene mechanisms, and revealed disease-relevant biology. However, to accelerate research towards bridging the current gap between association and causality in skeletal diseases, alternative in vivo platforms need to be used and developed in parallel with the current -omics and traditional in vivo resources. Therefore, we argue that as a field we need to establish resource-sharing standards to collectively address complex research questions. These standards will promote data integration from various -omics technologies and functional dissection of human complex traits. In this mission statement, we review the current available resources and as a group propose a consensus to facilitate resource sharing using existing and future resources. Such coordination efforts will maximize the acquisition of knowledge from different approaches and thus reduce redundancy and duplication of resources. These measures will help to understand the pathogenesis of osteoporosis and other skeletal diseases towards defining new and more efficient therapeutic targets.
Collapse
Affiliation(s)
- Martina Rauner
- Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- University Hospital Carl Gustav Carus, Dresden, Germany
| | - Ines Foessl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrine Lab Platform, Medical University of Graz, Graz, Austria
| | - Melissa M. Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Erika Kague
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Vid Prijatelj
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- The Generation R Study, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nerea Alonso Lopez
- Rheumatology and Bone Disease Unit, CGEM, Institute of Genetics and Cancer (IGC), Edinburgh, United Kingdom
| | - Bodhisattwa Banerjee
- Musculoskeletal Genetics Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Dylan Bergen
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ângelo Calado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Eleni Douni
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Institute for Bioinnovation, B.S.R.C. “Alexander Fleming”, Vari, Greece
| | - Yankel Gabet
- Department of Anatomy & Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Natalia García Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Nika M. Lovsin
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Xavier Nogues Solan
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Barbara Ostanek
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Nathan J. Pavlos
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | | | - Ivan Soldatovic
- Institute of Medical Statistics and Informatic, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Bram van der Eerden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wim van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Sjur Reppe
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
- Marcus Research Institute, Hebrew SeniorLife, Boston, MA, United States
| |
Collapse
|
7
|
Mochnáčová E, Petroušková P, Danišová O, Hudecová P, Bhide K, Kulkarni A, Bhide M. Simple and rapid pipeline for the production of cyclic and linear small-sized peptides in E. coli. Protein Expr Purif 2021; 191:106026. [PMID: 34838724 DOI: 10.1016/j.pep.2021.106026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
Small and medium-sized peptides are gaining popularity in biomedical applications, including therapeutic target development. As an alternative to chemical synthesis, we describe a complete pipeline for the production of linear as well as structurally constrained cyclic peptides in an E. coli expression system in this study. A plasmid vector containing a novel N terminal HOE tag (28 amino acids in length) that fuses with the peptide was created. The HOE tag contains sites for both chemical (CNBr) and enzymatic (enterokinase) cleavage, making it easy to isolate the peptide after production. A total of 21 peptides (17 cyclic and 4 linear) were synthesized, and the HOE tag was successfully removed using either CNBr (9 peptides) or enterokinase (12 peptides). The presence of a disulfide bond was confirmed in six representative cyclic peptides. In this study we have provided detailed instructions on primers design strategy, overexpression and purification of HOE tagged peptides, chemical and enzymatic cleavage, and confirmation of the cyclic form of peptides. We are confident that this pipeline will assist researchers in producing multiple recombinant peptides in a cost-effective and time-efficient manner.
Collapse
Affiliation(s)
- Evelína Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Patrícia Petroušková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Oľga Danišová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Patrícia Hudecová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia; Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia; Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
8
|
Tkáčová Z, Bhide K, Mochnáčová E, Petroušková P, Hruškovicová J, Kulkarni A, Bhide M. Comprehensive Mapping of the Cell Response to Borrelia bavariensis in the Brain Microvascular Endothelial Cells in vitro Using RNA-Seq. Front Microbiol 2021; 12:760627. [PMID: 34819924 PMCID: PMC8606740 DOI: 10.3389/fmicb.2021.760627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 12/01/2022] Open
Abstract
Borrelia bavariensis can invade the central nervous system (CNS) by crossing the blood-brain barrier (BBB). It is predicted that B. bavariensis evokes numerous signaling cascades in the human brain microvascular endothelial cells (hBMECs) and exploits them to traverse across the BBB. The complete picture of signaling events in hBMECs induced by B. bavariensis remains uncovered. Using RNA sequencing, we mapped 11,398 genes and identified 295 differentially expressed genes (DEGs, 251 upregulated genes and 44 downregulated genes) in B. bavariensis challenged hBMECs. The results obtained from RNA-seq were validated with qPCR. Gene ontology analysis revealed the participation of DEGs in a number of biological processes like cell communication, organization of the extracellular matrix, vesicle-mediated transport, cell response triggered by pattern recognition receptors, antigen processing via MHC class I, cellular stress, metabolism, signal transduction, etc. The expression of several non-protein coding genes was also evoked. In this manuscript, we discuss in detail the correlation between several signaling cascades elicited and the translocation of BBB by B. bavariensis. The data revealed here may contribute to a better understanding of the mechanisms employed by B. bavariensis to cross the BBB.
Collapse
Affiliation(s)
- Zuzana Tkáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Evelina Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Patrícia Petroušková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Jana Hruškovicová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
9
|
van de Beek D, Brouwer MC, Koedel U, Wall EC. Community-acquired bacterial meningitis. Lancet 2021; 398:1171-1183. [PMID: 34303412 DOI: 10.1016/s0140-6736(21)00883-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 12/19/2022]
Abstract
Progress has been made in the prevention and treatment of community-acquired bacterial meningitis during the past three decades but the burden of the disease remains high globally. Conjugate vaccines against the three most common causative pathogens (Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae) have reduced the incidence of disease, but with the replacement by non-vaccine pneumococcal serotypes and the emergence of bacterial strains with reduced susceptibility to antimicrobial treatment, meningitis continues to pose a major health challenge worldwide. In patients presenting with bacterial meningitis, typical clinical characteristics (such as the classic triad of neck stiffness, fever, and an altered mental status) might be absent and cerebrospinal fluid examination for biochemistry, microscopy, culture, and PCR to identify bacterial DNA are essential for the diagnosis. Multiplex PCR point-of-care panels in cerebrospinal fluid show promise in accelerating the diagnosis, but diagnostic accuracy studies to justify routine implementation are scarce and randomised, controlled studies are absent. Early administration of antimicrobial treatment (within 1 hour of presentation) improves outcomes and needs to be adjusted according to local emergence of drug resistance. Adjunctive dexamethasone treatment has proven efficacy beyond the neonatal age but only in patients from high-income countries. Further progress can be expected from implementing preventive measures, especially the development of new vaccines, implementation of hospital protocols aimed at early treatment, and new treatments targeting checkpoints of the inflammatory cascade.
Collapse
Affiliation(s)
- Diederik van de Beek
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef, Amsterdam, Netherlands.
| | - Matthijs C Brouwer
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef, Amsterdam, Netherlands
| | - Uwe Koedel
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Emma C Wall
- Research Department of Infection, University College London, London, UK; Francis Crick Institute, London, UK
| |
Collapse
|
10
|
Lee KM, Kim CH, Kim JH, Kim SS, Cho SH. e-Membranome: A Database for Genome-Wide Analysis of Escherichia coli Outer Membrane Proteins. Curr Pharm Biotechnol 2021; 22:501-507. [PMID: 32520685 DOI: 10.2174/1389201021666200610105549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Lectin-like adhesins of enteric bacterial pathogens such as Escherichia coli are an attractive target for vaccine or drug development. Here, we have developed e-Membranome as a database of genome-wide putative adhesins in Escherichia coli (E. coli). METHODS The outer membrane adhesins were predicted from the annotated genes of Escherichia coli strains using the PSORTb program. Further analysis was performed using Interproscan and the String database. The candidate proteins can be investigated for homology modeling of the Three-Dimensional (3D) structure (I-TASSER version 5.1), epitope region (ABCpred), and the glycan array. RESULTS e-Membranome is implemented using the Django (version 2.2.5) framework. The Web Application Server Apache Tomcat 6.0 is integrated into the platform on Ubuntu Linux (version 16.04). MySQL database (version 5.7) is used as a database engine. The information on homology model of the 3D structure, epitope region, and affinity information from the glycan array will be stored in the e- Membranome database. As a case study, we performed a genome-wide screening of outer membraneembedded proteins from the annotated genes of E. coli using the e-Membranome pipeline. CONCLUSION This platform is expected to be a valuable resource for advancing research of outer membrane proteins for the construction of lectin-glycan interaction network of E. coli. In addition, the e- Membranome pipeline can be extended to other similar biological systems that need to address hostpathogen interactions.
Collapse
Affiliation(s)
- Kang M Lee
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Korea
| | - Cheorl-Ho Kim
- Glycobiology Unit, Department of Biological Science, SungKyunkwan University and Samsung Advanced Institute for Health Science and Technology (SAIHST), Suwon, Korea
| | - Jong H Kim
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Korea
| | - Sung S Kim
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Korea
| | - Seung-Hak Cho
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Korea
| |
Collapse
|
11
|
Jiménez-Munguía I, Tomečková Z, Mochnáčová E, Bhide K, Majerová P, Bhide M. Transcriptomic analysis of human brain microvascular endothelial cells exposed to laminin binding protein (adhesion lipoprotein) and Streptococcus pneumoniae. Sci Rep 2021; 11:7970. [PMID: 33846455 PMCID: PMC8041795 DOI: 10.1038/s41598-021-87021-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/23/2021] [Indexed: 01/28/2023] Open
Abstract
Streptococcus pneumoniae invades the CNS and triggers a strong cellular response. To date, signaling events that occur in the human brain microvascular endothelial cells (hBMECs), in response to pneumococci or its surface adhesins are not mapped comprehensively. We evaluated the response of hBMECs to the adhesion lipoprotein (a laminin binding protein—Lbp) or live pneumococci. Lbp is a surface adhesin recently identified as a potential ligand, which binds to the hBMECs. Transcriptomic analysis was performed by RNA-seq of three independent biological replicates and validated with qRT-PCR using 11 genes. In total 350 differentially expressed genes (DEGs) were identified after infection with S. pneumoniae, whereas 443 DEGs when challenged with Lbp. Total 231 DEGs were common in both treatments. Integrative functional analysis revealed participation of DEGs in cytokine, chemokine, TNF signaling pathways and phagosome formation. Moreover, Lbp induced cell senescence and breakdown, and remodeling of ECM. This is the first report which maps complete picture of cell signaling events in the hBMECs triggered against S. pneumoniae and Lbp. The data obtained here could contribute in a better understanding of the invasion of pneumococci across BBB and underscores role of Lbp adhesin in evoking the gene expression in neurovascular unit.
Collapse
Affiliation(s)
- Irene Jiménez-Munguía
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, Kosice, 04181, Slovak Republic
| | - Zuzana Tomečková
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, Kosice, 04181, Slovak Republic
| | - Evelína Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, Kosice, 04181, Slovak Republic
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, Kosice, 04181, Slovak Republic
| | - Petra Majerová
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, Kosice, 04181, Slovak Republic. .,Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
12
|
Kulkarni A, Mochnáčová E, Majerova P, Čurlík J, Bhide K, Mertinková P, Bhide M. Single Domain Antibodies Targeting Receptor Binding Pockets of NadA Restrain Adhesion of Neisseria meningitidis to Human Brain Microvascular Endothelial Cells. Front Mol Biosci 2020; 7:573281. [PMID: 33425985 PMCID: PMC7785856 DOI: 10.3389/fmolb.2020.573281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/03/2020] [Indexed: 01/02/2023] Open
Abstract
Neisseria adhesin A (NadA), one of the surface adhesins of Neisseria meningitides (NM), interacts with several cell types including human brain microvascular endothelial cells (hBMECs) and play important role in the pathogenesis. Receptor binding pockets of NadA are localized on the globular head domain (A33 to K69) and the first coiled-coil domain (L121 to K158). Here, the phage display was used to develop a variable heavy chain domain (VHH) that can block receptor binding sites of recombinant NadA (rec-NadA). A phage library displaying VHH was panned against synthetic peptides (NadA-gdA33−K69 or NadA-ccL121−K158), gene encoding VHH was amplified from bound phages and re-cloned in the expression vector, and the soluble VHHs containing disulfide bonds were overexpressed in the SHuffle E. coli. From the repertoire of 96 clones, two VHHs (VHHF3–binding NadA-gdA33−K69 and VHHG9–binding NadA-ccL121−K158) were finally selected as they abrogated the interaction between rec-NadA and the cell receptor. Preincubation of NM with VHHF3 and VHHG9 significantly reduced the adhesion of NM on hBMECs in situ and hindered the traversal of NM across the in-vitro BBB model. The work presents a phage display pipeline with a single-round of panning to select receptor blocking VHHs. It also demonstrates the production of soluble and functional VHHs, which blocked the interaction between NadA and its receptor, decreased adhesion of NM on hBMECs, and reduced translocation of NM across BBB in-vitro. The selected NadA blocking VHHs could be promising molecules for therapeutic translation.
Collapse
Affiliation(s)
- Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia.,Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Evelína Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ján Čurlík
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Patrícia Mertinková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia.,Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
13
|
Anil A, Banerjee A. Pneumococcal Encounter With the Blood-Brain Barrier Endothelium. Front Cell Infect Microbiol 2020; 10:590682. [PMID: 33224900 PMCID: PMC7669544 DOI: 10.3389/fcimb.2020.590682] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022] Open
Abstract
Meningitis, the inflammation of the protective membrane surrounding the brain and spinal cord (known as meninges), is a condition associated with high mortality rates and permanent neurological sequelae in a significant proportion of survivors. The opportunistic pathogen Streptococcus pneumoniae (SPN/pneumococcus) is the leading cause of bacterial meningitis in adults and older children. Following infection of the lower respiratory tract and subsequent bloodstream invasion, SPN breaches the blood-brain barrier endothelium for invasion of the central nervous system. Transcytosis, a mode of passage through the endothelial cells has been identified as the predominant route of pneumococcal blood-brain barrier trafficking. Herein, we review the interactions enabling SPN invasion into the brain endothelial cells, events involved in the tug-of-war between pneumococcal virulence factors and host intracellular defense machineries and pneumococcal strategies for evasion of host defenses and successful transendothelial trafficking.
Collapse
Affiliation(s)
| | - Anirban Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
14
|
Abstract
Group B Streptococcus (GBS) remains the leading cause of neonatal meningitis, a disease associated with high rates of adverse neurological sequelae. The in vivo relationship between GBS and brain tissues remains poorly characterized, partly because past studies had focused on microbial rather than host processes. Additionally, the field has not capitalized on systems-level technologies to probe the host-pathogen relationship. Here, we use multiplexed quantitative proteomics to investigate the effect of GBS infection in the murine brain at various levels of tissue complexity, beginning with the whole organ and moving to brain vascular substructures. Infected whole brains showed classical signatures associated with the acute-phase response. In isolated brain microvessels, classical blood-brain barrier proteins were unaltered, but interferon signaling and leukocyte recruitment proteins were upregulated. The choroid plexus showed increases in peripheral immune cell proteins. Proteins that increased in abundance in the vasculature during GBS invasion were associated with major histocompatibility complex (MHC) class I antigen processing and endoplasmic reticulum dysfunction, a finding which correlated with altered host protein glycosylation profiles. Globally, there was low concordance between the infection proteome of whole brains and isolated vascular tissues. This report underscores the utility of unbiased, systems-scale analyses of functional tissue substructures for understanding disease.IMPORTANCE Group B Streptococcus (GBS) meningitis remains a major cause of poor health outcomes very early in life. Both the host-pathogen relationship leading to disease and the massive host response to infection contributing to these poor outcomes are orchestrated at the tissue and cell type levels. GBS meningitis is thought to result when bacteria present in the blood circumvent the selectively permeable vascular barriers that feed the brain. Additionally, tissue damage subsequent to bacterial invasion is mediated by inflammation and by immune cells from the periphery crossing the blood-brain barrier. Indeed, the vasculature plays a central role in disease processes occurring during GBS infection of the brain. Here, we employed quantitative proteomic analysis of brain vascular substructures during invasive GBS disease. We used the generated data to map molecular alterations associated with tissue perturbation, finding widespread intracellular dysfunction and punctuating the importance of investigations relegated to tissue type over the whole organ.
Collapse
|
15
|
Ma J, Zhang Z, Pan Z, Bai Q, Zhong X, Zhu Y, Zhang Y, Wu Z, Liu G, Yao H. Streptococcus suis Uptakes Carbohydrate Source from Host Glycoproteins by N-glycans Degradation System for Optimal Survival and Full Virulence during Infection. Pathogens 2020; 9:E387. [PMID: 32443590 PMCID: PMC7281376 DOI: 10.3390/pathogens9050387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Infection with the epidemic virulent strain of Streptococcus suis serotype 2 (SS2) can cause septicemia in swine and humans, leading to pneumonia, meningitis and even cytokine storm of Streptococcal toxic shock-like syndrome. Despite some progress concerning the contribution of bacterial adhesion, biofilm, toxicity and stress response to the SS2 systemic infection, the precise mechanism underlying bacterial survival and growth within the host bloodstream remains elusive. Here, we reported the SS2 virulent strains with a more than 20 kb endoSS-related insertion region that showed significantly higher proliferative ability in swine serum than low-virulent strains. Further study identified a complete N-glycans degradation system encoded within this insertion region, and found that both GH92 and EndoSS contribute to bacterial virulence, but that only DndoSS was required for optimal growth of SS2 in host serum. The supplement of hydrolyzed high-mannose-containing glycoprotein by GH92 and EndoSS could completely restore the growth deficiency of endoSS deletion mutant in swine serum. EndoSS only hydrolyzed a part of the model glycoprotein RNase B with high-mannose N-linked glycoforms into a low molecular weight form, and the solo activity of GH92 could not show any changes comparing with the blank control in SDS-PAGE gel. However, complete hydrolyzation was observed under the co-incubation of EndoSS and GH92, suggesting GH92 may degrade the high-mannose arms of N-glycans to generate a substrate for EndoSS. In summary, these findings provide compelling evidences that EndoSS-related N-glycans degradation system may enable SS2 to adapt to host serum-specific availability of carbon sources from glycoforms, and be required for optimal colonization and full virulence during systemic infection.
Collapse
Affiliation(s)
- Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Ze Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Zihao Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Qiankun Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Xiaojun Zhong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Yinchu Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Yue Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Guangjin Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| |
Collapse
|
16
|
Tkáčová Z, Pulzová LB, Mochnáčová E, Jiménez-Munguía I, Bhide K, Mertinková P, Majerová P, Kulkarni A, Kováč A, Bhide M. Identification of the proteins of Borrelia garinii interacting with human brain microvascular endothelial cells. Ticks Tick Borne Dis 2020; 11:101451. [PMID: 32360026 DOI: 10.1016/j.ttbdis.2020.101451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 11/25/2022]
Abstract
Lyme borreliosis is one of the major tick-borne diseases in Europe. Events of the translocation of Borrelia across the blood-brain barrier (BBB) involve multiple interactions between borrelial surface proteins and receptors on the brain microvascular endothelial cells (hBMECs). In this study, we aimed to identify proteins of Borrelia that plausibly interact with hBMECs. The surface proteome of live Borrelia (a neuroinvasive strain of B. garinii) was crosslinked with biotin prior to its incubation with hBMECs. The interacting proteins were recovered by affinity purification, followed by SWATH-MS. Twenty-four interacting candidates were grouped into outer membrane proteins (n = 12) and inner membrane proteins (n = 12) based on the subcellular location as per the predictions of LocateP. Other algorithms like TMHMM 2.0 and LipoP, ontology search and literature review were subsequently applied to each of the identified protein candidates to shortlist the most probable interactors. Six proteins namely, LysM domain protein, BESBP-5, Antigen S1, CRASP-1 (Bg071), Erp23 protein and Mlp family Lipoprotein were selected to produce their recombinant forms and experimentally validate their interaction with hBMECs. All the recombinant proteins interacted with hBMECs, in ELISA and immunocytochemistry. We present here a high-throughput approach of generating a dataset of plausible borrelial ligands followed by a systematic bioinformatic pipeline to categorize the proteins for experimental validation.
Collapse
Affiliation(s)
- Zuzana Tkáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia
| | - Lucia Borszéková Pulzová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia
| | - Evelína Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia
| | - Irene Jiménez-Munguía
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia
| | - Patrícia Mertinková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia
| | - Petra Majerová
- Institute of Neuroimmunology of Slovak Academy of Sciences, 84510, Bratislava, Slovakia
| | - Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia; Institute of Neuroimmunology of Slovak Academy of Sciences, 84510, Bratislava, Slovakia
| | - Andrej Kováč
- Institute of Neuroimmunology of Slovak Academy of Sciences, 84510, Bratislava, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia; Institute of Neuroimmunology of Slovak Academy of Sciences, 84510, Bratislava, Slovakia.
| |
Collapse
|
17
|
A simple and rapid pipeline for identification of receptor-binding sites on the surface proteins of pathogens. Sci Rep 2020; 10:1163. [PMID: 31980725 PMCID: PMC6981161 DOI: 10.1038/s41598-020-58305-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/14/2020] [Indexed: 12/02/2022] Open
Abstract
Ligand-receptor interactions play a crucial role in the plethora of biological processes. Several methods have been established to reveal ligand-receptor interface, however, the majority of methods are time-consuming, laborious and expensive. Here we present a straightforward and simple pipeline to identify putative receptor-binding sites on the pathogen ligands. Two model ligands (bait proteins), domain III of protein E of West Nile virus and NadA of Neisseria meningitidis, were incubated with the proteins of human brain microvascular endothelial cells immobilized on nitrocellulose or PVDF membrane, the complex was trypsinized on-membrane, bound peptides of the bait proteins were recovered and detected on MALDI-TOF. Two peptides of DIII (~916 Da and ~2003 Da) and four peptides of NadA (~1453 Da, ~1810 Da, ~2051 Da and ~2433 Da) were identified as plausible receptor-binders. Further, binding of the identified peptides to the proteins of endothelial cells was corroborated using biotinylated synthetic analogues in ELISA and immunocytochemistry. Experimental pipeline presented here can be upscaled easily to map receptor-binding sites on several ligands simultaneously. The approach is rapid, cost-effective and less laborious. The proposed experimental pipeline could be a simpler alternative or complementary method to the existing techniques used to reveal amino-acids involved in the ligand-receptor interface.
Collapse
|
18
|
Káňová E, Tkáčová Z, Bhide K, Kulkarni A, Jiménez-Munguía I, Mertinková P, Drážovská M, Tyagi P, Bhide M. Transcriptome analysis of human brain microvascular endothelial cells response to Neisseria meningitidis and its antigen MafA using RNA-seq. Sci Rep 2019; 9:18763. [PMID: 31822804 PMCID: PMC6904618 DOI: 10.1038/s41598-019-55409-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 11/28/2019] [Indexed: 01/25/2023] Open
Abstract
Interaction of Neisseria meningitidis (NM) with human brain microvascular endothelial cells (hBMECs) initiates of multiple cellular processes, which allow bacterial translocation across the blood-brain barrier (BBB). NM is equipped with several antigens, which interacts with the host cell receptors. Recently we have shown that adhesin MafA (UniProtKB-X5EG71), relatively less studied protein, is one of those surface exposed antigens that adhere to hBMECs. The present study was designed to comprehensively map the undergoing biological processes in hBMECs challenged with NM or MafA using RNA sequencing. 708 and 726 differentially expressed genes (DEGs) were identified in hBMECs exposed to NM and MafA, respectively. Gene ontology analysis of the DEGs revealed that several biological processes, which may alter the permeability of BBB, were activated. Comparative analysis of DEGs revealed that MafA, alike NM, might provoke TLR-dependent pathway and augment cytokine response. Moreover, both MafA and NM were able to induce genes involved in cell surface modifications, endocytosis, extracellular matrix remodulation and anoikis/apoptosis. In conclusion, this study for the first time describes effect of NM on the global gene expression in hBMECs using high-throughput RNA-seq. It also presents ability of MafA to induce gene expression, which might aid NM in breaching the BBB.
Collapse
Affiliation(s)
- Evelína Káňová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Zuzana Tkáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Irene Jiménez-Munguía
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Patrícia Mertinková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Monika Drážovská
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Punit Tyagi
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia. .,Institute of Neuroimmunology of Slovak Academy of Sciences, 84510, Bratislava, Slovakia.
| |
Collapse
|
19
|
Saleh S, Staes A, Deborggraeve S, Gevaert K. Targeted Proteomics for Studying Pathogenic Bacteria. Proteomics 2019; 19:e1800435. [DOI: 10.1002/pmic.201800435] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/04/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Sara Saleh
- Department of Biomedical SciencesInstitute of Tropical Medicine B‐2000 Antwerp Belgium
- VIB Center for Medical Biotechnology B‐9000 Ghent Belgium
- Department of Biomolecular MedicineGhent University B‐9000 Ghent Belgium
| | - An Staes
- VIB Center for Medical Biotechnology B‐9000 Ghent Belgium
- Department of Biomolecular MedicineGhent University B‐9000 Ghent Belgium
| | - Stijn Deborggraeve
- Department of Biomedical SciencesInstitute of Tropical Medicine B‐2000 Antwerp Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology B‐9000 Ghent Belgium
- Department of Biomolecular MedicineGhent University B‐9000 Ghent Belgium
| |
Collapse
|
20
|
Kim BJ, Shusta EV, Doran KS. Past and Current Perspectives in Modeling Bacteria and Blood-Brain Barrier Interactions. Front Microbiol 2019; 10:1336. [PMID: 31263460 PMCID: PMC6585309 DOI: 10.3389/fmicb.2019.01336] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/29/2019] [Indexed: 01/18/2023] Open
Abstract
The central nervous system (CNS) barriers are highly specialized cellular barriers that promote brain homeostasis while restricting pathogen and toxin entry. The primary cellular constituent regulating pathogen entry in most of these brain barriers is the brain endothelial cell (BEC) that exhibits properties that allow for tight regulation of CNS entry. Bacterial meningoencephalitis is a serious infection of the CNS and occurs when bacteria can cross specialized brain barriers and cause inflammation. Models have been developed to understand the bacterial - BEC interaction that lead to pathogen crossing into the CNS, however, these have been met with challenges due to these highly specialized BEC phenotypes. This perspective provides a brief overview and outlook of the in vivo and in vitro models currently being used to study bacterial brain penetration, and opinion on improved models for the future.
Collapse
Affiliation(s)
- Brandon J Kim
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, United States
| | - Kelly S Doran
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
21
|
Kánová E, Jiménez-Munguía I, Majerová P, Tkáčová Z, Bhide K, Mertinková P, Pulzová L, Kováč A, Bhide M. Deciphering the Interactome of Neisseria meningitidis With Human Brain Microvascular Endothelial Cells. Front Microbiol 2018; 9:2294. [PMID: 30319591 PMCID: PMC6168680 DOI: 10.3389/fmicb.2018.02294] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/07/2018] [Indexed: 11/16/2022] Open
Abstract
Neisseria meningitidis is able to translocate the blood-brain barrier and cause meningitis. Bacterial translocation is a crucial step in the onset of neuroinvasion that involves interactions between pathogen surface proteins and host cells receptors. In this study, we applied a systematic workflow to recover and identify proteins of N. meningitidis that may interact with human brain microvascular endothelial cells (hBMECs). Biotinylated proteome of N. meningitidis was incubated with hBMECs, interacting proteins were recovered by affinity purification and identified by SWATH-MS. Interactome of N. meningitidis comprised of 41 potentially surface exposed proteins. These were assigned into groups based on their probability to interact with hBMECs: high priority candidates (21 outer membrane proteins), medium priority candidates (14 inner membrane proteins) and low priority candidates (six secretory proteins). Ontology analysis provided information for 17 out of 41 surface proteins. Based on the series of bioinformatic analyses and literature review, five surface proteins (adhesin MafA1, major outer membrane protein P.IB, putative adhesin/invasion, putative lipoprotein and membrane lipoprotein) were selected and their recombinant forms were produced for experimental validation of interaction with hBMECs by ELISA and immunocytochemistry. All candidates showed interaction with hBMECs. In this study, we present a high-throughput approach to generate a dataset of plausible meningococcal ligands followed by systematic bioinformatic pipeline to categorize the proteins for experimental validation.
Collapse
Affiliation(s)
- Evelína Kánová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Irene Jiménez-Munguía
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Petra Majerová
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Tkáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Patrícia Mertinková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Lucia Pulzová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Andrej Kováč
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia.,Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|