1
|
Ibrahim AM, Roshdy M, Latif N, Elsawy A, Sarathchandra P, Hosny M, Hekal S, Attia A, Elmozy W, Elaithy A, Elguindy A, Afifi A, Aguib Y, Yacoub M. Structural and Functional Characterization of the Aorta in Hypertrophic Obstructive Cardiomyopathy. Circ Heart Fail 2025; 18:e012384. [PMID: 39846175 PMCID: PMC11832182 DOI: 10.1161/circheartfailure.124.012384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/14/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND Changes in the phenotype and genotype in hypertrophic cardiomyopathy (HCM) are thought to involve the myocardium as well as extracardiac tissues. Here, we describe the structural and functional changes in the ascending aorta of obstructive patients with HCM. METHODS Changes in the aortic wall were studied in a cohort of 101 consecutive patients with HCM undergoing myectomy and 9 normal controls. Biopsies were examined histologically, immunohistochemically, and by electron microscopy. Changes in protein expression were quantified using morphometry and Western blotting. Pulse wave velocity was measured using cardiac magnetic resonance in 85 patients with HCM and compared with 117 age-matched normal controls. RESULTS In HCM, the number of medial lamellar units was significantly decreased, associated with an increase in interlamellar distance and aortic wall thickness, as compared with controls. Electron microscopy showed an altered lamellar structure with disorientation of elastin fibers from the circumferential direction. There was a significant decrease in collagen content, α-smooth muscle actin, smooth muscle myosin, smooth muscle 22 and integrin β1, as well as a significant increase in calponin and caspase-3. Fibulins 1, 2, and 5 showed reduced expression in HCM-aortic biopsies. Functionally, pulse wave velocity was significantly higher in patients with HCM compared with healthy controls, with an association between higher pulse wave velocity and more severe molecular and clinical parameters. CONCLUSIONS The increased wall stiffness observed in the aortas of obstructive patients with HCM is associated with structural alterations in the medial lamellar unit, including changes in smooth muscle cells and the extracellular matrix, indicating potential arterial dysfunction.
Collapse
Affiliation(s)
- Ayman M. Ibrahim
- Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.)
- Institute of Cardiovascular Physiology, University Göttingen, Germany (A.M.I.)
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt (A.M.I.)
| | - Mohamed Roshdy
- Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.)
| | - Najma Latif
- National Heart and Lung Institute, Imperial College London, United Kingdom (N.L., Y.A., M.Y.)
- The Magdi Yacoub Institute, Heart Science Centre, Harefield, United Kingdom (N.L., P.S.)
| | - Amr Elsawy
- Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.)
| | - Padmini Sarathchandra
- The Magdi Yacoub Institute, Heart Science Centre, Harefield, United Kingdom (N.L., P.S.)
| | - Mohammed Hosny
- Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.)
- Cardiology Department, Faculty of Medicine, Cairo University, Egypt (M.H.)
| | - Soha Hekal
- Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.)
| | - Ahmed Attia
- Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.)
- Institute of Cardiovascular Physiology, University Göttingen, Germany (A.M.I.)
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt (A.M.I.)
- National Heart and Lung Institute, Imperial College London, United Kingdom (N.L., Y.A., M.Y.)
- The Magdi Yacoub Institute, Heart Science Centre, Harefield, United Kingdom (N.L., P.S.)
- Cardiology Department, Faculty of Medicine, Cairo University, Egypt (M.H.)
| | - Wesam Elmozy
- Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.)
| | - Amany Elaithy
- Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.)
| | - Ahmed Elguindy
- Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.)
| | - Ahmed Afifi
- Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.)
| | - Yasmine Aguib
- Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.)
- National Heart and Lung Institute, Imperial College London, United Kingdom (N.L., Y.A., M.Y.)
| | - Magdi Yacoub
- Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.)
- National Heart and Lung Institute, Imperial College London, United Kingdom (N.L., Y.A., M.Y.)
| |
Collapse
|
2
|
Nayagam SM, Ramachandran K, Selvaraj G, Sunmathi R, Easwaran M, Palraj ND, Anand K S SV, Muthurajan R, Tangavel C, Rajasekaran S. Identification of extracellular matrix proteins in plasma as a potential biomarker for intervertebral disc degeneration. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:4062-4075. [PMID: 39299936 DOI: 10.1007/s00586-024-08481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE Recently, there has been significant focus on extracellular matrix proteolysis due to its importance in the pathological progression of intervertebral disc degeneration (IVDD). The present study investigates the circulating levels of extracellular matrix proteins in the plasma of IVDD and determines their potential relevance as biomarkers in disc degeneration. METHODS Global proteomic analysis was performed in the plasma samples of 10 healthy volunteers (HV) and 10 diseased subjects (DS) after depletion of highly abundant proteins such as albumin and IgG. RESULTS We identified 144 and 135 matrix-associated proteins in plasma samples from healthy volunteers (HV) and patients with disc degeneration (DS), respectively. Among these, 49 of the matrix-associated proteins were identical to the proteins found in intervertebral disc (IVD) tissues retrieved from the in-house library. Applying stringent parameters, we selected 28 proteins, with 26 present in DS and 21 in HV. 19 proteins were found common between the groups, two of which-aggrecan (ACAN) and fibulin 1 (FBLN1) - showed statistically significant differences. Specifically, ACAN was up-regulated and FBLN1 was down-regulated in the DS-plasma. In particular, DS-plasma exhibited specific expression of collagen type 2a1 (COL2A1), native to the nucleus pulposus. CONCLUSION The distinct presence of collagen type 2a1 and the elevated expression of aggrecan in IVDD plasma may serve as the basis for the development of a potential biomarker for monitoring the progression of disc degeneration.
Collapse
Affiliation(s)
| | - Karthik Ramachandran
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India
| | - Ganesh Selvaraj
- Ganga Research Centre, 442, Vattamalaipalayam Road, NGGO colony, Coimbatore, India
| | - R Sunmathi
- Ganga Research Centre, 442, Vattamalaipalayam Road, NGGO colony, Coimbatore, India
| | - Murugesh Easwaran
- Ganga Research Centre, 442, Vattamalaipalayam Road, NGGO colony, Coimbatore, India
| | - Narmatha Devi Palraj
- Ganga Research Centre, 442, Vattamalaipalayam Road, NGGO colony, Coimbatore, India
| | - Sri Vijay Anand K S
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Lawley Road, Coimbatore, India
| | - Chitraa Tangavel
- Ganga Research Centre, 442, Vattamalaipalayam Road, NGGO colony, Coimbatore, India
| | - S Rajasekaran
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India.
| |
Collapse
|
3
|
Salman O, Zamani P, Zhao L, Dib MJ, Gan S, Azzo JD, Pourmussa B, Richards AM, Javaheri A, Mann DL, Rietzschel E, Zhao M, Wang Z, Ebert C, Liu L, Gunawardhana KL, Greenawalt D, Carayannopoulos L, Chang C, van Empel V, Gogain J, Schafer PH, Gordon DA, Ramirez‐Valle F, Cappola TP, Chirinos JA. Prognostic Significance and Biologic Associations of Senescence-Associated Secretory Phenotype Biomarkers in Heart Failure. J Am Heart Assoc 2024; 13:e033675. [PMID: 39206715 PMCID: PMC11646520 DOI: 10.1161/jaha.123.033675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The role of cellular senescence in human heart failure (HF) remains unclear. The senescence-associated secretory phenotype (SASP) is composed of proteins released by senescent cells. We assessed the prognostic significance and biologic pathways associated with the SASP in human HF using a plasma proteomics approach. METHODS AND RESULTS We measured 25 known SASP proteins among 2248 PHFS (Penn HF Study) participants using the SOMAScan V4 assay. We extracted the common variance in these proteins to generate SASP factor scores and assessed the relationship between these SASP factor scores and (1) all-cause death and (2) the composite of death or HF hospital admission. We also assessed the relationship of each SASP factor to 4746 other proteins, correcting for multiple comparisons, followed by pathway analyses. Two SASP factors were identified. Both factors were associated with older age, lower estimated glomerular filtration rate, and more advanced New York Heart Association class, among other clinical variables. Both SASP factors exhibited a significant positive association with the risk of death independent of the Meta-Analysis of Global-Group in Chronic HF score and NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels. The 2 identified SASP factors were associated with 1201 and 1554 proteins, respectively, belonging to various pathways including the coagulation system, complement system, acute phase response signaling, and retinoid X receptor-related pathways that regulate cell metabolism. CONCLUSIONS Increased SASP components are independently associated with adverse outcomes in HF. Biologic pathways associated with SASP are predominantly related to coagulation, inflammation, and cell metabolism.
Collapse
Affiliation(s)
- Oday Salman
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
| | - Payman Zamani
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Lei Zhao
- Bristol Myers Squibb CompanyPrincetonNJUSA
| | - Marie Joe Dib
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
| | - Sushrima Gan
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
| | - Joe David Azzo
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
| | - Bianca Pourmussa
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Arthur Mark Richards
- Cardiovascular Research Institute, National University of SingaporeSingapore CitySingapore
- Christchurch Heart Institute, University of OtagoDunedinNew Zealand
| | - Ali Javaheri
- Washington University School of MedicineSt. LouisMOUSA
| | | | - Ernst Rietzschel
- Department of Cardiovascular DiseasesGhent University and Ghent University HospitalGhentBelgium
| | - Manyun Zhao
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
| | | | | | - Laura Liu
- Bristol Myers Squibb CompanyPrincetonNJUSA
| | | | | | | | | | - Vanessa van Empel
- Department of CardiologyCardiovascular Research Institute Maastricht (CARIM)MaastrichtNetherlands
| | | | | | | | | | - Thomas P. Cappola
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Julio A. Chirinos
- Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| |
Collapse
|
4
|
Eun K, Kim AY, Ryu S. Matricellular proteins in immunometabolism and tissue homeostasis. BMB Rep 2024; 57:400-416. [PMID: 38919018 PMCID: PMC11444987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/11/2023] [Accepted: 04/25/2024] [Indexed: 06/27/2024] Open
Abstract
Matricellular proteins are integral non-structural components of the extracellular matrix. They serve as essential modulators of immunometabolism and tissue homeostasis, playing critical roles in physiological and pathological conditions. These extracellular matrix proteins including thrombospondins, osteopontin, tenascins, the secreted protein acidic and rich in cysteine (SPARC) family, the Cyr61, CTGF, NOV (CCN) family, and fibulins have multi-faceted functions in regulating immune cell functions, metabolic pathways, and tissue homeostasis. They are involved in immune-metabolic regulation and influence processes such as insulin signaling, adipogenesis, lipid metabolism, and immune cell function, playing significant roles in metabolic disorders such as obesity and diabetes. Furthermore, their modulation of tissue homeostasis processes including cellular adhesion, differentiation, migration, repair, and regeneration is instrumental for maintaining tissue integrity and function. The importance of these proteins in maintaining physiological equilibrium is underscored by the fact that alterations in their expression or function often coincide with disease manifestation. This review contributes to our growing understanding of these proteins, their mechanisms, and their potential therapeutic applications. [BMB Reports 2024; 57(9): 400-416].
Collapse
Affiliation(s)
- Kyoungjun Eun
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Ah Young Kim
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Seungjin Ryu
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Natural Medicine, College of Medicine, Hallym Unviersity, Chuncheon 24252, Korea
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 06974, Korea
| |
Collapse
|
5
|
De Jesus Morales KJ, Santosa U, Brazhkina O, Rajurkar P, Jo H, Davis ME. A Biomimetic Leaflet Scaffold for Aortic Valve Remodeling. Adv Healthc Mater 2024; 13:e2303972. [PMID: 38692263 DOI: 10.1002/adhm.202303972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/28/2024] [Indexed: 05/03/2024]
Abstract
Heart valve disease poses a significant clinical challenge, especially in pediatric populations, due to the inability of existing valve replacements to grow or respond biologically to their microenvironment. Tissue-engineered heart valves (TEHVs) provide a solution by facilitating patient-specific models for self-repair and remodeling. In this study, a 3D-bioprinted TEHV is designed to emulate the trilayer leaflet structure of an aortic valve. A cell-laden hydrogel scaffold made from gelatin methacrylate and polyethylene glycol diacrylate (GelMA/PEGDA) incorporates valvular interstitial-like (VIC-like) cells, being reinforced with a layer of polycaprolactone (PCL). The composition of the hydrogel scaffold remains stable over 7 days, having increased mechanical strength compared to pure GelMA. The scaffold maintains VIC-like cell function and promotes extracellular matrix (ECM) protein expression up to 14 days under two dynamic culture conditions: shear stress and stretching; replicating heart valve behavior within a more physiological-like setting and suggesting remodeling potential via ECM synthesis. This TEHV offers a promising avenue for valve replacements, closely replicating the structural and functional attributes of a native aortic valve, leading to mechanical and biological integration through biomaterial-cellular interactions.
Collapse
Affiliation(s)
- Kenneth J De Jesus Morales
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Utari Santosa
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Olga Brazhkina
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Pranshu Rajurkar
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, GA, 30322, USA
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, GA, 30322, USA
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
6
|
Foote K, Rienks M, Schmidt L, Theofilatos K, Yasmin, Ozols M, Eckersley A, Shah A, Figg N, Finigan A, O'Shaughnessy K, Wilkinson IB, Mayr M, Bennett M. Oxidative DNA damage promotes vascular aging associated with changes in extracellular matrix-regulating proteins. Cardiovasc Res 2024:cvae091. [PMID: 38717632 DOI: 10.1093/cvr/cvae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/31/2024] [Accepted: 02/29/2024] [Indexed: 02/13/2025] Open
Abstract
AIMS Vascular aging is characterized by vessel stiffening, with increased deposition of extracellular matrix (ECM) proteins including collagens. Oxidative DNA damage occurs in vascular aging, but how it regulates ECM proteins and vascular stiffening is unknown. We sought to determine the relationship between oxidative DNA damage and ECM regulatory proteins in vascular aging. METHODS AND RESULTS We examined oxidative DNA damage, the major base excision repair (BER) enzyme 8-Oxoguanine DNA Glycosylase (Ogg1) and its regulators, multiple physiological markers of aging, and ECM proteomics in mice from 22-72w. Vascular aging was associated with increased oxidative DNA damage, and decreased expression of Ogg1, its active acetylated form, its acetylation regulatory proteins P300 and CBP, and the transcription factor Foxo3a. Vascular stiffness was examined in vivo in control, Ogg1-/-, or mice with vascular smooth muscle cell-specific expression of Ogg1+ (Ogg1) or an inactive mutation (Ogg1KR). Ogg1-/- and Ogg1KR mice showed reduced arterial compliance and distensibility, and increased stiffness and pulse pressure, whereas Ogg1 expression normalised all parameters to 72w. ECM proteomics identified major changes in collagens with aging, and downregulation of the ECM regulatory proteins Protein 6-lysyl oxidase (LOX) and WNT1-inducible-signaling pathway protein 2 (WISP2). Ogg1 overexpression upregulated LOX and WISP2 both in vitro and in vivo, and downregulated Transforming growth factor β1 (TGFb1) and Collagen 4α1 in vivo compared with Ogg1KR. Foxo3a activation induced Lox, while Wnt3 induction of Wisp2 also upregulated LOX and Foxo3a, and downregulated TGFβ1 and fibronectin 1. In humans, 8-oxo-G increased with vascular stiffness, while active OGG1 reduced with both age and stiffness. CONCLUSIONS Vascular aging is associated with oxidative DNA damage, downregulation of major BER proteins, and changes in multiple ECM structural and regulatory proteins. Ogg1 protects against vascular aging, associated with changes in ECM regulatory proteins including LOX and WISP2.
Collapse
Affiliation(s)
- Kirsty Foote
- Section of Cardiorespiratory Medicine, University of Cambridge, Victor Phillip Dahdaleh Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB
| | - Marieke Rienks
- Cardiovascular Division, King's College London, The James Black Centre, 2nd Floor, 125 Coldharbour Lane, SE5 9NU, London
| | - Lukas Schmidt
- Cardiovascular Division, King's College London, The James Black Centre, 2nd Floor, 125 Coldharbour Lane, SE5 9NU, London
| | - Konstantinos Theofilatos
- Cardiovascular Division, King's College London, The James Black Centre, 2nd Floor, 125 Coldharbour Lane, SE5 9NU, London
| | - Yasmin
- Experimental Medicine and Therapeutics, Department of Medicine, University of Cambridge. Box 157, Cambridge Biomedical Campus, Cambridge, CB2 2QQ
| | - Matiss Ozols
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Saffron Walden, CB10 1RQ
| | - Alexander Eckersley
- Division of Musculoskeletal & Dermatological Sciences, University of Manchester, First Floor, Core Technology Facility, 46 Grafton St, Manchester, M13 9NT
| | - Aarti Shah
- Section of Cardiorespiratory Medicine, University of Cambridge, Victor Phillip Dahdaleh Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB
| | - Nichola Figg
- Section of Cardiorespiratory Medicine, University of Cambridge, Victor Phillip Dahdaleh Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB
| | - Alison Finigan
- Section of Cardiorespiratory Medicine, University of Cambridge, Victor Phillip Dahdaleh Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB
| | - Kevin O'Shaughnessy
- Section of Cardiorespiratory Medicine, University of Cambridge, Victor Phillip Dahdaleh Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB
| | - Ian B Wilkinson
- Section of Cardiorespiratory Medicine, University of Cambridge, Victor Phillip Dahdaleh Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB
| | - Manuel Mayr
- Cardiovascular Division, King's College London, The James Black Centre, 2nd Floor, 125 Coldharbour Lane, SE5 9NU, London
| | - Martin Bennett
- Section of Cardiorespiratory Medicine, University of Cambridge, Victor Phillip Dahdaleh Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB
| |
Collapse
|
7
|
Zhang L, Guo J, Liu Y, Sun S, Liu B, Yang Q, Tao J, Tian XL, Pu J, Hong H, Wang M, Chen HZ, Ren J, Wang X, Liang Z, Wang Y, Huang K, Zhang W, Qu J, Ju Z, Liu GH, Pei G, Li J, Zhang C. A framework of biomarkers for vascular aging: a consensus statement by the Aging Biomarker Consortium. LIFE MEDICINE 2023; 2:lnad033. [PMID: 40040784 PMCID: PMC11879419 DOI: 10.1093/lifemedi/lnad033] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 03/06/2025]
Abstract
Aging of the vasculature, which is integral to the functioning of literally all human organs, serves as a fundamental physiological basis for age-related alterations as well as a shared etiological mechanism for various chronic diseases prevalent in the elderly population. China, home to the world's largest aging population, faces an escalating challenge in addressing the prevention and management of these age-related conditions. To meet this challenge, the Aging Biomarker Consortium of China has developed an expert consensus on biomarkers of vascular aging (VA) by synthesizing literature and insights from scientists and clinicians. This consensus provides a comprehensive assessment of biomarkers associated with VA and presents a systemic framework to classify them into three dimensions: functional, structural, and humoral. Within each dimension, the expert panel recommends the most clinically relevant VA biomarkers. For the functional domain, biomarkers reflecting vascular stiffness and endothelial function are highlighted. The structural dimension encompasses metrics for vascular structure, microvascular structure, and distribution. Additionally, proinflammatory factors are emphasized as biomarkers with the humoral dimension. The aim of this expert consensus is to establish a foundation for assessing the extent of VA and conducting research related to VA, with the ultimate goal of improving the vascular health of the elderly in China and globally.
Collapse
Affiliation(s)
| | - Le Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Yuehong Liu
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Shimin Sun
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena 07743, Germany
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518055, China
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun-Yat-sen University, Guangzhou 510080, China
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Jun Pu
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai 200127, China
| | - Huashan Hong
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Hou-Zao Chen
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, Xi’an 710032, China
| | - Zhen Liang
- Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Yuan Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Pei
- Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
8
|
Transcriptional landscape of oncogene-induced senescence: a machine learning-based meta-analytic approach. Ageing Res Rev 2023; 85:101849. [PMID: 36621646 DOI: 10.1016/j.arr.2023.101849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Oncogene-induced senescence (OIS) is highly heterogeneous, varying by oncogenic signals and cellular context. While its dual role, in the initial inhibition potentially later leading to promotion of tumors through the senescence-associated secretory phenotype, is still a matter of debate, it is undeniable that OIS is critical to understanding tumorigenesis. A major obstacle to OIS research is the absence of a universally accepted marker. Here, we present a robust OIS-specific transcriptomic secretory phenotype, termed oncogene-induced senescence secretory phenotype (OIS-SP), which can identify OIS across multiple biological contexts from in vitro datasets to in vivo human samples. We apply a meta-analytic machine learning pipeline to harmonize a deliberately varied selection of Ras-Raf-MEK-induced senescence datasets of differing origins, oncogenic signals and cell types. Finally we make use of bypass data to identify key genes and eliminate genes associated with quiescence, so identifying 40 OIS-SP genes. Within this set, we determined a robust core of five OIS-SP genes (FBLN1, CXCL12, EREG, CST1 and MMP10). Importantly, these 5 OIS-SP genes showed clear, consistent regulation patterns across various human Ras-Raf-MEK-mutated tumor tissues, which suggests that OIS-SP may be a novel cancer driver phenotype with an unexpectedly critical role in tumorigenesis.
Collapse
|
9
|
Purushothaman A, Mohajeri M, Lele TP. The role of glycans in the mechanobiology of cancer. J Biol Chem 2023; 299:102935. [PMID: 36693448 PMCID: PMC9930169 DOI: 10.1016/j.jbc.2023.102935] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Although cancer is a genetic disease, physical changes such as stiffening of the extracellular matrix also commonly occur in cancer. Cancer cells sense and respond to extracellular matrix stiffening through the process of mechanotransduction. Cancer cell mechanotransduction can enhance cancer-promoting cell behaviors such as survival signaling, proliferation, and migration. Glycans, carbohydrate-based polymers, have recently emerged as important mediators and/or modulators of cancer cell mechanotransduction. Stiffer tumors are characterized by increased glycan content on cancer cells and their associated extracellular matrix. Here we review the role of cancer-associated glycans in coupled mechanical and biochemical alterations during cancer progression. We discuss the recent evidence on how increased expression of different glycans, in the form of glycoproteins and proteoglycans, contributes to both mechanical changes in tumors and corresponding cancer cell responses. We conclude with a summary of emerging tools that can be used to modify glycans for future studies in cancer mechanobiology.
Collapse
Affiliation(s)
- Anurag Purushothaman
- Department of Biomedical Engineering, Texas A&M University, Houston, Texas, USA.
| | - Mohammad Mohajeri
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Tanmay P Lele
- Department of Biomedical Engineering, Texas A&M University, Houston, Texas, USA; Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA; Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA; Department of Translational Medical Sciences, Texas A&M University, Houston, Texas, USA.
| |
Collapse
|
10
|
Wang Y, Hammer A, Hoefler G, Malle E, Hawkins CL, Chuang CY, Davies MJ. Hypochlorous Acid and Chloramines Induce Specific Fragmentation and Cross-Linking of the G1-IGD-G2 Domains of Recombinant Human Aggrecan, and Inhibit ADAMTS1 Activity. Antioxidants (Basel) 2023; 12:antiox12020420. [PMID: 36829979 PMCID: PMC9952545 DOI: 10.3390/antiox12020420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease and a leading cause of mortality. It is characterized by arterial wall plaques that contain high levels of cholesterol and other lipids and activated leukocytes covered by a fibrous cap of extracellular matrix (ECM). The ECM undergoes remodelling during atherogenesis, with increased expression of aggrecan, a proteoglycan that binds low-density-lipoproteins (LDL). Aggrecan levels are regulated by proteases, including a disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1). Activated leukocytes release myeloperoxidase (MPO) extracellularly, where it binds to proteins and proteoglycans. Aggrecan may therefore mediate colocalization of MPO and LDL. MPO generates hypochlorous acid (HOCl) and chloramines (RNHCl species, from reaction of HOCl with amines on amino acids and proteins) that damage LDL and proteins, but effects on aggrecan have not been examined. The present study demonstrates that HOCl cleaves truncated (G1-IGD-G2) recombinant human aggrecan at specific sites within the IGD domain, with these being different from those induced by ADAMTS1 which also cleaves within this region. Irreversible protein cross-links are also formed dose-dependently. These effects are limited by the HOCl scavenger methionine. Chloramines including those formed on amino acids, proteins, and ECM materials induce similar damage. HOCl and taurine chloramines inactivate ADAMTS1 consistent with a switch from proteolytic to oxidative aggrecan fragmentation. Evidence is also presented for colocalization of aggrecan and HOCl-generated epitopes in advanced human atherosclerotic plaques. Overall, these data show that HOCl and chloramines can induce specific modifications on aggrecan, and that these effects are distinct from those of ADAMTS1.
Collapse
Affiliation(s)
- Yihe Wang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Astrid Hammer
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Gerald Hoefler
- Institute of Pathology, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, 8010 Graz, Austria
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Clare L. Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christine Y. Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence: (C.Y.C.); (M.J.D.)
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence: (C.Y.C.); (M.J.D.)
| |
Collapse
|
11
|
Kondakova EV, Ilina VM, Ermakova LM, Krivonosov MI, Kuchin KV, Vedunova MV. New Genetically Determined Markers of the Functional State of the Cardiovascular System. Genes (Basel) 2023; 14:genes14010185. [PMID: 36672926 PMCID: PMC9858790 DOI: 10.3390/genes14010185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
Nowadays, cardiovascular diseases (CVDs) occupy a leading position in population mortality. Since it is known that the development of cardiovascular pathologies is determined mainly by the human genetic burden, an urgent task of primary prevention of CVDs is to assess the contribution of gene polymorphism to the formation of cardiovascular risk. The material for the study was the blood of volunteers aged 21 to 102 years. Polymorphisms were determined by real-time PCR. Multichannel volumetric sphygmography was performed to analyze the functional state of the vascular wall. The study revealed that the rs5742904 polymorphism of the ApoB gene was found to be absent in the studied groups of long-livers and descendants of long-livers. Results indicated that the carriage of the heterozygous variant of the MMP9 polymorphism is associated with a favorable prognosis for cardiovascular system functioning. A tendency towards an increase in the rate of biological age acceleration among subgroups with AA and GG genotypes of the MMP9 gene and a negative value of biological age acceleration among heterozygous carriers of this polymorphism allele were found. The conducted studies make it possible to identify new associations of the studied polymorphisms with the functional state of the cardiovascular system, which is of great clinical importance and requires further study.
Collapse
Affiliation(s)
- Elena V. Kondakova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia
- Correspondence:
| | - Valeria M. Ilina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia
| | - Lyubov M. Ermakova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia
| | - Mikhail I. Krivonosov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia
| | - Kirill V. Kuchin
- Clinic Hospital Number 38, 22 Chernyshevsky St., 603000 Nizhny Novgorod, Russia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
12
|
Blokland KEC, Nizamoglu M, Habibie H, Borghuis T, Schuliga M, Melgert BN, Knight DA, Brandsma CA, Pouwels SD, Burgess JK. Substrate stiffness engineered to replicate disease conditions influence senescence and fibrotic responses in primary lung fibroblasts. Front Pharmacol 2022; 13:989169. [PMID: 36408252 PMCID: PMC9673045 DOI: 10.3389/fphar.2022.989169] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
In fibrosis remodelling of ECM leads to changes in composition and stiffness. Such changes can have a major impact on cell functions including proliferation, secretory profile and differentiation. Several studies have reported that fibrosis is characterised by increased senescence and accumulating evidence suggests that changes to the ECM including altered composition and increased stiffness may contribute to premature cellular senescence. This study investigated if increased stiffness could modulate markers of senescence and/or fibrosis in primary human lung fibroblasts. Using hydrogels representing stiffnesses that fall within healthy and fibrotic ranges, we cultured primary fibroblasts from non-diseased lung tissue on top of these hydrogels for up to 7 days before assessing senescence and fibrosis markers. Fibroblasts cultured on stiffer (±15 kPa) hydrogels showed higher Yes-associated protein-1 (YAP) nuclear translocation compared to soft hydrogels. When looking at senescence-associated proteins we also found higher secretion of receptor activator of nuclear factor kappa-B ligand (RANKL) but no change in transforming growth factor-β1 (TGF-β1) or connective tissue growth factor (CTGF) expression and higher decorin protein deposition on stiffer matrices. With respect to genes associated with fibrosis, fibroblasts on stiffer hydrogels compared to soft had higher expression of smooth muscle alpha (α)-2 actin (ACTA2), collagen (COL) 1A1 and fibulin-1 (Fbln1) and higher Fbln1 protein deposition after 7 days. Our results show that exposure of lung fibroblasts to fibrotic stiffness activates genes and secreted factors that are part of fibrotic responses and part of the Senescence-associated secretory phenotype (SASP). This overlap may contribute to the creation of a feedback loop whereby fibroblasts create a perpetuating cycle reinforcing progression of a fibrotic response.
Collapse
Affiliation(s)
- Kaj E. C. Blokland
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
- National Health and Medical Research Council Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia
| | - Mehmet Nizamoglu
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
| | - Habibie Habibie
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen, Netherlands
- Hasanuddin University, Faculty of Pharmacy, Makassar, Indonesia
| | - Theo Borghuis
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
| | - Michael Schuliga
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
| | - Barbro N. Melgert
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen, Netherlands
| | - Darryl A. Knight
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
- National Health and Medical Research Council Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia
- Providence Health Care Research Institute, Vancouver, BC, Canada
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
| | - Simon D. Pouwels
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, Netherlands
| | - Janette K. Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
- *Correspondence: Janette K. Burgess,
| |
Collapse
|
13
|
Is There Enough Evidence to Support the Role of Glycosaminoglycans and Proteoglycans in Thoracic Aortic Aneurysm and Dissection?—A Systematic Review. Int J Mol Sci 2022; 23:ijms23169200. [PMID: 36012466 PMCID: PMC9408983 DOI: 10.3390/ijms23169200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022] Open
Abstract
Altered proteoglycan (PG) and glycosaminoglycan (GAG) distribution within the aortic wall has been implicated in thoracic aortic aneurysm and dissection (TAAD). This review was conducted to identify literature reporting the presence, distribution and role of PGs and GAGs in the normal aorta and differences associated with sporadic TAAD to address the question; is there enough evidence to establish the role of GAGs/PGs in TAAD? 75 studies were included, divided into normal aorta (n = 51) and TAAD (n = 24). There is contradictory data regarding changes in GAGs upon ageing; most studies reported an increase in GAG sub-types, often followed by a decrease upon further ageing. Fourteen studies reported changes in PG/GAG or associated degradation enzyme levels in TAAD, with most increased in disease tissue or serum. We conclude that despite being present at relatively low abundance in the aortic wall, PGs and GAGs play an important role in extracellular matrix maintenance, with differences observed upon ageing and in association with TAAD. However, there is currently insufficient information to establish a cause-effect relationship with an underlying mechanistic understanding of these changes requiring further investigation. Increased PG presence in serum associated with aortic disease highlights the future potential of these biomolecules as diagnostic or prognostic biomarkers.
Collapse
|
14
|
Guo T, He C, Venado A, Zhou Y. Extracellular Matrix Stiffness in Lung Health and Disease. Compr Physiol 2022; 12:3523-3558. [PMID: 35766837 PMCID: PMC10088466 DOI: 10.1002/cphy.c210032] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extracellular matrix (ECM) provides structural support and imparts a wide variety of environmental cues to cells. In the past decade, a growing body of work revealed that the mechanical properties of the ECM, commonly known as matrix stiffness, regulate the fundamental cellular processes of the lung. There is growing appreciation that mechanical interplays between cells and associated ECM are essential to maintain lung homeostasis. Dysregulation of ECM-derived mechanical signaling via altered mechanosensing and mechanotransduction pathways is associated with many common lung diseases. Matrix stiffening is a hallmark of lung fibrosis. The stiffened ECM is not merely a sequelae of lung fibrosis but can actively drive the progression of fibrotic lung disease. In this article, we provide a comprehensive view on the role of matrix stiffness in lung health and disease. We begin by summarizing the effects of matrix stiffness on the function and behavior of various lung cell types and on regulation of biomolecule activity and key physiological processes, including host immune response and cellular metabolism. We discuss the potential mechanisms by which cells probe matrix stiffness and convert mechanical signals to regulate gene expression. We highlight the factors that govern matrix stiffness and outline the role of matrix stiffness in lung development and the pathogenesis of pulmonary fibrosis, pulmonary hypertension, asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. We envision targeting of deleterious matrix mechanical cues for treatment of fibrotic lung disease. Advances in technologies for matrix stiffness measurements and design of stiffness-tunable matrix substrates are also explored. © 2022 American Physiological Society. Compr Physiol 12:3523-3558, 2022.
Collapse
Affiliation(s)
- Ting Guo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA.,Department of Respiratory Medicine, the Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Chao He
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - Aida Venado
- Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
15
|
Zalghout S, Vo S, Arocas V, Jadoui S, Hamade E, Badran B, Oudar O, Charnaux N, Longrois D, Boulaftali Y, Bouton MC, Richard B. Syndecan-1 Is Overexpressed in Human Thoracic Aneurysm but Is Dispensable for the Disease Progression in a Mouse Model. Front Cardiovasc Med 2022; 9:839743. [PMID: 35548440 PMCID: PMC9082175 DOI: 10.3389/fcvm.2022.839743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Glycosaminoglycans (GAGs) pooling has long been considered as one of the histopathological characteristics defining thoracic aortic aneurysm (TAA) together with smooth muscle cells (SMCs) apoptosis and elastin fibers degradation. However, little information is known about GAGs composition or their potential implication in TAA pathology. Syndecan-1 (SDC-1) is a heparan sulfate proteoglycan that is implicated in extracellular matrix (ECM) interaction and assembly, regulation of SMCs phenotype, and various aspects of inflammation in the vascular wall. Therefore, the aim of this study was to determine whether SDC-1 expression was regulated in human TAA and to analyze its role in a mouse model of this disease. In the current work, the regulation of SDC-1 was examined in human biopsies by RT-qPCR, ELISA, and immunohistochemistry. In addition, the role of SDC-1 was evaluated in descending TAA in vivo using a mouse model combining both aortic wall weakening and hypertension. Our results showed that both SDC-1 mRNA and protein are overexpressed in the media layer of human TAA specimens. RT-qPCR experiments revealed a 3.6-fold overexpression of SDC-1 mRNA (p = 0.0024) and ELISA assays showed that SDC-1 protein was increased 2.3 times in TAA samples compared with healthy counterparts (221 ± 24 vs. 96 ± 33 pg/mg of tissue, respectively, p = 0.0012). Immunofluorescence imaging provided evidence that SMCs are the major cell type expressing SDC-1 in TAA media. Similarly, in the mouse model used, SDC-1 expression was increased in TAA specimens compared to healthy samples. Although its protective role against abdominal aneurysm has been reported, we observed that SDC-1 was dispensable for TAA prevalence or rupture. In addition, SDC-1 deficiency did not alter the extent of aortic wall dilatation, elastin degradation, collagen deposition, or leukocyte recruitment in our TAA model. These findings suggest that SDC-1 could be a biomarker revealing TAA pathology. Future investigations could uncover the underlying mechanisms leading to regulation of SDC-1 expression in TAA.
Collapse
Affiliation(s)
- Sara Zalghout
- LVTS, INSERM, U1148, Paris, France
- Université Sorbonne Paris Nord, Villetaneuse, France
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Sophie Vo
- LVTS, INSERM, U1148, Paris, France
- Université Sorbonne Paris Nord, Bobigny, France
| | - Véronique Arocas
- LVTS, INSERM, U1148, Paris, France
- Université de Paris, Paris, France
| | - Soumaya Jadoui
- LVTS, INSERM, U1148, Paris, France
- Université Sorbonne Paris Nord, Bobigny, France
| | - Eva Hamade
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Olivier Oudar
- LVTS, INSERM, U1148, Paris, France
- Université Sorbonne Paris Nord, Bobigny, France
| | - Nathalie Charnaux
- LVTS, INSERM, U1148, Paris, France
- Université Sorbonne Paris Nord, Bobigny, France
| | - Dan Longrois
- LVTS, INSERM, U1148, Paris, France
- Université de Paris, Paris, France
| | - Yacine Boulaftali
- LVTS, INSERM, U1148, Paris, France
- Université de Paris, Paris, France
| | | | - Benjamin Richard
- LVTS, INSERM, U1148, Paris, France
- Université Sorbonne Paris Nord, Bobigny, France
- *Correspondence: Benjamin Richard
| |
Collapse
|
16
|
Metschl S, Bruder L, Paloschi V, Jakob K, Reutersberg B, Reeps C, Maegdefessel L, Gee M, Eckstein HH, Pelisek J. Changes in endocan and dermatan sulfate are associated with biomechanical properties of abdominal aortic wall during aneurysm expansion and rupture. Thromb Haemost 2022; 122:1513-1523. [PMID: 35170008 DOI: 10.1055/a-1772-0574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND AIMS The study aimed to assess the potential of proteoglycans (PG) and collagens as serological biomarkers in the abdominal aortic aneurysm (AAA). Furthermore, we investigated the underlying mechano-biological interactions and signaling pathways. METHODS Tissue and serum samples from patients with ruptured AAA (rAAA, n=29), elective AAA (eAAA, n=78), and healthy individuals (n=8) were evaluated by histology, immunohistochemistry and Enzyme-linked Immunosorbent Assay (ELISA), mechanical properties were assessed by tensile tests. Regulatory pathways were determined by membrane-based sandwich immunoassay. RESULTS In AAA samples, collagen type I and III (Col1, Col3), chondroitin sulfate (CS), and dermatan sulfate (DS) were significantly increased compared to controls (3.0-, 3.2-, 1.3-, and 53-fold; p<0.01). Col1 and endocan were also elevated in the serum of AAA patients (3.6- and 6.0-fold; p<0.01), while DS was significantly decreased (2.5-fold; p<0.01). Histological scoring showed increased total PGs and focal accumulation in rAAA compared to eAAA. Tissue β-stiffness was higher in rAAA compared to eAAA (2.0-fold, p=0.02). Serum Col1 correlated with maximum tensile force and failure tension (r=0.448 and 0.333; p<0.01 and =0.02), tissue endocan correlated with α-stiffness (r=0.340; p<0.01). Signaling pathways in AAA were associated with ECM synthesis and VSMC proliferation. In particular, Src family kinases, PDGF- and EGF-related proteins seem to be involved. CONCLUSIONS Our findings reveal a structural association between collagen and PGs and their response to changes in mechanical loads in AAA. Particularly Col1 and endocan reflect the mechano-biological conditions of the aortic wall also in the patient's serum and might serve for AAA risk stratification.
Collapse
Affiliation(s)
- Susanne Metschl
- Vascular and Endovascular Surgery, Technical University of Munich School of Medicine, Munchen, Germany
| | - Lukas Bruder
- Mechanics & High Performance Computing Group, Technical University of Munich, Munchen, Germany
| | - Valentina Paloschi
- Vascular and Endovascular surgery, Klinikum rechts der Isar der Technischen Universitat Munchen, Munchen, Germany
| | - Katharina Jakob
- Vascular and Endovascular Surgery, Technical University of Munich School of Medicine, Munchen, Germany
| | | | - Christian Reeps
- Visceral, Thoracic, and Vascular Surgery, Medizinische Fakultät an der TU-Dresden, Dresden, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitat Munchen, Munchen, Germany
| | - Michael Gee
- Mechanics & High Performance Computing Group, Technical University of Munich, Munchen, Germany
| | - Hans-Henning Eckstein
- Vascular and Endovascular Surgery, Technical University of Munich School of Medicine, Munchen, Germany
| | - Jaroslav Pelisek
- Experimental Vascular Surgery, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Regulation of Cellular Senescence Is Independent from Profibrotic Fibroblast-Deposited ECM. Cells 2021; 10:cells10071628. [PMID: 34209854 PMCID: PMC8307656 DOI: 10.3390/cells10071628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/05/2021] [Accepted: 06/24/2021] [Indexed: 12/30/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with poor survival. Age is a major risk factor, and both alveolar epithelial cells and lung fibroblasts in this disease exhibit features of cellular senescence, a hallmark of ageing. Accumulation of fibrotic extracellular matrix (ECM) is a core feature of IPF and is likely to affect cell function. We hypothesize that aberrant ECM deposition augments fibroblast senescence, creating a perpetuating cycle favouring disease progression. In this study, primary lung fibroblasts were cultured on control and IPF-derived ECM from fibroblasts pretreated with or without profibrotic and prosenescent stimuli, and markers of senescence, fibrosis-associated gene expression and secretion of cytokines were measured. Untreated ECM derived from control or IPF fibroblasts had no effect on the main marker of senescence p16Ink4a and p21Waf1/Cip1. However, the expression of alpha smooth muscle actin (ACTA2) and proteoglycan decorin (DCN) increased in response to IPF-derived ECM. Production of the proinflammatory cytokines C-X-C Motif Chemokine Ligand 8 (CXCL8) by lung fibroblasts was upregulated in response to senescent and profibrotic-derived ECM. Finally, the profibrotic cytokines transforming growth factor β1 (TGF-β1) and connective tissue growth factor (CTGF) were upregulated in response to both senescent- and profibrotic-derived ECM. In summary, ECM deposited by IPF fibroblasts does not induce cellular senescence, while there is upregulation of proinflammatory and profibrotic cytokines and differentiation into a myofibroblast phenotype in response to senescent- and profibrotic-derived ECM, which may contribute to progression of fibrosis in IPF.
Collapse
|
18
|
Örd T, Õunap K, Stolze LK, Aherrahrou R, Nurminen V, Toropainen A, Selvarajan I, Lönnberg T, Aavik E, Ylä-Herttuala S, Civelek M, Romanoski CE, Kaikkonen MU. Single-Cell Epigenomics and Functional Fine-Mapping of Atherosclerosis GWAS Loci. Circ Res 2021; 129:240-258. [PMID: 34024118 PMCID: PMC8260472 DOI: 10.1161/circresaha.121.318971] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is available in the text. Genome-wide association studies have identified hundreds of loci associated with coronary artery disease (CAD). Many of these loci are enriched in cisregulatory elements but not linked to cardiometabolic risk factors nor to candidate causal genes, complicating their functional interpretation.
Collapse
Affiliation(s)
- Tiit Örd
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Kadri Õunap
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Lindsey K. Stolze
- Department of Cellular and Molecular Medicine, The College of Medicine, The University of Arizona, Tucson, AZ (L.K.S., C.E.R.)
| | - Redouane Aherrahrou
- Center for Public Health Genomics (R.A., M.C.), University of Virginia, Charlottesville
| | - Valtteri Nurminen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Anu Toropainen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Ilakya Selvarajan
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Finland (T.L.)
| | - Einari Aavik
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| | - Mete Civelek
- Center for Public Health Genomics (R.A., M.C.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (M.C.), University of Virginia, Charlottesville
| | - Casey E. Romanoski
- Department of Cellular and Molecular Medicine, The College of Medicine, The University of Arizona, Tucson, AZ (L.K.S., C.E.R.)
| | - Minna U. Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.Ö., K.Õ., V.N., A.T., I.S., E.A., S.Y.-H., M.U.K.)
| |
Collapse
|
19
|
Abstract
Significance: The vascular extracellular matrix (ECM) not only provides mechanical stability but also manipulates vascular cell behaviors, which are crucial for vascular function and homeostasis. ECM remodeling, which alters vascular wall mechanical properties and exposes vascular cells to bioactive molecules, is involved in the development and progression of hypertension. Recent Advances: This brief review summarized the dynamic changes in ECM components and their modification and degradation during hypertension and after antihypertensive treatment. We also discussed how alterations in the ECM amount, assembly, mechanical properties, and degradation fragment generation provide input into the pathological process of hypertension. Critical Issues: Although the relevance between ECM remodeling and hypertension has been recognized, the underlying mechanism by which ECM remodeling initiates the development of hypertension remains unclear. Therefore, the modulation of ECM remodeling on arterial stiffness and hypertension in genetically modified rodent models is summarized in this review. The circulating biomarkers based on ECM metabolism and therapeutic strategies targeting ECM disorders in hypertension are also introduced. Future Directions: Further research will provide more comprehensive understanding of ECM remodeling in hypertension by the application of matridomic and degradomic approaches. The better understanding of mechanisms underlying vascular ECM remodeling may provide novel potential therapeutic strategies for preventing and treating hypertension. Antioxid. Redox Signal. 34, 765-783.
Collapse
Affiliation(s)
- Zeyu Cai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Ze Gong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Zhiqing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Li Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
20
|
Garcia-Pena A, Ibarrola J, Navarro A, Sadaba A, Tiraplegui C, Garaikoetxea M, Arrieta V, Matilla L, Fernández-Celis A, Sadaba R, Alvarez V, Gainza A, Jover E, López-Andrés N. Activation of the Interleukin-33/ST2 Pathway Exerts Deleterious Effects in Myxomatous Mitral Valve Disease. Int J Mol Sci 2021; 22:ijms22052310. [PMID: 33669101 PMCID: PMC7956196 DOI: 10.3390/ijms22052310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 01/22/2023] Open
Abstract
Mitral valve disease (MVD) is a frequent cause of heart failure and death worldwide, but its etiopathogenesis is not fully understood. Interleukin (IL)-33 regulates inflammation and thrombosis in the vascular endothelium and may play a role in the atherosclerotic process, but its role in mitral valve has not been investigated. We aim to explore IL-33 as a possible inductor of myxomatous degeneration in human mitral valves. We enrolled 103 patients suffering from severe mitral regurgitation due to myxomatous degeneration undergoing mitral valve replacement. Immunohistochemistry of the resected leaflets showed IL-33 and ST2 expression in both valve interstitial cells (VICs) and valve endothelial cells (VECs). Positive correlations were found between the levels of IL-33 and molecules implicated in the development of myxomatous MVD, such as proteoglycans, extracellular matrix remodeling enzymes (matrix metalloproteinases and their tissue inhibitors), inflammatory and fibrotic markers. Stimulation of single cell cultures of VICs and VECs with recombinant human IL-33 induced the expression of activated VIC markers, endothelial–mesenchymal transition of VECs, proteoglycan synthesis, inflammatory molecules and extracellular matrix turnover. Our findings suggest that the IL-33/ST2 system may be involved in the development of myxomatous MVD by enhancing extracellular matrix remodeling.
Collapse
|
21
|
Sang Y, Mao KM, Huang Y, Wu XF, Wang XF, Ruan L, Zhang CT. Relationship between the Plasma Fibulin-1 Levels, Pulse Wave Velocity, and Vascular Age in Asymptomatic Hyperuricemia. Curr Med Sci 2021; 41:94-99. [PMID: 33582912 DOI: 10.1007/s11596-021-2324-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/17/2020] [Indexed: 11/26/2022]
Abstract
Fibulin-1 (FBLN-1), an elastin-associated extracellular matrix protein, has been found in blood and may play a role in the pathophysiological processes leading to cardiovascular disease (CVD). We aimed to investigate the relationship between fibulin-1 levels and the risk of CVD by evaluating vascular age derived from the Framingham Heart Study and brachial-ankle Pulse Wave Velocity (baPWV) in patients with asymptomatic hyperuricemia (AHU). In total, 66 patients with AHU and 66 gender- and age-matched healthy individuals were enrolled. The plasma fibulin-1 levels were measured by immunochemistry. Patients with AHU presented significantly higher vascular age [median (interquartile range): 54 (22) vs. 48 (14) years, P=0.01] and baPWV [mean±SD: 1373±223 vs. 1291±177 cm/s, P=0.02] than the healthy subjects; however, no significant difference was observed in the plasma fibulin-1 level between the patients with AHU and healthy subjects [median (interquartile range): 4018 (3838) vs. 3099 (3405) ng/mL, P=0.31]. A correlation between fibulin-1 levels and baPWV was observed only in patients with AHU (r=0.29, P=0.02); and there was also a suggestively statistically significant correlation between fibulin-1 levels and vascular age (r=0.22, P=0.08). However, these associations were rendered insignificant after adjustments for potential confounders. In healthy subjects, no correlation was observed between fibulin-1 levels and CVD risk. This study reveals that plasma fibulin-1 levels may reflect the CVD risk in patients with AHU, but the relationship is not robust.
Collapse
Affiliation(s)
- Yu Sang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kai-Min Mao
- Department of Pulmonary and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi Huang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Fen Wu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xing-Fen Wang
- Department of Geriatrics, Beijing Aerospace General Hospital, Beijing, 100076, China
| | - Lei Ruan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Cun-Tai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
22
|
Murphy PA, Jailkhani N, Nicholas SA, Del Rosario AM, Balsbaugh JL, Begum S, Kimble A, Hynes RO. Alternative Splicing of FN (Fibronectin) Regulates the Composition of the Arterial Wall Under Low Flow. Arterioscler Thromb Vasc Biol 2021; 41:e18-e32. [PMID: 33207933 PMCID: PMC8428803 DOI: 10.1161/atvbaha.120.314013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Exposure of the arterial endothelium to low and disturbed flow is a risk factor for the erosion and rupture of atherosclerotic plaques and aneurysms. Circulating and locally produced proteins are known to contribute to an altered composition of the extracellular matrix at the site of lesions, and to contribute to inflammatory processes within the lesions. We have previously shown that alternative splicing of FN (fibronectin) protects against flow-induced hemorrhage. However, the impact of alternative splicing of FN on extracellular matrix composition remains unknown. Approach and Results: Here, we perform quantitative proteomic analysis of the matrisome of murine carotid arteries in mice deficient in the production of FN splice isoforms containing alternative exons EIIIA and EIIIB (FN-EIIIAB null) after exposure to low and disturbed flow in vivo. We also examine serum-derived and endothelial-cell contributions to the matrisome in a simplified in vitro system. We found flow-induced differences in the carotid artery matrisome that were impaired in FN-EIIIAB null mice. One of the most interesting differences was reduced recruitment of FBLN1 (fibulin-1), abundant in blood and not locally produced in the intima. This defect was validated in our in vitro assay, where FBLN1 recruitment from serum was impaired by the absence of these alternatively spliced segments. CONCLUSIONS Our results reveal the extent of the dynamic alterations in the matrisome in the acute response to low and disturbed flow and show how changes in the splicing of FN, a common response in vascular inflammation and remodeling, can affect matrix composition.
Collapse
Affiliation(s)
- Patrick A. Murphy
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139
- UCONN Health, Farmington, CT 06030
| | - Noor Jailkhani
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139
| | | | | | | | - Shahinoor Begum
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | | | - Richard O. Hynes
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
23
|
Barallobre-Barreiro J, Loeys B, Mayr M, Rienks M, Verstraeten A, Kovacic JC. Extracellular Matrix in Vascular Disease, Part 2/4: JACC Focus Seminar. J Am Coll Cardiol 2020; 75:2189-2203. [PMID: 32354385 DOI: 10.1016/j.jacc.2020.03.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 01/01/2023]
Abstract
Medium-sized and large arteries consist of 3 layers: the tunica intima, tunica media, and tunica adventitia. The tunica media accounts for the bulk of the vessel wall and is the chief determinant of mechanical compliance. It is primarily composed of circumferentially arranged layers of vascular smooth muscle cells that are separated by concentrically arranged elastic lamellae; a form of extracellular matrix (ECM). The tunica media is separated from the tunica intima and tunica adventitia, the innermost and outermost layers, respectively, by the internal and external elastic laminae. This second part of a 4-part JACC Focus Seminar discusses the contributions of the ECM to vascular homeostasis and pathology. Advances in genetics and proteomics approaches have fostered significant progress in our understanding of vascular ECM. This review highlights the important role of the ECM in vascular disease and the prospect of translating these discoveries into clinical disease biomarkers and potential future therapies.
Collapse
Affiliation(s)
| | - Bart Loeys
- Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, United Kingdom; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Marieke Rienks
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| | - Aline Verstraeten
- Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia.
| |
Collapse
|
24
|
Abstract
The a disintegrin-like and metalloproteinase with thrombospondin motif (ADAMTS) family comprises 19 proteases that regulate the structure and function of extracellular proteins in the extracellular matrix and blood. The best characterized cardiovascular role is that of ADAMTS-13 in blood. Moderately low ADAMTS-13 levels increase the risk of ischeamic stroke and very low levels (less than 10%) can cause thrombotic thrombocytopenic purpura (TTP). Recombinant ADAMTS-13 is currently in clinical trials for treatment of TTP. Recently, new cardiovascular roles for ADAMTS proteases have been discovered. Several ADAMTS family members are important in the development of blood vessels and the heart, especially the valves. A number of studies have also investigated the potential role of ADAMTS-1, -4 and -5 in cardiovascular disease. They cleave proteoglycans such as versican, which represent major structural components of the arteries. ADAMTS-7 and -8 are attracting considerable interest owing to their implication in atherosclerosis and pulmonary arterial hypertension, respectively. Mutations in the ADAMTS19 gene cause progressive heart valve disease and missense variants in ADAMTS6 are associated with cardiac conduction. In this review, we discuss in detail the evidence for these and other cardiovascular roles of ADAMTS family members, their proteolytic substrates and the potential molecular mechanisms involved.
Collapse
Affiliation(s)
- Salvatore Santamaria
- Centre for Haematology, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Rens de Groot
- Centre for Haematology, Imperial College London, Du Cane Road, London W12 0NN, UK.,Institute of Cardiovascular Science, University College London, 51 Chenies Mews, London WC1E 6HX, UK
| |
Collapse
|
25
|
Blokland K, Pouwels S, Schuliga M, Knight D, Burgess J. Regulation of cellular senescence by extracellular matrix during chronic fibrotic diseases. Clin Sci (Lond) 2020; 134:2681-2706. [PMID: 33084883 PMCID: PMC7578566 DOI: 10.1042/cs20190893] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is a complex network of macromolecules surrounding cells providing structural support and stability to tissues. The understanding of the ECM and the diverse roles it plays in development, homoeostasis and injury have greatly advanced in the last three decades. The ECM is crucial for maintaining tissue homoeostasis but also many pathological conditions arise from aberrant matrix remodelling during ageing. Ageing is characterised as functional decline of tissue over time ultimately leading to tissue dysfunction, and is a risk factor in many diseases including cardiovascular disease, diabetes, cancer, dementia, glaucoma, chronic obstructive pulmonary disease (COPD) and fibrosis. ECM changes are recognised as a major driver of aberrant cell responses. Mesenchymal cells in aged tissue show signs of growth arrest and resistance to apoptosis, which are indicative of cellular senescence. It was recently postulated that cellular senescence contributes to the pathogenesis of chronic fibrotic diseases in the heart, kidney, liver and lung. Senescent cells negatively impact tissue regeneration while creating a pro-inflammatory environment as part of the senescence-associated secretory phenotype (SASP) favouring disease progression. In this review, we explore and summarise the current knowledge around how aberrant ECM potentially influences the senescent phenotype in chronic fibrotic diseases. Lastly, we will explore the possibility for interventions in the ECM-senescence regulatory pathways for therapeutic potential in chronic fibrotic diseases.
Collapse
Affiliation(s)
- Kaj E.C. Blokland
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
- National Health and Medical Research Council Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia
| | - Simon D. Pouwels
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
- Department of Lung Diseases, University Medical Center Groningen, Groningen, The Netherlands
| | - Michael Schuliga
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
| | - Darryl A. Knight
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
- National Health and Medical Research Council Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Providence Health Care Research Institute, Vancouver, BC, Canada
| | - Janette K. Burgess
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| |
Collapse
|
26
|
Abstract
Aggrecan is a large proteoglycan that forms giant hydrated aggregates with hyaluronan in the extracellular matrix (ECM). The extraordinary resistance of these aggregates to compression explains their abundance in articular cartilage of joints where they ensure adequate load-bearing. In the brain, they provide mechanical buffering and contribute to formation of perineuronal nets, which regulate synaptic plasticity. Aggrecan is also present in cardiac jelly, developing heart valves, and blood vessels during cardiovascular development. Whereas aggrecan is essential for skeletal development, its function in the developing cardiovascular system remains to be fully elucidated. An excess of aggrecan was demonstrated in cardiovascular tissues in aortic aneurysms, atherosclerosis, vascular re-stenosis after injury, and varicose veins. It is a product of vascular smooth muscle and is likely to be an important component of pericellular matrix, where its levels are regulated by proteases. Aggrecan can contribute to specific biophysical and regulatory properties of cardiovascular ECM via the diverse interactions of its domains, and its accumulation is likely to have a significant role in developmental and disease pathways. Here, the established biological functions of aggrecan, its cardiovascular associations, and potential roles in cardiovascular development and disease are discussed.
Collapse
Affiliation(s)
- Christopher D Koch
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut.,Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio.,Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | - Chan Mi Lee
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| |
Collapse
|
27
|
Hayes AJ, Melrose J. Aggrecan, the Primary Weight-Bearing Cartilage Proteoglycan, Has Context-Dependent, Cell-Directive Properties in Embryonic Development and Neurogenesis: Aggrecan Glycan Side Chain Modifications Convey Interactive Biodiversity. Biomolecules 2020; 10:E1244. [PMID: 32867198 PMCID: PMC7564073 DOI: 10.3390/biom10091244] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023] Open
Abstract
This review examines aggrecan's roles in developmental embryonic tissues, in tissues undergoing morphogenetic transition and in mature weight-bearing tissues. Aggrecan is a remarkably versatile and capable proteoglycan (PG) with diverse tissue context-dependent functional attributes beyond its established role as a weight-bearing PG. The aggrecan core protein provides a template which can be variably decorated with a number of glycosaminoglycan (GAG) side chains including keratan sulphate (KS), human natural killer trisaccharide (HNK-1) and chondroitin sulphate (CS). These convey unique tissue-specific functional properties in water imbibition, space-filling, matrix stabilisation or embryonic cellular regulation. Aggrecan also interacts with morphogens and growth factors directing tissue morphogenesis, remodelling and metaplasia. HNK-1 aggrecan glycoforms direct neural crest cell migration in embryonic development and is neuroprotective in perineuronal nets in the brain. The ability of the aggrecan core protein to assemble CS and KS chains at high density equips cartilage aggrecan with its well-known water-imbibing and weight-bearing properties. The importance of specific arrangements of GAG chains on aggrecan in all its forms is also a primary morphogenetic functional determinant providing aggrecan with unique tissue context dependent regulatory properties. The versatility displayed by aggrecan in biodiverse contexts is a function of its GAG side chains.
Collapse
Affiliation(s)
- Anthony J Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards 2065, NSW, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney, Faculty of Medicine and Health at Royal North Shore Hospital, St. Leonards 2065, NSW, Australia
| |
Collapse
|
28
|
Bjerre-Bastos JJ, Nielsen HB, Andersen JR, He Y, Karsdal M, Bay-Jensen AC, Boesen M, Mackey AL, Bihlet AR. Evaluation of serum ARGS neoepitope as an osteoarthritis biomarker using a standardized model for exercise-induced cartilage extra cellular matrix turnover. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100060. [DOI: 10.1016/j.ocarto.2020.100060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 01/03/2023] Open
|
29
|
Santamaria S. ADAMTS-5: A difficult teenager turning 20. Int J Exp Pathol 2020; 101:4-20. [PMID: 32219922 DOI: 10.1111/iep.12344] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/28/2019] [Accepted: 01/19/2020] [Indexed: 12/13/2022] Open
Abstract
A Disintegrin And Metalloproteinase with ThromboSpondin motif (ADAMTS)-5 was identified in 1999 as one of the enzymes responsible for cleaving aggrecan, the major proteoglycan in articular cartilage. Studies in vitro, ex vivo and in vivo have validated ADAMTS-5 as a target in osteoarthritis (OA), a disease characterized by extensive degradation of aggrecan. For this reason, it attracted the interest of many research groups aiming to develop a therapeutic treatment for OA patients. However, ADAMTS-5 proteoglycanase activity is not only involved in the dysregulated aggrecan proteolysis, which occurs in OA, but also in the physiological turnover of other related proteoglycans. In particular, versican, a major ADAMTS-5 substrate, plays an important structural role in heart and blood vessels and its proteolytic processing by ADAMTS-5 must be tightly regulated. On the occasion of the 20th anniversary of the discovery of ADAMTS-5, this review looks at the evidence for its detrimental role in OA, as well as its physiological turnover of cardiovascular proteoglycans. Moreover, the other potential functions of this enzyme are highlighted. Finally, challenges and emerging trends in ADAMTS-5 research are discussed.
Collapse
|
30
|
Barallobre-Barreiro J, Woods E, Bell RE, Easton JA, Hobbs C, Eager M, Baig F, Ross AM, Mallipeddi R, Powell B, Soldin M, Mayr M, Shaw TJ. Cartilage-like composition of keloid scar extracellular matrix suggests fibroblast mis-differentiation in disease. Matrix Biol Plus 2019; 4:100016. [PMID: 33543013 PMCID: PMC7852214 DOI: 10.1016/j.mbplus.2019.100016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 02/08/2023] Open
Abstract
Following wound damage to the skin, the scarring spectrum is wide-ranging, from a manageable normal scar through to pathological keloids. The question remains whether these fibrotic lesions represent simply a quantitative extreme, or alternatively, whether they are qualitatively distinct. A three-way comparison of the extracellular matrix (ECM) composition of normal skin, normal scar and keloids was performed using quantitative discovery-based proteomics. This approach identified 40 proteins that were significantly altered in keloids compared to normal scars, and strikingly, 23 keloid-unique proteins. The major alterations in keloids, when functionally grouped, showed many changes in proteins involved in ECM assembly and fibrillogenesis, but also a keloid-associated loss of proteases, and a unique cartilage-like composition, which was also evident histologically. The presence of Aggrecan and Collagen II in keloids suggest greater plasticity and mis-differentiation of the constituent cells. This study characterises the ECM of both scar types to a depth previously underappreciated. This thorough molecular description of keloid lesions relative to normal scars is an essential step towards our understanding of this debilitating clinical problem, and how best to treat it.
Collapse
Affiliation(s)
- Javier Barallobre-Barreiro
- King's College London, James Black Centre British Heart Foundation Centre, Denmark Hill Campus, London SE5 9NU, UK
| | - Elizabeth Woods
- Division of Biomedical Sciences, St George's University of London, London SW17 0RE, UK
| | - Rachel E. Bell
- King's College London, School of Immunology & Microbial Sciences, Department of Inflammation Biology, Centre for Inflammation Biology & Cancer Immunology, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Jennifer A. Easton
- King's College London, School of Immunology & Microbial Sciences, Department of Inflammation Biology, Centre for Inflammation Biology & Cancer Immunology, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Carl Hobbs
- King's College London, Wolfson Centre for Age Related Diseases, Guy's Campus, London SE1 1UL, UK
| | - Michael Eager
- Division of Biomedical Sciences, St George's University of London, London SW17 0RE, UK
| | - Ferheen Baig
- King's College London, James Black Centre British Heart Foundation Centre, Denmark Hill Campus, London SE5 9NU, UK
| | - Alastair Mackenzie Ross
- Guy's and St Thomas' NHS Foundation Trust, Department of Plastic Surgery, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Raj Mallipeddi
- Guy's and St Thomas' NHS Foundation Trust, St John's Institute of Dermatology, Cancer Centre, Great Maze Pond, London SE1 9RT, UK
| | - Barry Powell
- St George's University Hospitals NHS Trust, Department of Plastic and Reconstructive Surgery, Blackshaw Road, London SW17 0QT, UK
| | - Mark Soldin
- St George's University Hospitals NHS Trust, Department of Plastic and Reconstructive Surgery, Blackshaw Road, London SW17 0QT, UK
| | - Manuel Mayr
- King's College London, James Black Centre British Heart Foundation Centre, Denmark Hill Campus, London SE5 9NU, UK
| | - Tanya J. Shaw
- King's College London, School of Immunology & Microbial Sciences, Department of Inflammation Biology, Centre for Inflammation Biology & Cancer Immunology, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
31
|
Affiliation(s)
- Marieke Rienks
- From the King's British Heart Foundation Centre, King's College London, United Kingdom
| | | | - Manuel Mayr
- From the King's British Heart Foundation Centre, King's College London, United Kingdom
| |
Collapse
|
32
|
The Non-Fibrillar Side of Fibrosis: Contribution of the Basement Membrane, Proteoglycans, and Glycoproteins to Myocardial Fibrosis. J Cardiovasc Dev Dis 2019; 6:jcdd6040035. [PMID: 31547598 PMCID: PMC6956278 DOI: 10.3390/jcdd6040035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) provides structural support and a microenvironmentfor soluble extracellular molecules. ECM is comprised of numerous proteins which can be broadly classified as fibrillar (collagen types I and III) and non-fibrillar (basement membrane, proteoglycans, and glycoproteins). The basement membrane provides an interface between the cardiomyocytes and the fibrillar ECM, while proteoglycans sequester soluble growth factors and cytokines. Myocardial fibrosis was originally only linked to accumulation of fibrillar collagens, but is now recognized as the expansion of the ECM including the non-fibrillar ECM proteins. Myocardial fibrosis can be reparative to replace the lost myocardium (e.g., ischemic injury or myocardial infarction), or can be reactive resulting from pathological activity of fibroblasts (e.g., dilated or hypertrophic cardiomyopathy). Contribution of fibrillar collagens to fibrosis is well studied, but the role of the non-fibrillar ECM proteins has remained less explored. In this article, we provide an overview of the contribution of the non-fibrillar components of the extracellular space of the heart to highlight the potential significance of these molecules in fibrosis, with direct evidence for some, although not all of these molecules in their direct contribution to fibrosis.
Collapse
|
33
|
Ramaswamy AK, Vorp DA, Weinbaum JS. Functional Vascular Tissue Engineering Inspired by Matricellular Proteins. Front Cardiovasc Med 2019; 6:74. [PMID: 31214600 PMCID: PMC6554335 DOI: 10.3389/fcvm.2019.00074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022] Open
Abstract
Modern regenerative medicine, and tissue engineering specifically, has benefited from a greater appreciation of the native extracellular matrix (ECM). Fibronectin, collagen, and elastin have entered the tissue engineer's toolkit; however, as fully decellularized biomaterials have come to the forefront in vascular engineering it has become apparent that the ECM is comprised of more than just fibronectin, collagen, and elastin, and that cell-instructive molecules known as matricellular proteins are critical for desired outcomes. In brief, matricellular proteins are ECM constituents that contrast with the canonical structural proteins of the ECM in that their primary role is to interact with the cell. Of late, matricellular genes have been linked to diseases including connective tissue disorders, cardiovascular disease, and cancer. Despite the range of biological activities, this class of biomolecules has not been actively used in the field of regenerative medicine. The intent of this review is to bring matricellular proteins into wider use in the context of vascular tissue engineering. Matricellular proteins orchestrate the formation of new collagen and elastin fibers that have proper mechanical properties-these will be essential components for a fully biological small diameter tissue engineered vascular graft (TEVG). Matricellular proteins also regulate the initiation of thrombosis via fibrin deposition and platelet activation, and the clearance of thrombus when it is no longer needed-proper regulation of thrombosis will be critical for maintaining patency of a TEVG after implantation. Matricellular proteins regulate the adhesion, migration, and proliferation of endothelial cells-all are biological functions that will be critical for formation of a thrombus-resistant endothelium within a TEVG. Lastly, matricellular proteins regulate the adhesion, migration, proliferation, and activation of smooth muscle cells-proper control of these biological activities will be critical for a TEVG that recellularizes and resists neointimal formation/stenosis. We review all of these functions for matricellular proteins here, in addition to reviewing the few studies that have been performed at the intersection of matricellular protein biology and vascular tissue engineering.
Collapse
Affiliation(s)
- Aneesh K Ramaswamy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - David A Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Justin S Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|