1
|
Keele GR, Dzieciatkowska M, Hay AM, Vincent M, O'Connor C, Stephenson D, Reisz JA, Nemkov T, Hansen KC, Page GP, Zimring JC, Churchill GA, D'Alessandro A. Genetic architecture of the red blood cell proteome in genetically diverse mice reveals central role of hemoglobin beta cysteine redox status in maintaining circulating glutathione pools. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640676. [PMID: 40093052 PMCID: PMC11908137 DOI: 10.1101/2025.02.27.640676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Red blood cells (RBCs) transport oxygen but accumulate oxidative damage over time, reducing function in vivo and during storage-critical for transfusions. To explore genetic influences on RBC resilience, we profiled proteins, metabolites, and lipids from fresh and stored RBCs obtained from 350 genetically diverse mice. Our analysis identified over 6,000 quantitative trait loci (QTL). Compared to other tissues, prevalence of trans genetic effects over cis reflects the absence of de novo protein synthesis in anucleated RBCs. QTL hotspots at Hbb, Hba, Mon1a, and storage-specific Steap3 linked ferroptosis to hemolysis. Proteasome components clustered at multiple loci, underscoring the importance of degrading oxidized proteins. Post-translational modifications (PTMs) mapped predominantly to hemoglobins, particularly cysteine residues. Loss of reactive C93 in humanized mice (HBB C93A) disrupted redox balance, affecting glutathione pools, protein glutathionylation, and redox PTMs. These findings highlight genetic regulation of RBC oxidation, with implications for transfusion biology and oxidative stress-dependent hemolytic disorders.
Collapse
|
2
|
El Moheb M, Shen C, Kim S, Putman K, Zhang H, Ruff SM, Witt R, Tsung A. Stage-Specific Tumoral Gene Expression Profiles of Black and White Patients with Colon Cancer. Ann Surg Oncol 2025; 32:736-749. [PMID: 39580376 PMCID: PMC11698818 DOI: 10.1245/s10434-024-16550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/05/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Black patients with colon cancer (CC) exhibit more aggressive tumor biology and higher treatment resistance than white patients, even after adjusting for clinical and demographic factors. We investigated stage-specific transcriptional differences in tumor profiles of Black and white patients with CC. PATIENTS AND METHODS Patients with CC from The Cancer Genome Atlas Colon Adenocarcinoma database were categorized by disease stage and propensity-score matched between Black and white patients. Differential gene expression and pathway enrichment analyses were performed for each stage. Logistic regression and quadratic discriminant analysis (QDA) models were developed using consistently differentially expressed genes. RESULTS Of 247 patients, 128 had localized (22% Black), 81 had regional (74% Black), and 38 had distant disease (29% Black). Differential expression analysis revealed differences in 312 genes for localized, 105 for regional, and 199 for distant stages between Black and white patients. Pathway enrichment analysis showed downregulation of the IL-17 pathway in Black patients with localized disease. In total, five genes exhibited race-specific transcriptional differences across all stages: RAMACL, POLR2J3, POLR2J2, MUC16, and PRSS21. Logistic regression and QDA model performance indicated that these genes represent racial differences [area under the receiver operating characteristic curve (AUC): 0.863 and 0.880]. CONCLUSIONS Significant transcriptional differences exist in CC between Black and white patients changing dynamically across disease stages, and involving genes with broad functions. Key findings include IL-17 pathway downregulation in Black patients with localized disease and a five-gene signature consistent across all stages. These findings may explain aspects of racial disparities in CC, emphasizing the need for race-specific research and treatment strategies.
Collapse
Affiliation(s)
- Mohamad El Moheb
- School of Data Science, University of Virginia, Charlottesville, VA, USA
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Chengli Shen
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Susan Kim
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Kristin Putman
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Hongji Zhang
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Samantha M Ruff
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Russell Witt
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Allan Tsung
- Department of Surgery, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Kamp JC, Madadi-Sanjani O, Uecker M, Werlein C, Neubert L, Kübler JF, Obed M, Junge N, Welte T, Ruwisch J, Jonigk DD, Stolk J, Vieten G, Janciauskiene S. Amyloid precursor protein as a fibrosis marker in infants with biliary atresia. Pediatr Res 2024:10.1038/s41390-024-03582-w. [PMID: 39341941 DOI: 10.1038/s41390-024-03582-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/29/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Biliary atresia (BA) is a rare condition of unknown origin in newborns with jaundice. In BA bile ducts are non-functional, causing neonatal cholestasis and following liver fibrosis and failure. METHODS This retrospective study included liver biopsies of 14 infants with BA aged [mean ± SD] 63 ± 23 days. Patients were grouped according to the clinical course (jaundice-free vs recurrent jaundice vs required liver transplantation or liver fibrosis (Ishak fibrosis score)) and followed for 1.61-5.64 years (mean 4.03). Transcriptome profiles were assessed using a panel of 768 fibrosis-specific genes, reanalyzed via qRT-PCR, and confirmed via immunostaining. Plasma from an additional 30 BA infants and 10 age-matched controls were used for amyloid precursor protein (APP) quantification by ELISA. RESULTS Different clinical outcome groups showed a homogeneous mRNA expression. Altered amyloid-metabolism-related gene expression was found between cases with Ishak fibrosis score greater than 4. Immunostaining confirmed a distinct presence of APP in the livers of all BA subjects. APP plasma levels were higher in BA than in age-matched controls and correlated with the histological fibrosis grade. CONCLUSIONS These results suggest that amyloidosis may contribute to BA and liver fibrosis, indicating that APP could serve as a potential liquid biomarker for these conditions. IMPACT Biliary atresia patients with higher fibrosis scores according to Ishak have higher hepatic expression of amyloid-related genes while amyloid precursor protein accumulates in the liver and increases in the circulation. After a recent study revealed beta-amyloid deposition as a mechanism potentially involved in biliary atresia, we were able to correlate amyloid-metabolism-related transcript levels as well as amyloid precursor protein tissue and plasma levels with the degree of hepatic fibrosis. These findings suggest that amyloid precursor protein is a fibrosis marker in infants with biliary atresia, reinforcing the role of amyloid metabolism in the pathogenesis of this serious disease.
Collapse
Affiliation(s)
- Jan C Kamp
- Department of Respiratory and Infectious Medicine, Hannover Medical School, Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany.
| | | | - Marie Uecker
- Centre of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Christopher Werlein
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Lavinia Neubert
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Joachim F Kübler
- Centre of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Mikal Obed
- Centre of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Norman Junge
- Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Department of Respiratory and Infectious Medicine, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Jannik Ruwisch
- Department of Respiratory and Infectious Medicine, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Danny D Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Institute of Pathology, RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Jan Stolk
- Department of Pulmonology, Leiden University Medical Center, Member of European Reference Network Lung, Section Alpha-1-Antitrypsin Deficiency, Leiden, The Netherlands
| | - Gertrud Vieten
- Centre of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Sabina Janciauskiene
- Department of Respiratory and Infectious Medicine, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
4
|
Liu W, Xia S, Yao F, Huo J, Qian J, Liu X, Bai L, Song Y, Qian J. Deactivation of the Unfolded Protein Response Aggravated Renal AA Amyloidosis in HSF1 Deficiency Mice. Mol Cell Biol 2024; 44:165-177. [PMID: 38758542 PMCID: PMC11123510 DOI: 10.1080/10985549.2024.2347937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Systemic amyloid A (AA) amyloidosis, which is considered the second most common form of systemic amyloidosis usually takes place several years prior to the occurrence of chronic inflammation, generally involving the kidney. Activated HSF1, which alleviated unfolded protein response (UPR) or enhanced HSR, is the potential therapeutic target of many diseases. However, the effect of HSF1 on AA amyloidosis remains unclear. This study focused on evaluating effect of HSF1 on AA amyloidosis based on HSF1 knockout mice. As a result, aggravated amyloid deposits and renal dysfunction have been found in HSF1 knockout mice. In progressive AA amyloidosis, HSF1 deficiency enhances serum amyloid A production might to lead to severe AA amyloid deposition in mice, which may be related to deactivated unfolded protein response as well as enhanced inflammation. Thus, HSF1 plays a significant role on UPR related pathway impacting AA amyloid deposition, which can mitigate amyloidogenic proteins from aggregation pathologically and is the possible way for intervening with the pathology of systemic amyloid disorder. In conclusion, HSF1 could not only serve as a new target for AA amyloidosis treatment in the future, but HSF1 knockout mice also can be considered as a valuable novel animal model for renal AA amyloidosis.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Shunjie Xia
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Department of Pathology, Yixing People’s Hospital, Yixing City, China
| | - Fang Yao
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Jia Huo
- Department of Osteopathy, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junqiao Qian
- Department of Oral Surgery, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Xiaomeng Liu
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Langning Bai
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Yu Song
- Department of Biochemistry, Hebei Medical University, Shijiazhuang, China
| | - Jinze Qian
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Wang Y, Fan Y, Jiang Y, Wang E, Song Y, Chen H, Xu F, Xie K, Yu Y. APOA2: New Target for Molecular Hydrogen Therapy in Sepsis-Related Lung Injury Based on Proteomic and Genomic Analysis. Int J Mol Sci 2023; 24:11325. [PMID: 37511084 PMCID: PMC10379236 DOI: 10.3390/ijms241411325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Target biomarkers for H2 at both the protein and genome levels are still unclear. In this study, quantitative proteomics acquired from a mouse model were first analyzed. At the same time, functional pathway analysis helped identify functional pathways at the protein level. Then, bioinformatics on mRNA sequencing data were conducted between sepsis and normal mouse models. Differential expressional genes with the closest relationship to disease status and development were identified through module correlation analysis. Then, common biomarkers in proteomics and transcriptomics were extracted as target biomarkers. Through analyzing expression quantitative trait locus (eQTL) and genome-wide association studies (GWAS), colocalization analysis on Apoa2 and sepsis phenotype was conducted by summary-data-based Mendelian randomization (SMR). Then, two-sample and drug-target, syndrome Mendelian randomization (MR) analyses were all conducted using the Twosample R package. For protein level, protein quantitative trait loci (pQTLs) of the target biomarker were also included in MR. Animal experiments helped validate these results. As a result, Apoa2 protein or mRNA was identified as a target biomarker for H2 with a protective, causal relationship with sepsis. HDL and type 2 diabetes were proven to possess causal relationships with sepsis. The agitation and inhibition of Apoa2 were indicated to influence sepsis and related syndromes. In conclusion, we first proposed Apoa2 as a target for H2 treatment.
Collapse
Affiliation(s)
- Yuanlin Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yan Fan
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yi Jiang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Enquan Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yu Song
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hongguang Chen
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feier Xu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
6
|
Reyes A, Hatcher JD, Salazar E, Galan J, Iliuk A, Sanchez EE, Suntravat M. Proteomic Profiling of Extracellular Vesicles Isolated from Plasma and Peritoneal Exudate in Mice Induced by Crotalus scutulatus scutulatus Crude Venom and Its Purified Cysteine-Rich Secretory Protein (Css-CRiSP). Toxins (Basel) 2023; 15:434. [PMID: 37505703 PMCID: PMC10467150 DOI: 10.3390/toxins15070434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Increased vascular permeability is a frequent outcome of viperid snakebite envenomation, leading to local and systemic complications. We reported that snake venom cysteine-rich secretory proteins (svCRiSPs) from North American pit vipers increase vascular permeability both in vitro and in vivo. They also induce acute activation of several adhesion and signaling molecules that may play a critical role in the pathophysiology of snakebites. Extracellular vesicles (EVs) have gained interest for their diverse functions in intercellular communication, regulating cellular processes, blood-endothelium interactions, vascular permeability, and immune modulation. They also hold potential as valuable biomarkers for diagnosing, predicting, and monitoring therapeutic responses in different diseases. This study aimed to identify proteins in peritoneal exudate and plasma EVs isolated from BALB/c mice following a 30 min post-injection of Crotalus scutulatus scutulatus venom and its purified CRiSP (Css-CRiSP). EVs were isolated from these biofluids using the EVtrap method. Proteomic analysis of exudate- and plasma-derived EVs was performed using LC-MS/MS. We observed significant upregulation or downregulation of proteins involved in cell adhesion, cytoskeleton rearrangement, signal transduction, immune responses, and vesicle-mediated transports. These findings suggest that svCRiSPs play a crucial role in the acute effects of venom and contribute to the local and systemic toxicity of snakebites.
Collapse
Affiliation(s)
- Armando Reyes
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (A.R.); (J.D.H.); (E.S.); (E.E.S.)
| | - Joseph D. Hatcher
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (A.R.); (J.D.H.); (E.S.); (E.E.S.)
| | - Emelyn Salazar
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (A.R.); (J.D.H.); (E.S.); (E.E.S.)
| | - Jacob Galan
- Department of Human Genetics, The University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78539, USA;
| | - Anton Iliuk
- Tymora Analytical Operations, West Lafayette, IN 47906, USA;
| | - Elda E. Sanchez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (A.R.); (J.D.H.); (E.S.); (E.E.S.)
- Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA
| | - Montamas Suntravat
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (A.R.); (J.D.H.); (E.S.); (E.E.S.)
- Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA
| |
Collapse
|
7
|
Wang B, Zhong X, Fields L, Lu H, Zhu Z, Li L. Structural Proteomic Profiling of Cerebrospinal Fluids to Reveal Novel Conformational Biomarkers for Alzheimer's Disease. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:459-471. [PMID: 36745855 PMCID: PMC10276618 DOI: 10.1021/jasms.2c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Alzheimer's disease (AD) is the most common representation of dementia, with brain pathological hallmarks of protein abnormal aggregation, such as with amyloid beta and tau protein. It is well established that posttranslational modifications on tau protein, particularly phosphorylation, increase the likelihood of its aggregation and subsequent formation of neurofibrillary tangles, another hallmark of AD. As additional misfolded proteins presumably exist distinctly in AD disease states, which would serve as potential source of AD biomarkers, we used limited proteolysis-coupled with mass spectrometry (LiP-MS) to probe protein structural changes. After optimizing the LiP-MS conditions, we further applied this method to human cerebrospinal fluid specimens collected from healthy control, mild cognitive impairment (MCI), and AD subject groups to characterize proteome-wide misfolding tendencies as a result of disease progression. The fully tryptic peptides embedding LiP sites were compared with the half-tryptic peptides generated from internal cleavage of the same region to determine any structural unfolding or misfolding. We discovered hundreds of significantly up- and down-regulated peptides associated with MCI and AD indicating their potential structural changes in AD progression. Moreover, we detected 53 structurally changed regions in 12 proteins with high confidence between the healthy control and disease groups, illustrating the functional relevance of these proteins with AD progression. These newly discovered conformational biomarker candidates establish valuable future directions for exploring the molecular mechanism of designing therapeutic targets for AD.
Collapse
Affiliation(s)
- Bin Wang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Xiaofang Zhong
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Haiyan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Zexin Zhu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, United States
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| |
Collapse
|
8
|
RNAseq Analysis of FABP4 Knockout Mouse Hippocampal Transcriptome Suggests a Role for WNT/β-Catenin in Preventing Obesity-Induced Cognitive Impairment. Int J Mol Sci 2023; 24:ijms24043381. [PMID: 36834799 PMCID: PMC9961923 DOI: 10.3390/ijms24043381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Microglial fatty-acid binding protein 4 (FABP4) is a regulator of neuroinflammation. We hypothesized that the link between lipid metabolism and inflammation indicates a role for FABP4 in regulating high fat diet (HFD)-induced cognitive decline. We have previously shown that obese FABP4 knockout mice exhibit decreased neuroinflammation and cognitive decline. FABP4 knockout and wild type mice were fed 60% HFD for 12 weeks starting at 15 weeks old. Hippocampal tissue was dissected and RNA-seq was performed to measure differentially expressed transcripts. Reactome molecular pathway analysis was utilized to examine differentially expressed pathways. Results showed that HFD-fed FABP4 knockout mice have a hippocampal transcriptome consistent with neuroprotection, including associations with decreased proinflammatory signaling, ER stress, apoptosis, and cognitive decline. This is accompanied by an increase in transcripts upregulating neurogenesis, synaptic plasticity, long-term potentiation, and spatial working memory. Pathway analysis revealed that mice lacking FABP4 had changes in metabolic function that support reduction in oxidative stress and inflammation, and improved energy homeostasis and cognitive function. Analysis suggested a role for WNT/β-Catenin signaling in the protection against insulin resistance, alleviating neuroinflammation and cognitive decline. Collectively, our work shows that FABP4 represents a potential target in alleviating HFD-induced neuroinflammation and cognitive decline and suggests a role for WNT/β-Catenin in this protection.
Collapse
|
9
|
Vyletelová V, Nováková M, Pašková Ľ. Alterations of HDL's to piHDL's Proteome in Patients with Chronic Inflammatory Diseases, and HDL-Targeted Therapies. Pharmaceuticals (Basel) 2022; 15:1278. [PMID: 36297390 PMCID: PMC9611871 DOI: 10.3390/ph15101278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 09/10/2023] Open
Abstract
Chronic inflammatory diseases, such as rheumatoid arthritis, steatohepatitis, periodontitis, chronic kidney disease, and others are associated with an increased risk of atherosclerotic cardiovascular disease, which persists even after accounting for traditional cardiac risk factors. The common factor linking these diseases to accelerated atherosclerosis is chronic systemic low-grade inflammation triggering changes in lipoprotein structure and metabolism. HDL, an independent marker of cardiovascular risk, is a lipoprotein particle with numerous important anti-atherogenic properties. Besides the essential role in reverse cholesterol transport, HDL possesses antioxidative, anti-inflammatory, antiapoptotic, and antithrombotic properties. Inflammation and inflammation-associated pathologies can cause modifications in HDL's proteome and lipidome, transforming HDL from atheroprotective into a pro-atherosclerotic lipoprotein. Therefore, a simple increase in HDL concentration in patients with inflammatory diseases has not led to the desired anti-atherogenic outcome. In this review, the functions of individual protein components of HDL, rendering them either anti-inflammatory or pro-inflammatory are described in detail. Alterations of HDL proteome (such as replacing atheroprotective proteins by pro-inflammatory proteins, or posttranslational modifications) in patients with chronic inflammatory diseases and their impact on cardiovascular health are discussed. Finally, molecular, and clinical aspects of HDL-targeted therapies, including those used in therapeutical practice, drugs in clinical trials, and experimental drugs are comprehensively summarised.
Collapse
Affiliation(s)
| | | | - Ľudmila Pašková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, 83232 Bratislava, Slovakia
| |
Collapse
|
10
|
Apolipoprotein A-II, a Player in Multiple Processes and Diseases. Biomedicines 2022; 10:biomedicines10071578. [PMID: 35884883 PMCID: PMC9313276 DOI: 10.3390/biomedicines10071578] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022] Open
Abstract
Apolipoprotein A-II (apoA-II) is the second most abundant apolipoprotein in high-density lipoprotein (HDL) particles, playing an important role in lipid metabolism. Human and murine apoA-II proteins have dissimilar properties, partially because human apoA-II is dimeric whereas the murine homolog is a monomer, suggesting that the role of apoA-II may be quite different in humans and mice. As a component of HDL, apoA-II influences lipid metabolism, being directly or indirectly involved in vascular diseases. Clinical and epidemiological studies resulted in conflicting findings regarding the proatherogenic or atheroprotective role of apoA-II. Human apoA-II deficiency has little influence on lipoprotein levels with no obvious clinical consequences, while murine apoA-II deficiency causes HDL deficit in mice. In humans, an increased plasma apoA-II concentration causes hypertriglyceridemia and lowers HDL levels. This dyslipidemia leads to glucose intolerance, and the ensuing high blood glucose enhances apoA-II transcription, generating a vicious circle that may cause type 2 diabetes (T2D). ApoA-II is also used as a biomarker in various diseases, such as pancreatic cancer. Herein, we provide a review of the most recent findings regarding the roles of apoA-II and its functions in various physiological processes and disease states, such as cardiovascular disease, cancer, amyloidosis, hepatitis, insulin resistance, obesity, and T2D.
Collapse
|
11
|
Depuydt CE, Goosens V, Janky R, D’Hondt A, De Bleecker JL, Noppe N, Derveaux S, Thal DR, Claeys KG. Unraveling the Molecular Basis of the Dystrophic Process in Limb-Girdle Muscular Dystrophy LGMD-R12 by Differential Gene Expression Profiles in Diseased and Healthy Muscles. Cells 2022; 11:1508. [PMID: 35563815 PMCID: PMC9104122 DOI: 10.3390/cells11091508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 11/28/2022] Open
Abstract
Limb-girdle muscular dystrophy R12 (LGMD-R12) is caused by two mutations in anoctamin-5 (ANO5). Our aim was to identify genes and pathways that underlie LGMD-R12 and explain differences in the molecular predisposition and susceptibility between three thigh muscles that are severely (semimembranosus), moderately (vastus lateralis) or mildly (rectus femoris) affected in this disease. We performed transcriptomics on these three muscles in 16 male LGMD-R12 patients and 15 age-matched male controls. Our results showed that LGMD-R12 dystrophic muscle is associated with the expression of genes indicative of fibroblast and adipocyte replacement, such as fibroadipogenic progenitors and immune cell infiltration, while muscle protein synthesis and metabolism were downregulated. Muscle degeneration was associated with an increase in genes involved in muscle injury and inflammation, and muscle repair/regeneration. Baseline differences between muscles in healthy individuals indicated that muscles that are the most affected by LGMD-R12 have the lowest expression of transcription factor networks involved in muscle (re)generation and satellite stem cell activation. Instead, they show relative high levels of fetal/embryonic myosins, all together indicating that muscles differ in their baseline regenerative potential. To conclude, we profiled the gene expression landscape in LGMD-R12, identified baseline differences in expression levels between differently affected muscles and characterized disease-associated changes.
Collapse
Affiliation(s)
- Christophe E. Depuydt
- Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, and Leuven Brain Institute (LBI), Herestraat 49, 3000 Leuven, Belgium;
| | - Veerle Goosens
- Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium; (V.G.); (N.N.)
| | - Rekin’s Janky
- VIB Nucleomics Core, Herestraat 49, 3000 Leuven, Belgium; (R.J.); (S.D.)
| | - Ann D’Hondt
- Department of Neurology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium;
| | - Jan L. De Bleecker
- Department of Neurology, University Hospital Gent, Corneel Heymanslaan 10, 9000 Gent, Belgium;
| | - Nathalie Noppe
- Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium; (V.G.); (N.N.)
| | - Stefaan Derveaux
- VIB Nucleomics Core, Herestraat 49, 3000 Leuven, Belgium; (R.J.); (S.D.)
| | - Dietmar R. Thal
- Department of Pathology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium;
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, and Leuven Brain Institute (LBI), Herestraat 49, 3000 Leuven, Belgium
| | - Kristl G. Claeys
- Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, and Leuven Brain Institute (LBI), Herestraat 49, 3000 Leuven, Belgium;
- Department of Neurology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium;
| |
Collapse
|
12
|
Manzano JI, Perea-Martínez A, García-Hernández R, Andrés-León E, Terrón-Camero LC, Poveda JA, Gamarro F. Modulation of Cholesterol Pathways in Human Macrophages Infected by Clinical Isolates of Leishmania infantum. Front Cell Infect Microbiol 2022; 12:878711. [PMID: 35573792 PMCID: PMC9106381 DOI: 10.3389/fcimb.2022.878711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/07/2022] [Indexed: 12/05/2022] Open
Abstract
To increase our understanding of factors contributing to therapeutic failure (TF) in leishmaniasis, we have studied some plasma membrane features of host THP-1 cells infected with clinical isolates of Leishmania infantum from patients with leishmaniasis and TF. The fluorescent probes DPH and TMA-DPH were used to measure changes in membrane fluidity at various depths of the plasma membranes. Steady-state fluorescence anisotropy of DPH embedded in the infected THP-1 membranes showed a significant increase, thereby suggesting a substantial decrease in plasma membrane fluidity relative to controls. Considering that cholesterol affects membrane fluidity and permeability, we determined the cholesterol content in plasma membrane fractions of human macrophages infected with these L. infantum lines and observed a significant increase in cholesterol content that correlates with the measured decrease in plasma membrane fluidity. In order to define the pathways that could explain the increase in cholesterol content, we studied the transcriptomics of the cholesterol-enriched pathways in host THP-1 cells infected with TF clinical isolates by RNA-seq. Specifically, we focused on four enriched Gene Ontology (GO) terms namely cholesterol efflux, cholesterol transport, cholesterol metabolic process and cholesterol storage. Additionally, we analyzed the genes involved in these pathways. Overall, this study shows that these clinical isolates are able to modulate the expression of specific genes in host cells, thereby modifying the cholesterol content in plasma membranes and inducing changes in plasma membrane fluidity that could be associated with the parasite’s ability to survive in the host macrophages, thereby possibly contributing to immune evasion and TF.
Collapse
Affiliation(s)
- José Ignacio Manzano
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Armilla, Spain
| | - Ana Perea-Martínez
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Armilla, Spain
| | - Raquel García-Hernández
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Armilla, Spain
| | - Eduardo Andrés-León
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Armilla, Spain
| | - Laura C. Terrón-Camero
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Armilla, Spain
| | - José Antonio Poveda
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, Elche, Spain
| | - Francisco Gamarro
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Armilla, Spain
- *Correspondence: Francisco Gamarro,
| |
Collapse
|
13
|
Rodrigues JE, Martinho A, Santa C, Madeira N, Coroa M, Santos V, Martins MJ, Pato CN, Macedo A, Manadas B. Systematic Review and Meta-Analysis of Mass Spectrometry Proteomics Applied to Human Peripheral Fluids to Assess Potential Biomarkers of Schizophrenia. Int J Mol Sci 2022; 23:ijms23094917. [PMID: 35563307 PMCID: PMC9105255 DOI: 10.3390/ijms23094917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Mass spectrometry (MS)-based techniques can be a powerful tool to identify neuropsychiatric disorder biomarkers, improving prediction and diagnosis ability. Here, we evaluate the efficacy of MS proteomics applied to human peripheral fluids of schizophrenia (SCZ) patients to identify disease biomarkers and relevant networks of biological pathways. Following PRISMA guidelines, a search was performed for studies that used MS proteomics approaches to identify proteomic differences between SCZ patients and healthy control groups (PROSPERO database: CRD42021274183). Nineteen articles fulfilled the inclusion criteria, allowing the identification of 217 differentially expressed proteins. Gene ontology analysis identified lipid metabolism, complement and coagulation cascades, and immune response as the main enriched biological pathways. Meta-analysis results suggest the upregulation of FCN3 and downregulation of APO1, APOA2, APOC1, and APOC3 in SCZ patients. Despite the proven ability of MS proteomics to characterize SCZ, several confounding factors contribute to the heterogeneity of the findings. In the future, we encourage the scientific community to perform studies with more extensive sampling and validation cohorts, integrating omics with bioinformatics tools to provide additional comprehension of differentially expressed proteins. The produced information could harbor potential proteomic biomarkers of SCZ, contributing to individualized prognosis and stratification strategies, besides aiding in the differential diagnosis.
Collapse
Affiliation(s)
- João E. Rodrigues
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (V.S.)
| | - Ana Martinho
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (V.S.)
| | - Catia Santa
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (V.S.)
| | - Nuno Madeira
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Manuel Coroa
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (V.S.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Vítor Santos
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (V.S.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Maria J. Martins
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (V.S.)
- Medical Services, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Carlos N. Pato
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| | - Antonio Macedo
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence: (A.M.); (B.M.)
| | - Bruno Manadas
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (V.S.)
- III Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
- Correspondence: (A.M.); (B.M.)
| |
Collapse
|
14
|
Billing F, Walter B, Fink S, Arefaine E, Pickarski L, Maier S, Kretz R, Jakobi M, Feuerer N, Schneiderhan-Marra N, Burkhardt C, Templin M, Zeck A, Krastev R, Hartmann H, Shipp C. Altered Proinflammatory Responses to Polyelectrolyte Multilayer Coatings Are Associated with Differences in Protein Adsorption and Wettability. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55534-55549. [PMID: 34762399 DOI: 10.1021/acsami.1c16175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A full understanding of the relationship between surface properties, protein adsorption, and immune responses is lacking but is of great interest for the design of biomaterials with desired biological profiles. In this study, polyelectrolyte multilayer (PEM) coatings with gradient changes in surface wettability were developed to shed light on how this impacts protein adsorption and immune response in the context of material biocompatibility. The analysis of immune responses by peripheral blood mononuclear cells to PEM coatings revealed an increased expression of proinflammatory cytokines tumor necrosis factor (TNF)-α, macrophage inflammatory protein (MIP)-1β, monocyte chemoattractant protein (MCP)-1, and interleukin (IL)-6 and the surface marker CD86 in response to the most hydrophobic coating, whereas the most hydrophilic coating resulted in a comparatively mild immune response. These findings were subsequently confirmed in a cohort of 24 donors. Cytokines were produced predominantly by monocytes with a peak after 24 h. Experiments conducted in the absence of serum indicated a contributing role of the adsorbed protein layer in the observed immune response. Mass spectrometry analysis revealed distinct protein adsorption patterns, with more inflammation-related proteins (e.g., apolipoprotein A-II) present on the most hydrophobic PEM surface, while the most abundant protein on the hydrophilic PEM (apolipoprotein A-I) was related to anti-inflammatory roles. The pathway analysis revealed alterations in the mitogen-activated protein kinase (MAPK)-signaling pathway between the most hydrophilic and the most hydrophobic coating. The results show that the acute proinflammatory response to the more hydrophobic PEM surface is associated with the adsorption of inflammation-related proteins. Thus, this study provides insights into the interplay between material wettability, protein adsorption, and inflammatory response and may act as a basis for the rational design of biomaterials.
Collapse
Affiliation(s)
- Florian Billing
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Bernadette Walter
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Simon Fink
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Elsa Arefaine
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Luisa Pickarski
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Sandra Maier
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Robin Kretz
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Meike Jakobi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Nora Feuerer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
- Department of Biomedical Engineering, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | | | - Claus Burkhardt
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Markus Templin
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Anne Zeck
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Rumen Krastev
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
- Faculty of Applied Chemistry, Reutlingen University, 72762 Reutlingen, Germany
| | - Hanna Hartmann
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Christopher Shipp
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| |
Collapse
|
15
|
Gene Expression Profiling of Skeletal Muscles. Genes (Basel) 2021; 12:genes12111718. [PMID: 34828324 PMCID: PMC8621074 DOI: 10.3390/genes12111718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Next-generation sequencing provides an opportunity for an in-depth biocomputational analysis to identify gene expression patterns between soleus and tibialis anterior, two well-characterized skeletal muscles, and analyze their gene expression profiling. RNA read counts were analyzed for differential gene expression using the R package edgeR. Differentially expressed genes were filtered using a false discovery rate of less than 0.05 c, a fold-change value of more than twenty, and an association with overrepresented pathways based on the Reactome pathway over-representation analysis tool. Most of the differentially expressed genes associated with soleus are coded for components of lipid metabolism and unique contractile elements. Differentially expressed genes associated with tibialis anterior encoded mostly for glucose and glycogen metabolic pathway regulatory enzymes and calcium-sensitive contractile components. These gene expression distinctions partly explain the genetic basis for skeletal muscle specialization, and they may help to explain skeletal muscle susceptibility to disease and drugs and further refine tissue engineering approaches.
Collapse
|
16
|
Laudanski K. Persistence of Lipoproteins and Cholesterol Alterations after Sepsis: Implication for Atherosclerosis Progression. Int J Mol Sci 2021; 22:ijms221910517. [PMID: 34638860 PMCID: PMC8508791 DOI: 10.3390/ijms221910517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Sepsis is one of the most common critical care illnesses with increasing survivorship. The quality of life in sepsis survivors is adversely affected by several co-morbidities, including increased incidence of dementia, stroke, cardiac disease and at least temporary deterioration in cognitive dysfunction. One of the potential explanations for their progression is the persistence of lipid profile abnormalities induced during acute sepsis into recovery, resulting in acceleration of atherosclerosis. (2) Methods: This is a targeted review of the abnormalities in the long-term lipid profile abnormalities after sepsis; (3) Results: There is a well-established body of evidence demonstrating acute alteration in lipid profile (HDL-c ↓↓, LDL-C -c ↓↓). In contrast, a limited number of studies demonstrated depression of HDL-c levels with a concomitant increase in LDL-C -c in the wake of sepsis. VLDL-C -c and Lp(a) remained unaltered in few studies as well. Apolipoprotein A1 was altered in survivors suggesting abnormalities in lipoprotein metabolism concomitant to overall lipoprotein abnormalities. However, most of the studies were limited to a four-month follow-up and patient groups were relatively small. Only one study looked at the atherosclerosis progression in sepsis survivors using clinical correlates, demonstrating an acceleration of plaque formation in the aorta, and a large metanalysis suggested an increase in the risk of stroke or acute coronary event between 3% to 9% in sepsis survivors. (4) Conclusions: The limited evidence suggests an emergence and persistence of the proatherogenic lipid profile in sepsis survivors that potentially contributes, along with other factors, to the clinical sequel of atherosclerosis.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA; ; Tel.: +1-215-662-8200
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Leonard Davis Institute of Healthcare Economics, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Costa S, Fairfield H, Farrell M, Murphy CS, Soucy A, Vary C, Holdsworth G, Reagan MR. Sclerostin antibody increases trabecular bone and bone mechanical properties by increasing osteoblast activity damaged by whole-body irradiation in mice. Bone 2021; 147:115918. [PMID: 33737193 PMCID: PMC8076093 DOI: 10.1016/j.bone.2021.115918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/22/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022]
Abstract
Irradiation therapy causes bone deterioration and increased risk for skeletal-related events. Irradiation interferes with trabecular architecture through increased osteoclastic activity, decreased osteoblastic activity, and increased adipocyte expansion in the bone marrow (BM), which further compounds bone-related disease. Neutralizing antibodies to sclerostin (Scl-Ab) increase bone mass and strength by increasing bone formation and reducing bone resorption. We hypothesized that treatment with Scl-Ab would attenuate the adverse effects of irradiation by increasing bone volume and decreasing BM adipose tissue (BMAT), resulting in better quality bone. In this study, 12-week-old female C57BL/6J mice were exposed to 6 Gy whole-body irradiation or were non-irradiated, then administered Scl-Ab (25 mg/kg) or vehicle weekly for 5 weeks. Femoral μCT analysis confirmed that the overall effect of IR significantly decreased trabecular bone volume/total volume (Tb.BV/TV) (2-way ANOVA, p < 0.0001) with a -43.8% loss in Tb.BV/TV in the IR control group. Scl-Ab independently increased Tb.BV/TV by 3.07-fold in non-irradiated and 3.6-fold in irradiated mice (2-way ANOVA, p < 0.0001). Irradiation did not affect cortical parameters, although Scl-Ab increased cortical thickness and area significantly in both irradiated and non-irradiated mice (2-way ANOVA, p < 0.0001). Femoral mechanical testing confirmed Scl-Ab significantly increased bending rigidity and ultimate moment independently of irradiation (2-way ANOVA, p < 0.0001). Static and dynamic histomorphometry of the femoral metaphysis revealed osteoblast vigor, not number, was significantly increased in the irradiated mice treated with Scl-Ab. Systemic alterations were assessed through serum lipidomic analysis, which showed that Scl-Ab normalized lipid profiles in the irradiated group. This data supports the theory of sclerostin as a novel contributor to the regulation of osteoblast activity after irradiation. Overall, our data support the hypothesis that Scl-Ab ameliorates the deleterious effects of whole-body irradiation on bone and adipose tissue in a mouse model. Our findings suggest that future research into localized and systemic therapies after irradiation exposure is warranted.
Collapse
Affiliation(s)
- Samantha Costa
- Maine Medical Center Research Institute, Scarborough, ME, USA; University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, USA; Tufts University School of Medicine, Boston, MA, USA
| | - Heather Fairfield
- Maine Medical Center Research Institute, Scarborough, ME, USA; University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, USA; Tufts University School of Medicine, Boston, MA, USA
| | - Mariah Farrell
- Maine Medical Center Research Institute, Scarborough, ME, USA; University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, USA; Tufts University School of Medicine, Boston, MA, USA
| | - Connor S Murphy
- Maine Medical Center Research Institute, Scarborough, ME, USA; University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, USA; Tufts University School of Medicine, Boston, MA, USA
| | - Ashley Soucy
- Maine Medical Center Research Institute, Scarborough, ME, USA; University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, USA
| | - Calvin Vary
- Maine Medical Center Research Institute, Scarborough, ME, USA; University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, USA; Tufts University School of Medicine, Boston, MA, USA
| | | | - Michaela R Reagan
- Maine Medical Center Research Institute, Scarborough, ME, USA; University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, USA; Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
18
|
Abbasi DA, Nguyen TTA, Hall DA, Robertson-Dick E, Berry-Kravis E, Cologna SM. Characterization of the Cerebrospinal Fluid Proteome in Patients with Fragile X-Associated Tremor/Ataxia Syndrome. THE CEREBELLUM 2021; 21:86-98. [PMID: 34046842 DOI: 10.1007/s12311-021-01262-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 01/11/2023]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS), first described in 2001, is a neurodegenerative and movement disorder, caused by a premutation in the fragile X mental retardation 1 (FMR1) gene. To date, the biological mechanisms causing this condition are still not well understood, as not all premutation carriers develop FXTAS. To further understand this syndrome, we quantitatively compared the cerebrospinal fluid (CSF) proteome of FXTAS patients with age-matched controls using mass spectrometry. We identified 415 proteins of which 97 were altered in FXTAS patients. These proteins suggest changes in acute phase response signaling, liver X receptor/ retinoid X receptor (LXR/RXR) activation, and farnesoid X receptor (FXR)/RXR activation, which are the main pathways found to be affected. Additionally, we detected changes in many other proteins including amyloid-like protein 2, contactin-1, afamin, cell adhesion molecule 4, NPC intracellular cholesterol transporter 2, and cathepsin B, that had been previously noted to hold important roles in other movement disorders. Specific to RXR pathways, several apolipoproteins (APOA1, APOA2, APOA4, APOC2, and APOD) showed significant changes in the CSF of FXTAS patients. Lastly, CSF parameters were analyzed to investigate abnormalities in blood brain barrier function. Correlations were observed between patient albumin quotient values, a measure of permeability, and CGG repeat length as well as FXTAS rating scale scores.
Collapse
Affiliation(s)
- Diana A Abbasi
- Department of Pediatrics and Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Thu T A Nguyen
- Department of Chemistry, University of Illinois At Chicago, Chicago, IL, USA
| | - Deborah A Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Erin Robertson-Dick
- Department of Communication Sciences and Disorders, Northwestern University, Chicago, IL, USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics and Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois At Chicago, Chicago, IL, USA.
- Laboratory of Integrated Neuroscience, University of Illinois At Chicago, 845 W Taylor Street, Room 4500, Chicago, IL, 60607, USA.
| |
Collapse
|
19
|
Pathak GA, Wendt FR, De Lillo A, Nunez YZ, Goswami A, De Angelis F, Fuciarelli M, Kranzler HR, Gelernter J, Polimanti R. Epigenomic Profiles of African-American Transthyretin Val122Ile Carriers Reveals Putatively Dysregulated Amyloid Mechanisms. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2021; 14:e003011. [PMID: 33428857 PMCID: PMC7887108 DOI: 10.1161/circgen.120.003011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND The Val122Ile mutation in Transthyretin (TTR) gene causes a rare, difficult to diagnose hereditary form of cardiac amyloidosis. This mutation is most common in the United States and mainly present in people of African descent. The carriers have an increased risk of congestive heart failure, peripheral edema, and several other noncardiac phenotypes such as carpal tunnel syndrome, and arthroplasty which are top reasons for ambulatory/outpatient surgeries (OSs) in the country. METHODS We conducted first-ever epigenome-wide association study using the Illumina's EPIC array, in Val122Ile carriers of African descent for heart disease and multiple OSs-an early disease indicator. Differential methylation across genome wide cytosine-phosphate guanine (CpG) sites was tested between carriers with and without heart disease and OS. Significant CpG sites were investigated for cis-mQTLs loci, followed by gene ontology and protein-protein interaction network. We also investigated the significant CpG sites in a secondary cohort of carriers for replication. RESULTS Five differentially methylated sites (P≤2.1×10-8) in genes-FAM129B, SKI, WDR27, GLS, and an intergenic site near RP11-550A5.2, and one differentially methylated region containing KCNA6 and GALNT3 (P=1.1×10-12) were associated with heart disease. For OS, we observe 4 sites-2 sites in UBE2E3 and SEC14L5, and other 2 in intergenic regions (P≤1.8×10-7) and 3 regions overlapping SH3D21, EVA1B, LTB4R2, and CIDEB (P≤3.9×10-7). Functional protein-interaction module analysis identified ABCA1 (P=0.001) for heart disease. Six cis-mQTLs were associated with one of the significant CpG sites (FAM129B; P=4.1×10-24). We replicated 2 CpG sites (cg18546846 and cg06641417; P<0.05) in an external cohort of biopsy-confirmed cases of TTR (transthyretin) amyloidosis. The genes identified are involved in transport and clearance of amyloid deposits (GLS, ABCA1, FAM129B); cardiac fibrosis (SKI); and muscle tissue regulation (SKI, FAM129B). CONCLUSIONS These findings highlight the link between a complex amyloid circuit and diverse symptoms of Val122Ile.
Collapse
Affiliation(s)
- Gita A. Pathak
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven
- Veteran Affairs Connecticut Healthcare System, West Haven, CT
| | - Frank R. Wendt
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven
- Veteran Affairs Connecticut Healthcare System, West Haven, CT
| | | | - Yaira Z. Nunez
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven
- Veteran Affairs Connecticut Healthcare System, West Haven, CT
| | - Aranyak Goswami
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven
- Veteran Affairs Connecticut Healthcare System, West Haven, CT
| | - Flavio De Angelis
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven
- Veteran Affairs Connecticut Healthcare System, West Haven, CT
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Maria Fuciarelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Henry R. Kranzler
- University of Pennsylvania Perelman School of Medicine & VISN 4 MIRECC, Crescenz VAMC, Philadelphia, PA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven
- Veteran Affairs Connecticut Healthcare System, West Haven, CT
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven
- Veteran Affairs Connecticut Healthcare System, West Haven, CT
| |
Collapse
|
20
|
Yan P, Zou Z, Zhang S, Wang R, Niu T, Zhang X, Liu D, Zhou X, Chang AK, Milton NGN, Jones GW, He J. Defining the mechanism of PDI interaction with disulfide-free amyloidogenic proteins: Implications for exogenous protein expression and neurodegenerative disease. Int J Biol Macromol 2021; 174:175-184. [PMID: 33516852 DOI: 10.1016/j.ijbiomac.2021.01.172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022]
Abstract
Protein disulfide isomerase (PDI) is an important molecular chaperone capable of facilitating protein folding in addition to catalyzing the formation of a disulfide bond. To better understand the distinct substrate-screening principles of Pichia pastoris PDI (Protein disulfide isomerase) and the protective role of PDI in amyloidogenic diseases, we investigated the expression abundance and intracellular retention levels of three archetypal amyloidogenic disulfide bond-free proteins (Aβ42, α-synuclein (α-Syn) and SAA1) in P. pastoris GS115 strain without and with the overexpression of PpPDI (P. pastoris PDI). Intriguingly, amyloidogenic Aβ42 and α-Syn were detected only as intracellular proteins whereas amyloidogenic SAA1 was detected both as intracellular and extracellular proteins when these proteins were expressed in the PpPDI-overexpressing GS115 strain. The binding between PpPDI and each of the three amyloidogenic proteins was investigated by molecular docking and simulations. Three different patterns of PpPDI-substrate complexes were observed, suggesting that multiple modes of binding might exist for the binding between PpPDI and its amyloidogenic protein substrates, and this could represent different specificities and affinities of PpPDI toward its substrates. Further analysis of the proteomics data and functional annotations indicated that PpPDI could eliminate the need for misfolded proteins to be partitioned in ER-associated compartments.
Collapse
Affiliation(s)
- Pingyu Yan
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Zhiyuan Zou
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Shiyao Zhang
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Rui Wang
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Tingting Niu
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Xia Zhang
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Defu Liu
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Xuejie Zhou
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Alan K Chang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Nathaniel G N Milton
- Centre for Biomedical Science Research, School of Clinical and Applied Sciences, Leeds Beckett University, City Campus, Leeds LS1 3HE, United Kingdom
| | - Gary W Jones
- Centre for Biomedical Science Research, School of Clinical and Applied Sciences, Leeds Beckett University, City Campus, Leeds LS1 3HE, United Kingdom
| | - Jianwei He
- School of Life Science, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
21
|
Abstract
The apolipoproteins are well known for their roles in both health and disease, as components of plasma lipoprotein particles, such as high-density lipoprotein (HDL), low-density lipoprotein (LDL), very-low-density lipoprotein (VLDL), chylomicrons, and metabolic, vascular- and inflammation-related disorders, such as cardiovascular disease, atherosclerosis, metabolic syndrome, and diabetes. Increasingly, their roles in neurovascular and neurodegenerative disorders are also being elucidated. They play major roles in lipid and cholesterol transport between blood and organs and are, therefore, critical to maintenance and homeostasis of the lipidome, with apolipoprotein-lipid interactions, including cholesterol, fatty acids, triglycerides, phospholipids, and isoprostanes. Further, they have important pleiotropic roles related to aging and longevity, which are largely managed through their many structural variants, including multiple isoforms, and a diversity of post-translational modifications. Consequently, tools for the characterization and accurate quantification of apolipoproteins, including their diverse array of variant forms, are required to understand their salutary and disease related roles. In this chapter we outline three distinct quantitative approaches suitable for targeting apolipoproteins: (1) multiplex immunoassays, (2) mass spectrometric immunoassay, and (3) multiple reaction monitoring, mass spectrometric quantification. We also discuss management of pre-analytical and experimental design variables.
Collapse
|
22
|
Suppression of Mouse AApoAII Amyloidosis Progression by Daily Supplementation with Oxidative Stress Inhibitors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1263274. [PMID: 31281565 PMCID: PMC6589291 DOI: 10.1155/2019/1263274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/22/2019] [Indexed: 12/20/2022]
Abstract
Amyloidosis is a group of diseases characterized by protein misfolding and aggregation to form amyloid fibrils and subsequent deposition within various tissues. Previous studies have indicated that amyloidosis is often associated with oxidative stress. However, it is not clear whether oxidative stress is involved in the progression of amyloidosis. We administered the oxidative stress inhibitors tempol and apocynin via drinking water to the R1.P1-Apoa2c mouse strain induced to develop mouse apolipoprotein A-II (AApoAII) amyloidosis and found that treatment with oxidative stress inhibitors led to reduction in AApoAII amyloidosis progression compared to an untreated group after 12 weeks, especially in the skin, stomach, and liver. There was no effect on ApoA-II plasma levels or expression of Apoa2 mRNA. Detection of the lipid peroxidation markers 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA) revealed that the antioxidative effects of the treatments were most obvious in the skin, stomach, and liver, which contained higher levels of basal oxidative stress. Moreover, the unfolded protein response was reduced in the liver and was associated with a decrease in oxidative stress and amyloid deposition. These results suggest that antioxidants can suppress the progression of AApoAII amyloid deposition in the improved microenvironment of tissues and that the effect may be related to the levels of oxidative stress in local tissues. This finding provides insights for antioxidative stress treatment strategies for amyloidosis.
Collapse
|