1
|
Rachuri S, Nepal B, Shukla A, Ramanathan A, Morrisey JM, Daly T, Mather MW, Bergman LW, Kortagere S, Vaidya AB. Mutational analysis of an antimalarial drug target, PfATP4. Proc Natl Acad Sci U S A 2025; 122:e2403689122. [PMID: 39773028 PMCID: PMC11745376 DOI: 10.1073/pnas.2403689122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025] Open
Abstract
Among new antimalarials discovered over the past decade are multiple chemical scaffolds that target Plasmodium falciparum P-type ATPase (PfATP4). This essential protein is a Na+ pump responsible for the maintenance of Na+ homeostasis. PfATP4 belongs to the type two-dimensional (2D) subfamily of P-type ATPases, for which no structures have been determined. To gain better insight into the structure/function relationship of this validated drug target, we generated a homology model of PfATP4 based on sarco/endoplasmic reticulum Ca2+ ATPase, a P2A-type ATPase, and refined the model using molecular dynamics in its explicit membrane environment. This model predicted several residues in PfATP4 critical for its function, as well as those that impart resistance to various PfATP4 inhibitors. To validate our model, we developed a genetic system involving merodiploid states of PfATP4 in which the endogenous gene was conditionally expressed, and the second allele was mutated to assess its effect on the parasite. Our model predicted residues involved in Na+ coordination as well as the phosphorylation cycle of PfATP4. Phenotypic characterization of these mutants involved assessment of parasite growth, localization of mutated PfATP4, response to treatment with known PfATP4 inhibitors, and evaluation of the downstream consequences of Na+ influx. Our results were consistent with modeled predictions of the essentiality of the critical residues. Additionally, our approach confirmed the phenotypic consequences of resistance-associated mutations as well as a potential structural basis for the fitness cost associated with some mutations. Taken together, our approach provides a means to explore the structure/function relationship of essential genes in haploid organisms.
Collapse
Affiliation(s)
- Swaksha Rachuri
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Binod Nepal
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Anurag Shukla
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Aarti Ramanathan
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Joanne M. Morrisey
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Thomas Daly
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Michael W. Mather
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Lawrence W. Bergman
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Akhil B. Vaidya
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| |
Collapse
|
2
|
Duffy S, Sleebs BE, Avery VM. An adaptable, fit-for-purpose screening approach with high-throughput capability to determine speed of action and stage specificity of anti-malarial compounds. Antimicrob Agents Chemother 2024; 68:e0074624. [PMID: 39264187 PMCID: PMC11459970 DOI: 10.1128/aac.00746-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024] Open
Abstract
A revamped in vitro compound identification and activity profiling approach is required to meet the large unmet need for new anti-malarial drugs to combat parasite drug resistance. Although compound hit identification utilizing high-throughput screening of large compound libraries is well established, the ability to rapidly prioritize such large numbers for further development is limited. Determining the speed of action of anti-malarial drug candidates is a vital component of malaria drug discovery, which currently occurs predominantly in lead optimization and development. This is due in part to the capacity of current methods which have low throughput due to the complexity and labor intensity of the approaches. Here, we provide an adaptable screening paradigm utilizing automated high content imaging, including the development of an automated schizont maturation assay, which collectively can identify anti-malarial compounds, classify activity into fast and slow acting, and provide an indication of the parasite stage specificity, with high-throughput capability. By frontloading these critical biological parameters much earlier in the drug discovery pipeline, it has the potential to reduce lead compound attrition rates later in the development process. The capability of the approach in its alternative formats is demonstrated using three Medicines for Malaria Venture open access compound "boxes," namely Pathogen Box (malaria set-125 compounds), Global Health Priority Box [Malaria Box 2 (80 compounds) and zoonotic neglected diseases (80 compounds)], and the Pandemic Response Box (400 compounds). From a total of 685 compounds tested, 79 were identified as having fast ring-stage-specific activity comparable to that of artemisinin and therefore of high priority for further consideration and development.
Collapse
Affiliation(s)
- Sandra Duffy
- Discovery Biology, School of Environment and Science, Griffith University, Griffith, Australia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, Parkville, Australia
- Department of Medical Biology, The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, Parkville, Australia
| | - Vicky M. Avery
- Discovery Biology, School of Environment and Science, Griffith University, Griffith, Australia
| |
Collapse
|
3
|
Ashton T, Calic PPS, Dans MG, Ooi ZK, Zhou Q, Palandri J, Loi K, Jarman KE, Qiu D, Lehane AM, Maity BC, De N, Giannangelo C, MacRaild CA, Creek DJ, Mao EY, Gancheva MR, Wilson DW, Chowdury M, de Koning-Ward TF, Famodimu MT, Delves MJ, Pollard H, Sutherland CJ, Baud D, Brand S, Jackson PF, Cowman AF, Sleebs BE. Property and Activity Refinement of Dihydroquinazolinone-3-carboxamides as Orally Efficacious Antimalarials that Target PfATP4. J Med Chem 2024; 67:14493-14523. [PMID: 39134060 PMCID: PMC11345840 DOI: 10.1021/acs.jmedchem.4c01241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
To contribute to the global effort to develop new antimalarial therapies, we previously disclosed initial findings on the optimization of the dihydroquinazolinone-3-carboxamide class that targets PfATP4. Here we report on refining the aqueous solubility and metabolic stability to improve the pharmacokinetic profile and consequently in vivo efficacy. We show that the incorporation of heterocycle systems in the 8-position of the scaffold was found to provide the greatest attainable balance between parasite activity, aqueous solubility, and metabolic stability. Optimized analogs, including the frontrunner compound S-WJM992, were shown to inhibit PfATP4-associated Na+-ATPase activity, gave rise to a metabolic signature consistent with PfATP4 inhibition, and displayed altered activities against parasites with mutations in PfATP4. Finally, S-WJM992 showed appreciable efficacy in a malaria mouse model and blocked gamete development preventing transmission to mosquitoes. Importantly, further optimization of the dihydroquinazolinone class is required to deliver a candidate with improved pharmacokinetic and risk of resistance profiles.
Collapse
Affiliation(s)
- Trent
D. Ashton
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Petar P. S. Calic
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Madeline G. Dans
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Zi Kang Ooi
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Qingmiao Zhou
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Josephine Palandri
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Katie Loi
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Kate E. Jarman
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Deyun Qiu
- Research
School of Biology, Australian National University, Canberra 2601, Australia
| | - Adele M. Lehane
- Research
School of Biology, Australian National University, Canberra 2601, Australia
| | | | - Nirupam De
- TCG
Lifesciences, Kolkata, West Bengal 700091, India
| | - Carlo Giannangelo
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal
Parade, Parkville, Victoria 3052, Australia
| | - Christopher A. MacRaild
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal
Parade, Parkville, Victoria 3052, Australia
| | - Darren J. Creek
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal
Parade, Parkville, Victoria 3052, Australia
| | - Emma Y. Mao
- Research
Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Maria R. Gancheva
- Research
Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Danny W. Wilson
- Research
Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Mrittika Chowdury
- School
of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
- Institute
for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria 3216, Australia
| | - Tania F. de Koning-Ward
- School
of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
- Institute
for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria 3216, Australia
| | - Mufuliat T. Famodimu
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, London WC1E 7HT, U.K.
| | - Michael J. Delves
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, London WC1E 7HT, U.K.
| | - Harry Pollard
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, London WC1E 7HT, U.K.
| | - Colin J. Sutherland
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, London WC1E 7HT, U.K.
| | - Delphine Baud
- MMV Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, Geneva 1215, Switzerland
| | - Stephen Brand
- MMV Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, Geneva 1215, Switzerland
| | - Paul F. Jackson
- Emerging Science & Innovation, Discovery
Sciences, Janssen R&D LLC, La Jolla, California 92121, United States
| | - Alan F. Cowman
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Brad E. Sleebs
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
4
|
Redway A, Spry C, Brown A, Wiedemann U, Fathoni I, Garnie LF, Qiu D, Egan TJ, Lehane AM, Jackson Y, Saliba KJ, Downer-Riley N. Discovery of antiplasmodial pyridine carboxamides and thiocarboxamides. Int J Parasitol Drugs Drug Resist 2024; 25:100536. [PMID: 38663046 PMCID: PMC11068522 DOI: 10.1016/j.ijpddr.2024.100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024]
Abstract
Malaria continues to be a significant burden, particularly in Africa, which accounts for 95% of malaria deaths worldwide. Despite advances in malaria treatments, malaria eradication is hampered by insecticide and antimalarial drug resistance. Consequently, the need to discover new antimalarial lead compounds remains urgent. To help address this need, we evaluated the antiplasmodial activity of twenty-two amides and thioamides with pyridine cores and their non-pyridine analogues. Twelve of these compounds showed in vitro anti-proliferative activity against the intraerythrocytic stage of Plasmodium falciparum, the most virulent species of Plasmodium infecting humans. Thiopicolinamide 13i was found to possess submicromolar activity (IC50 = 142 nM) and was >88-fold less active against a human cell line. The compound was equally effective against chloroquine-sensitive and -resistant parasites and did not inhibit β-hematin formation, pH regulation or PfATP4. Compound 13i may therefore possess a novel mechanism of action.
Collapse
Affiliation(s)
- Alexa Redway
- Department of Chemistry, The University of the West Indies, Mona, Kingston 7, Jamaica; Chemistry Divison, University of Technology, 237 Old Hope Road, Kingston 6, Jamaica
| | - Christina Spry
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Ainka Brown
- Department of Chemistry, The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Ursula Wiedemann
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Imam Fathoni
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Larnelle F Garnie
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Deyun Qiu
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, South Africa
| | - Adele M Lehane
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Yvette Jackson
- Department of Chemistry, The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Kevin J Saliba
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Nadale Downer-Riley
- Department of Chemistry, The University of the West Indies, Mona, Kingston 7, Jamaica.
| |
Collapse
|
5
|
Godinez-Macias KP, Winzeler EA. CACTI: an in silico chemical analysis tool through the integration of chemogenomic data and clustering analysis. J Cheminform 2024; 16:84. [PMID: 39049122 PMCID: PMC11270953 DOI: 10.1186/s13321-024-00885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024] Open
Abstract
It is well-accepted that knowledge of a small molecule's target can accelerate optimization. Although chemogenomic databases are helpful resources for predicting or finding compound interaction partners, they tend to be limited and poorly annotated. Furthermore, unlike genes, compound identifiers are often not standardized, and many synonyms may exist, especially in the biological literature, making batch analysis of compounds difficult. Here, we constructed an open-source annotation and target hypothesis prediction tool that explores some of the largest chemical and biological databases, mining these for both common name, synonyms, and structurally similar molecules. We used this Chemical Analysis and Clustering for Target Identification (CACTI) tool to analyze the Pathogen Box collection, an open-source set of 400 drug-like compounds active against a variety of microbial pathogens. Our analysis resulted in 4,315 new synonyms, 35,963 pieces of new information and target prediction hints for 58 members.Scientific contributionsWith the employment of this tool, a comprehensive report with known evidence, close analogs and drug-target prediction can be obtained for large-scale chemical libraries that will facilitate their evaluation and future target validation and optimization efforts.
Collapse
Affiliation(s)
- Karla P Godinez-Macias
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA.
| |
Collapse
|
6
|
Lindblom JR, Zhang X, Lehane AM. A pH Fingerprint Assay to Identify Inhibitors of Multiple Validated and Potential Antimalarial Drug Targets. ACS Infect Dis 2024; 10:1185-1200. [PMID: 38499199 PMCID: PMC11019546 DOI: 10.1021/acsinfecdis.3c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
New drugs with novel modes of action are needed to safeguard malaria treatment. In recent years, millions of compounds have been tested for their ability to inhibit the growth of asexual blood-stage Plasmodium falciparum parasites, resulting in the identification of thousands of compounds with antiplasmodial activity. Determining the mechanisms of action of antiplasmodial compounds informs their further development, but remains challenging. A relatively high proportion of compounds identified as killing asexual blood-stage parasites show evidence of targeting the parasite's plasma membrane Na+-extruding, H+-importing pump, PfATP4. Inhibitors of PfATP4 give rise to characteristic changes in the parasite's internal [Na+] and pH. Here, we designed a "pH fingerprint" assay that robustly identifies PfATP4 inhibitors while simultaneously allowing the detection of (and discrimination between) inhibitors of the lactate:H+ transporter PfFNT, which is a validated antimalarial drug target, and the V-type H+ ATPase, which was suggested as a possible target of the clinical candidate ZY19489. In our pH fingerprint assays and subsequent secondary assays, ZY19489 did not show evidence for the inhibition of pH regulation by the V-type H+ ATPase, suggesting that it has a different mode of action in the parasite. The pH fingerprint assay also has the potential to identify protonophores, inhibitors of the acid-loading Cl- transporter(s) (for which the molecular identity(ies) remain elusive), and compounds that act through inhibition of either the glucose transporter PfHT or glycolysis. The pH fingerprint assay therefore provides an efficient starting point to match a proportion of antiplasmodial compounds with their mechanisms of action.
Collapse
Affiliation(s)
| | | | - Adele M. Lehane
- Research School of Biology, Australian National University, Canberra, Australian Capital
Territory 2600, Australia
| |
Collapse
|
7
|
Ling DB, Nguyen W, Looker O, Razook Z, McCann K, Barry AE, Scheurer C, Wittlin S, Famodimu MT, Delves MJ, Bullen HE, Crabb BS, Sleebs BE, Gilson PR. A Pyridyl-Furan Series Developed from the Open Global Health Library Block Red Blood Cell Invasion and Protein Trafficking in Plasmodium falciparum through Potential Inhibition of the Parasite's PI4KIIIB Enzyme. ACS Infect Dis 2023; 9:1695-1710. [PMID: 37639221 PMCID: PMC10496428 DOI: 10.1021/acsinfecdis.3c00138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Indexed: 08/29/2023]
Abstract
With the resistance increasing to current antimalarial medicines, there is an urgent need to discover new drug targets and to develop new medicines against these targets. We therefore screened the Open Global Health Library of Merck KGaA, Darmstadt, Germany, of 250 compounds against the asexual blood stage of the deadliest malarial parasite Plasmodium falciparum, from which eight inhibitors with low micromolar potency were found. Due to its combined potencies against parasite growth and inhibition of red blood cell invasion, the pyridyl-furan compound OGHL250 was prioritized for further optimization. The potency of the series lead compound (WEHI-518) was improved 250-fold to low nanomolar levels against parasite blood-stage growth. Parasites selected for resistance to a related compound, MMV396797, were also resistant to WEHI-518 as well as KDU731, an inhibitor of the phosphatidylinositol kinase PfPI4KIIIB, suggesting that this kinase is the target of the pyridyl-furan series. Inhibition of PfPI4KIIIB blocks multiple stages of the parasite's life cycle and other potent inhibitors are currently under preclinical development. MMV396797-resistant parasites possess an E1316D mutation in PfPKI4IIIB that clusters with known resistance mutations of other inhibitors of the kinase. Building upon earlier studies that showed that PfPI4KIIIB inhibitors block the development of the invasive merozoite parasite stage, we show that members of the pyridyl-furan series also block invasion and/or the conversion of merozoites into ring-stage intracellular parasites through inhibition of protein secretion and export into red blood cells.
Collapse
Affiliation(s)
- Dawson B. Ling
- Burnet Institute,
Melbourne, Victoria3004, Australia
- Department of Microbiology and Immunology,
University of Melbourne, Melbourne, Victoria3010,
Australia
| | - William Nguyen
- The Walter and Eliza Hall Institute of
Medical Research, Melbourne, Victoria3052,
Australia
- Department of Medical Biology, The
University of Melbourne, Parkville, Victoria3010,
Australia
| | - Oliver Looker
- Burnet Institute,
Melbourne, Victoria3004, Australia
| | - Zahra Razook
- Burnet Institute,
Melbourne, Victoria3004, Australia
- School of Medicine and Institute for Mental and
Physical Health and Clinical Translation, Deakin University,
Waurn Ponds, Victoria3216, Australia
| | - Kirsty McCann
- Burnet Institute,
Melbourne, Victoria3004, Australia
- School of Medicine and Institute for Mental and
Physical Health and Clinical Translation, Deakin University,
Waurn Ponds, Victoria3216, Australia
| | - Alyssa E. Barry
- Burnet Institute,
Melbourne, Victoria3004, Australia
- School of Medicine and Institute for Mental and
Physical Health and Clinical Translation, Deakin University,
Waurn Ponds, Victoria3216, Australia
| | - Christian Scheurer
- Swiss Tropical and Public Health
Institute, Allschwil, 4123Switzerland
- University of Basel, Basel,
4001Switzerland
| | - Sergio Wittlin
- Swiss Tropical and Public Health
Institute, Allschwil, 4123Switzerland
- University of Basel, Basel,
4001Switzerland
| | - Mufuliat Toyin Famodimu
- Department of Infection Biology, Faculty of Infectious
Diseases, London School of Hygiene and Tropical Medicine, Kepel
Street, London, WC1E 7HT, U.K.
| | - Michael J Delves
- Department of Infection Biology, Faculty of Infectious
Diseases, London School of Hygiene and Tropical Medicine, Kepel
Street, London, WC1E 7HT, U.K.
| | - Hayley E. Bullen
- Burnet Institute,
Melbourne, Victoria3004, Australia
- Department of Microbiology and Immunology,
University of Melbourne, Melbourne, Victoria3010,
Australia
| | - Brendan S. Crabb
- Burnet Institute,
Melbourne, Victoria3004, Australia
- Department of Microbiology and Immunology,
University of Melbourne, Melbourne, Victoria3010,
Australia
- Department of Immunology and Pathology,
Monash University, Melbourne, Victoria3800,
Australia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of
Medical Research, Melbourne, Victoria3052,
Australia
- Department of Medical Biology, The
University of Melbourne, Parkville, Victoria3010,
Australia
| | - Paul R. Gilson
- Burnet Institute,
Melbourne, Victoria3004, Australia
- Department of Microbiology and Immunology,
University of Melbourne, Melbourne, Victoria3010,
Australia
| |
Collapse
|
8
|
Carucci M, Duez J, Tarning J, García-Barbazán I, Fricot-Monsinjon A, Sissoko A, Dumas L, Gamallo P, Beher B, Amireault P, Dussiot M, Dao M, Hull MV, McNamara CW, Roussel C, Ndour PA, Sanz LM, Gamo FJ, Buffet P. Safe drugs with high potential to block malaria transmission revealed by a spleen-mimetic screening. Nat Commun 2023; 14:1951. [PMID: 37029122 PMCID: PMC10082216 DOI: 10.1038/s41467-023-37359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/15/2023] [Indexed: 04/09/2023] Open
Abstract
Malaria parasites like Plasmodium falciparum multiply in red blood cells (RBC), which are cleared from the bloodstream by the spleen when their deformability is altered. Drug-induced stiffening of Plasmodium falciparum-infected RBC should therefore induce their elimination from the bloodstream. Here, based on this original mechanical approach, we identify safe drugs with strong potential to block the malaria transmission. By screening 13 555 compounds with spleen-mimetic microfilters, we identified 82 that target circulating transmissible form of P. falciparum. NITD609, an orally administered PfATPase inhibitor with known effects on P. falciparum, killed and stiffened transmission stages in vitro at nanomolar concentrations. Short exposures to TD-6450, an orally-administered NS5A hepatitis C virus inhibitor, stiffened transmission parasite stages and killed asexual stages in vitro at high nanomolar concentrations. A Phase 1 study in humans with a primary safety outcome and a secondary pharmacokinetics outcome ( https://clinicaltrials.gov , ID: NCT02022306) showed no severe adverse events either with single or multiple doses. Pharmacokinetic modelling showed that these concentrations can be reached in the plasma of subjects receiving short courses of TD-6450. This physiologically relevant screen identified multiple mechanisms of action, and safe drugs with strong potential as malaria transmission-blocking agents which could be rapidly tested in clinical trials.
Collapse
Affiliation(s)
- Mario Carucci
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
| | | | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Irene García-Barbazán
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, 28222, Madrid, Spain
| | - Aurélie Fricot-Monsinjon
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
| | - Abdoulaye Sissoko
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
| | - Lucie Dumas
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
| | - Pablo Gamallo
- Global Health Medicines R&D, GlaxoSmith Kline (GSK), 28760, Tres Cantos, Spain
| | - Babette Beher
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
| | - Pascal Amireault
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
- Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM, 75014, Paris, France
| | - Michael Dussiot
- Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM, 75014, Paris, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, MA, 02139, Cambridge, USA
| | - Mitchell V Hull
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Case W McNamara
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Camille Roussel
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
- Laboratoire d'Excellence GR-Ex, Paris, France
- Laboratoire d'Hématologie générale, Hôpital Universitaire Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015, Paris, France
| | - Papa Alioune Ndour
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
| | - Laura Maria Sanz
- Global Health Medicines R&D, GlaxoSmith Kline (GSK), 28760, Tres Cantos, Spain
| | | | - Pierre Buffet
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France.
- Department of Infectious & Tropical Disease, AP-HP, Necker Hospital, 75015, Paris, France.
- Centre Médical de l'Institut Pasteur (CMIP), Institut Pasteur, 75015, Paris, France.
| |
Collapse
|
9
|
Ashton TD, Dans MG, Favuzza P, Ngo A, Lehane AM, Zhang X, Qiu D, Chandra Maity B, De N, Schindler KA, Yeo T, Park H, Uhlemann AC, Churchyard A, Baum J, Fidock DA, Jarman KE, Lowes KN, Baud D, Brand S, Jackson PF, Cowman AF, Sleebs BE. Optimization of 2,3-Dihydroquinazolinone-3-carboxamides as Antimalarials Targeting PfATP4. J Med Chem 2023; 66:3540-3565. [PMID: 36812492 PMCID: PMC10009754 DOI: 10.1021/acs.jmedchem.2c02092] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
There is an urgent need to populate the antimalarial clinical portfolio with new candidates because of resistance against frontline antimalarials. To discover new antimalarial chemotypes, we performed a high-throughput screen of the Janssen Jumpstarter library against the Plasmodium falciparum asexual blood-stage parasite and identified the 2,3-dihydroquinazolinone-3-carboxamide scaffold. We defined the SAR and found that 8-substitution on the tricyclic ring system and 3-substitution of the exocyclic arene produced analogues with potent activity against asexual parasites equivalent to clinically used antimalarials. Resistance selection and profiling against drug-resistant parasite strains revealed that this antimalarial chemotype targets PfATP4. Dihydroquinazolinone analogues were shown to disrupt parasite Na+ homeostasis and affect parasite pH, exhibited a fast-to-moderate rate of asexual kill, and blocked gametogenesis, consistent with the phenotype of clinically used PfATP4 inhibitors. Finally, we observed that optimized frontrunner analogue WJM-921 demonstrates oral efficacy in a mouse model of malaria.
Collapse
Affiliation(s)
- Trent D Ashton
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Madeline G Dans
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Paola Favuzza
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Anna Ngo
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Adele M Lehane
- Research School of Biology, Australian National University, Canberra 2601, Australia
| | - Xinxin Zhang
- Research School of Biology, Australian National University, Canberra 2601, Australia
| | - Deyun Qiu
- Research School of Biology, Australian National University, Canberra 2601, Australia
| | | | - Nirupam De
- TCG Lifesciences Pvt. Ltd., Saltlake Sec-V, Kolkata 700091, West Bengal, India
| | - Kyra A Schindler
- Department of Microbiology & Immunology, Columbia University, Irving Medical Center, New York, New York 10032, United States
| | - Tomas Yeo
- Department of Microbiology & Immunology, Columbia University, Irving Medical Center, New York, New York 10032, United States
| | - Heekuk Park
- Department of Microbiology & Immunology, Columbia University, Irving Medical Center, New York, New York 10032, United States
| | - Anne-Catrin Uhlemann
- Department of Microbiology & Immunology, Columbia University, Irving Medical Center, New York, New York 10032, United States
| | - Alisje Churchyard
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ U.K
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ U.K.,School of Biomedical Sciences, University of New South Wales, Sydney 2031, Australia
| | - David A Fidock
- Department of Microbiology & Immunology, Columbia University, Irving Medical Center, New York, New York 10032, United States.,Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University, Irving Medical Center, New York, New York 10032, United States
| | - Kate E Jarman
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Kym N Lowes
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Delphine Baud
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Stephen Brand
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Paul F Jackson
- Global Public Health, Janssen R&D LLC, La Jolla, California 92121, United States
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Brad E Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
10
|
Tewari SG, Elahi R, Kwan B, Rajaram K, Bhatnagar S, Reifman J, Prigge ST, Vaidya AB, Wallqvist A. Metabolic responses in blood-stage malaria parasites associated with increased and decreased sensitivity to PfATP4 inhibitors. Malar J 2023; 22:56. [PMID: 36788578 PMCID: PMC9930341 DOI: 10.1186/s12936-023-04481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Spiroindolone and pyrazoleamide antimalarial compounds target Plasmodium falciparum P-type ATPase (PfATP4) and induce disruption of intracellular Na+ homeostasis. Recently, a PfATP4 mutation was discovered that confers resistance to a pyrazoleamide while increasing sensitivity to a spiroindolone. Transcriptomic and metabolic adaptations that underlie this seemingly contradictory response of P. falciparum to sublethal concentrations of each compound were examined to understand the different cellular accommodation to PfATP4 disruptions. METHODS A genetically engineered P. falciparum Dd2 strain (Dd2A211V) carrying an Ala211Val (A211V) mutation in PfATP4 was used to identify metabolic adaptations associated with the mutation that results in decreased sensitivity to PA21A092 (a pyrazoleamide) and increased sensitivity to KAE609 (a spiroindolone). First, sublethal doses of PA21A092 and KAE609 causing substantial reduction (30-70%) in Dd2A211V parasite replication were identified. Then, at this sublethal dose of PA21A092 (or KAE609), metabolomic and transcriptomic data were collected during the first intraerythrocytic developmental cycle. Finally, the time-resolved data were integrated with a whole-genome metabolic network model of P. falciparum to characterize antimalarial-induced physiological adaptations. RESULTS Sublethal treatment with PA21A092 caused significant (p < 0.001) alterations in the abundances of 91 Plasmodium gene transcripts, whereas only 21 transcripts were significantly altered due to sublethal treatment with KAE609. In the metabolomic data, a substantial alteration (≥ fourfold) in the abundances of carbohydrate metabolites in the presence of either compound was found. The estimated rates of macromolecule syntheses between the two antimalarial-treated conditions were also comparable, except for the rate of lipid synthesis. A closer examination of parasite metabolism in the presence of either compound indicated statistically significant differences in enzymatic activities associated with synthesis of phosphatidylcholine, phosphatidylserine, and phosphatidylinositol. CONCLUSION The results of this study suggest that malaria parasites activate protein kinases via phospholipid-dependent signalling in response to the ionic perturbation induced by the Na+ homeostasis disruptor PA21A092. Therefore, targeted disruption of phospholipid signalling in PA21A092-resistant parasites could be a means to block the emergence of resistance to PA21A092.
Collapse
Affiliation(s)
- Shivendra G Tewari
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.
| | - Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Bobby Kwan
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Suyash Bhatnagar
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Akhil B Vaidya
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA.
| |
Collapse
|
11
|
Barnes CBG, Dans MG, Jonsdottir TK, Crabb BS, Gilson PR. PfATP4 inhibitors in the Medicines for Malaria Venture Malaria Box and Pathogen Box block the schizont-to-ring transition by inhibiting egress rather than invasion. Front Cell Infect Microbiol 2022; 12:1060202. [PMID: 36530423 PMCID: PMC9747762 DOI: 10.3389/fcimb.2022.1060202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
The cation efflux pump Plasmodium falciparum ATPase 4 (PfATP4) maintains Na+ homeostasis in malaria parasites and has been implicated in the mechanism of action of many structurally diverse antimalarial agents, including >7% of the antimalarial compounds in the Medicines for Malaria Venture's 'Malaria Box' and 'Pathogen Box'. Recent screens of the 'Malaria Box' and 'Pathogen Box' revealed that many PfATP4 inhibitors prevent parasites from exiting their host red blood cell (egress) or entering new host cells (invasion), suggesting that these compounds may have additional molecular targets involved in egress or invasion. Here, we demonstrate that five PfATP4 inhibitors reduce egress but not invasion. These compounds appear to inhibit egress by blocking the activation of protein kinase G, an enzyme that, once stimulated, rapidly activates parasite egress. We establish a direct link between egress and PfATP4 function by showing that the inhibition of egress is attenuated in a Na+-depleted environment and in parasites with a mutation in pfatp4. Finally, we show that PfATP4 inhibitors induce host cell lysis when administered prior to the completion of parasite replication. Since host cell lysis mimics egress but is not followed by invasion, this phenomenon likely explains why several PfATP4 inhibitors were previously classified as invasion inhibitors. Collectively, our results confirm that PfATP4-mediated Na+ efflux is critical to the regulation of parasite egress.
Collapse
Affiliation(s)
- Claudia B. G. Barnes
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia,Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Madeline G. Dans
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia,School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Thorey K. Jonsdottir
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia,Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Brendan S. Crabb
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia,Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia,Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Paul R. Gilson
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia,Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia,*Correspondence: Paul R. Gilson,
| |
Collapse
|
12
|
Mohring F, van Schalkwyk DA, Henrici RC, Blasco B, Leroy D, Sutherland CJ, Moon RW. Cation ATPase (ATP4) Orthologue Replacement in the Malaria Parasite Plasmodium knowlesi Reveals Species-Specific Responses to ATP4-Targeting Drugs. mBio 2022; 13:e0117822. [PMID: 36190127 PMCID: PMC9600963 DOI: 10.1128/mbio.01178-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Several unrelated classes of antimalarial compounds developed against Plasmodium falciparum target a parasite-specific P-type ATP-dependent Na+ pump, PfATP4. We have previously shown that other malaria parasite species infecting humans are less susceptible to these compounds. Here, we generated a series of transgenic Plasmodium knowlesi orthologue replacement (OR) lines in which the endogenous pkatp4 locus was replaced by a recodonized P. knowlesi atp4 (pkatp4) coding region or the orthologous coding region from P. falciparum, Plasmodium malariae, Plasmodium ovale subsp. curtisi, or Plasmodium vivax. Each OR transgenic line displayed a similar growth pattern to the parental P. knowlesi line. We found significant orthologue-specific differences in parasite susceptibility to three chemically unrelated ATP4 inhibitors, but not to comparator drugs, among the P. knowlesi OR lines. The PfATP4OR transgenic line of P. knowlesi was significantly more susceptible than our control PkATP4OR line to three ATP4 inhibitors: cipargamin, PA21A092, and SJ733. The PvATP4OR and PmATP4OR lines were similarly susceptible to the control PkATP4OR line, but the PocATP4OR line was significantly less susceptible to all ATP4 inhibitors than the PkATP4OR line. Cipargamin-induced inhibition of Na+ efflux was also significantly greater with the P. falciparum orthologue of ATP4. This confirms that species-specific susceptibility differences previously observed in ex vivo studies of human isolates are partly or wholly enshrined in the primary amino acid sequences of the respective ATP4 orthologues and highlights the need to monitor efficacy of investigational malaria drugs against multiple species. P. knowlesi is now established as an important in vitro model for studying drug susceptibility in non-falciparum malaria parasites. IMPORTANCE Effective drugs are vital to minimize the illness and death caused by malaria. Development of new drugs becomes ever more urgent as drug resistance emerges. Among promising compounds now being developed to treat malaria are several unrelated molecules that each inhibit the same protein in the malaria parasite-ATP4. Here, we exploited the genetic tractability of P. knowlesi to replace its own ATP4 genes with orthologues from five human-infective species to understand the drug susceptibility differences among these parasites. We previously estimated the susceptibility to ATP4-targeting drugs of each species using clinical samples from malaria patients. These estimates closely matched those of the corresponding "hybrid" P. knowlesi parasites carrying introduced ATP4 genes. Thus, species-specific ATP4 inhibitor efficacy is directly determined by the sequence of the gene. Our novel approach to understanding cross-species susceptibility/resistance can strongly support the effort to develop antimalarials that effectively target all human malaria parasite species.
Collapse
Affiliation(s)
- Franziska Mohring
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Donelly A. van Schalkwyk
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ryan C. Henrici
- Center for Global Health, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Colin J. Sutherland
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- UK Health Security Agency Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Robert W. Moon
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
13
|
Qiu D, Pei JV, Rosling JEO, Thathy V, Li D, Xue Y, Tanner JD, Penington JS, Aw YTV, Aw JYH, Xu G, Tripathi AK, Gnadig NF, Yeo T, Fairhurst KJ, Stokes BH, Murithi JM, Kümpornsin K, Hasemer H, Dennis ASM, Ridgway MC, Schmitt EK, Straimer J, Papenfuss AT, Lee MCS, Corry B, Sinnis P, Fidock DA, van Dooren GG, Kirk K, Lehane AM. A G358S mutation in the Plasmodium falciparum Na + pump PfATP4 confers clinically-relevant resistance to cipargamin. Nat Commun 2022; 13:5746. [PMID: 36180431 PMCID: PMC9525273 DOI: 10.1038/s41467-022-33403-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022] Open
Abstract
Diverse compounds target the Plasmodium falciparum Na+ pump PfATP4, with cipargamin and (+)-SJ733 the most clinically-advanced. In a recent clinical trial for cipargamin, recrudescent parasites emerged, with most having a G358S mutation in PfATP4. Here, we show that PfATP4G358S parasites can withstand micromolar concentrations of cipargamin and (+)-SJ733, while remaining susceptible to antimalarials that do not target PfATP4. The G358S mutation in PfATP4, and the equivalent mutation in Toxoplasma gondii ATP4, decrease the sensitivity of ATP4 to inhibition by cipargamin and (+)-SJ733, thereby protecting parasites from disruption of Na+ regulation. The G358S mutation reduces the affinity of PfATP4 for Na+ and is associated with an increase in the parasite's resting cytosolic [Na+]. However, no defect in parasite growth or transmissibility is observed. Our findings suggest that PfATP4 inhibitors in clinical development should be tested against PfATP4G358S parasites, and that their combination with unrelated antimalarials may mitigate against resistance development.
Collapse
Affiliation(s)
- Deyun Qiu
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Jinxin V Pei
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - James E O Rosling
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Vandana Thathy
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Dongdi Li
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Yi Xue
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - John D Tanner
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Jocelyn Sietsma Penington
- Bioinformatic Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Yi Tong Vincent Aw
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Jessica Yi Han Aw
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Guoyue Xu
- Department of Molecular Microbiology & Immunology and Johns Hopkins Malaria Institute, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
| | - Abhai K Tripathi
- Department of Molecular Microbiology & Immunology and Johns Hopkins Malaria Institute, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
| | - Nina F Gnadig
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Tomas Yeo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Kate J Fairhurst
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Barbara H Stokes
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - James M Murithi
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | | | - Heath Hasemer
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Adelaide S M Dennis
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Melanie C Ridgway
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | | | - Judith Straimer
- Novartis Institute for Tropical Diseases, Emeryville, CA, 94608, USA
| | - Anthony T Papenfuss
- Bioinformatic Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Marcus C S Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Ben Corry
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Photini Sinnis
- Department of Molecular Microbiology & Immunology and Johns Hopkins Malaria Institute, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
| | - David A Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Kiaran Kirk
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Adele M Lehane
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia.
| |
Collapse
|
14
|
Selective Inhibition of Plasmodium falciparum ATPase 6 by Artemisinins and Identification of New Classes of Inhibitors after Expression in Yeast. Antimicrob Agents Chemother 2022; 66:e0207921. [PMID: 35465707 PMCID: PMC9112895 DOI: 10.1128/aac.02079-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Treatment failures with artemisinin combination therapies (ACTs) threaten global efforts to eradicate malaria. They highlight the importance of identifying drug targets and new inhibitors and of studying how existing antimalarial classes work. Here, we report the successful development of a heterologous expression-based compound-screening tool. The validated drug target Plasmodium falciparum ATPase 6 (PfATP6) and a mammalian orthologue (sarco/endoplasmic reticulum calcium ATPase 1a [SERCA1a]) were functionally expressed in Saccharomyces cerevisiae, providing a robust, sensitive, and specific screening tool. Whole-cell and in vitro assays consistently demonstrated inhibition and labeling of PfATP6 by artemisinins. Mutations in PfATP6 resulted in fitness costs that were ameliorated in the presence of artemisinin derivatives when studied in the yeast model. As previously hypothesized, PfATP6 is a target of artemisinins. Mammalian SERCA1a can be mutated to become more susceptible to artemisinins. The inexpensive, low-technology yeast screening platform has identified unrelated classes of druggable PfATP6 inhibitors. Resistance to artemisinins may depend on mechanisms that can concomitantly address multitargeting by artemisinins and fitness costs of mutations that reduce artemisinin susceptibility.
Collapse
|
15
|
Martinez-Fabregas J, Tamargo-Azpilicueta J, Diaz-Moreno I. Lysosomes: Multifunctional compartments ruled by a complex regulatory network. FEBS Open Bio 2022; 12:758-774. [PMID: 35218162 PMCID: PMC8972048 DOI: 10.1002/2211-5463.13387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 11/23/2022] Open
Abstract
More than 50 years have passed since Nobel laureate Cristian de Duve described for the first time the presence of tiny subcellular compartments filled with hydrolytic enzymes: the lysosome. For a long time, lysosomes were deemed simple waste bags exerting a plethora of hydrolytic activities involved in the recycling of biopolymers, and lysosomal genes were considered to just be simple housekeeping genes, transcribed in a constitutive fashion. However, lysosomes are emerging as multifunctional signalling hubs involved in multiple aspects of cell biology, both under homeostatic and pathological conditions. Lysosomes are involved in the regulation of cell metabolism through the mTOR/TFEB axis. They are also key players in the regulation and onset of the immune response. Furthermore, it is becoming clear that lysosomal hydrolases can regulate several biological processes outside of the lysosome. They are also implicated in a complex communication network among subcellular compartments that involves intimate organelle‐to‐organelle contacts. Furthermore, lysosomal dysfunction is nowadays accepted as the causative event behind several human pathologies: low frequency inherited diseases, cancer, or neurodegenerative, metabolic, inflammatory, and autoimmune diseases. Recent advances in our knowledge of the complex biology of lysosomes have established them as promising therapeutic targets for the treatment of different pathologies. Although recent discoveries have started to highlight that lysosomes are controlled by a complex web of regulatory networks, which in some cases seem to be cell‐ and stimuli‐dependent, to harness the full potential of lysosomes as therapeutic targets, we need a deeper understanding of the little‐known signalling pathways regulating this subcellular compartment and its functions.
Collapse
Affiliation(s)
- Jonathan Martinez-Fabregas
- Instituto de Investigaciones Químicas (IIQ) - Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - CSIC, Avda. Américo Vespucio 49, 41092, Sevilla, Spain
| | - Joaquin Tamargo-Azpilicueta
- Instituto de Investigaciones Químicas (IIQ) - Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - CSIC, Avda. Américo Vespucio 49, 41092, Sevilla, Spain
| | - Irene Diaz-Moreno
- Instituto de Investigaciones Químicas (IIQ) - Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - CSIC, Avda. Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
16
|
Assessment
in vitro
of the antimalarial and transmission blocking activities of Cipargamin and Ganaplacide in artemisinin resistant
Plasmodium falciparum. Antimicrob Agents Chemother 2022; 66:e0148121. [DOI: 10.1128/aac.01481-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Artemisinin resistance in
Plasmodium falciparum
has emerged and spread widely in the Greater Mekong Subregion threatening current first line artemisinin combination treatments. New antimalarial drugs are needed urgently. Cipargamin (KAE609) and ganaplacide (KAF156) are promising novel antimalarial compounds in advanced stages of development. Both compounds have potent asexual blood stage activities, inhibit
P. falciparum
gametocytogenesis and reduce oocyst development in anopheline mosquitoes. In this study, we compared the asexual and sexual stage activities of cipargamin, ganaplacide and artesunate in artemisinin resistant
P. falciparum
isolates (N=7, K13 mutation; C580Y, G449A and R539T) from Thailand and Cambodia. Asexual blood stage antimalarial activity was evaluated in a SYBR-green I based 72h
in vitro
assay, and the effects on male and female mature stage V gametocytes were assessed in the
P. falciparum
dual gamete formation assay. Ganaplacide had higher activities when compared to cipargamin and artesunate, with a mean (SD) IC50 against asexual stages of 5.5 (1.1) nM, 7.8 (3.9) nM for male gametocytes and 57.9 (59.6) nM for female gametocytes. Cipargamin had a similar potency against male and female gametocytes, with a mean (SD) IC50 of 123.1 (80.2) nM for male gametocytes, 88.5 (52.7) nM for female gametocytes and 2.4 (0.6) nM for asexual stages. Both cipargamin and ganaplacide showed significant transmission-blocking activities against artemisinin resistant
P. falciparum
in vitro
.
Collapse
|
17
|
Tse EG, Aithani L, Anderson M, Cardoso-Silva J, Cincilla G, Conduit GJ, Galushka M, Guan D, Hallyburton I, Irwin BWJ, Kirk K, Lehane AM, Lindblom JCR, Lui R, Matthews S, McCulloch J, Motion A, Ng HL, Öeren M, Robertson MN, Spadavecchio V, Tatsis VA, van Hoorn WP, Wade AD, Whitehead TM, Willis P, Todd MH. An Open Drug Discovery Competition: Experimental Validation of Predictive Models in a Series of Novel Antimalarials. J Med Chem 2021; 64:16450-16463. [PMID: 34748707 DOI: 10.1021/acs.jmedchem.1c00313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The Open Source Malaria (OSM) consortium is developing compounds that kill the human malaria parasite, Plasmodium falciparum, by targeting PfATP4, an essential ion pump on the parasite surface. The structure of PfATP4 has not been determined. Here, we describe a public competition created to develop a predictive model for the identification of PfATP4 inhibitors, thereby reducing project costs associated with the synthesis of inactive compounds. Competition participants could see all entries as they were submitted. In the final round, featuring private sector entrants specializing in machine learning methods, the best-performing models were used to predict novel inhibitors, of which several were synthesized and evaluated against the parasite. Half possessed biological activity, with one featuring a motif that the human chemists familiar with this series would have dismissed as "ill-advised". Since all data and participant interactions remain in the public domain, this research project "lives" and may be improved by others.
Collapse
Affiliation(s)
- Edwin G Tse
- School of Pharmacy, University College London, London WC1N 1AX, U.K
| | - Laksh Aithani
- Exscientia Ltd., The Schrödinger Building, Oxford Science Park, Oxford OX4 4GE, U.K
| | - Mark Anderson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Jonathan Cardoso-Silva
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London WC2B 4BG, U.K
| | | | - Gareth J Conduit
- Intellegens Ltd., Eagle Labs, Chesterton Road, Cambridge CB4 3AZ, U.K.,Theory of Condensed Matter Group, Cavendish Laboratories, University of Cambridge, Cambridge CB3 0HE, U.K
| | | | - Davy Guan
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Irene Hallyburton
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Benedict W J Irwin
- Theory of Condensed Matter Group, Cavendish Laboratories, University of Cambridge, Cambridge CB3 0HE, U.K.,Optibrium Ltd. Blenheim House, Denny End Road, Cambridge CB25 9QE, U.K
| | - Kiaran Kirk
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Adele M Lehane
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Julia C R Lindblom
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Raymond Lui
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Slade Matthews
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - James McCulloch
- Kellerberrin, 6 Wharf Rd, Balmain, Sydney, NSW 2041, Australia
| | - Alice Motion
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ho Leung Ng
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan Kansas 66506, United States
| | - Mario Öeren
- Optibrium Ltd. Blenheim House, Denny End Road, Cambridge CB25 9QE, U.K
| | - Murray N Robertson
- Strathclyde Institute Of Pharmacy And Biomedical Sciences, University of Strathclyde, Glasgow G4 ORE, U.K
| | | | - Vasileios A Tatsis
- Exscientia Ltd., The Schrödinger Building, Oxford Science Park, Oxford OX4 4GE, U.K
| | - Willem P van Hoorn
- Exscientia Ltd., The Schrödinger Building, Oxford Science Park, Oxford OX4 4GE, U.K
| | - Alexander D Wade
- Theory of Condensed Matter Group, Cavendish Laboratories, University of Cambridge, Cambridge CB3 0HE, U.K
| | | | - Paul Willis
- Medicines for Malaria Venture, PO Box 1826, 20 rte de Pre-Bois, 1215 Geneva 15, Switzerland
| | - Matthew H Todd
- School of Pharmacy, University College London, London WC1N 1AX, U.K
| |
Collapse
|
18
|
Maher SP, Vantaux A, Chaumeau V, Chua ACY, Cooper CA, Andolina C, Péneau J, Rouillier M, Rizopoulos Z, Phal S, Piv E, Vong C, Phen S, Chhin C, Tat B, Ouk S, Doeurk B, Kim S, Suriyakan S, Kittiphanakun P, Awuku NA, Conway AJ, Jiang RHY, Russell B, Bifani P, Campo B, Nosten F, Witkowski B, Kyle DE. Probing the distinct chemosensitivity of Plasmodium vivax liver stage parasites and demonstration of 8-aminoquinoline radical cure activity in vitro. Sci Rep 2021; 11:19905. [PMID: 34620901 PMCID: PMC8497498 DOI: 10.1038/s41598-021-99152-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/21/2021] [Indexed: 12/25/2022] Open
Abstract
Improved control of Plasmodium vivax malaria can be achieved with the discovery of new antimalarials with radical cure efficacy, including prevention of relapse caused by hypnozoites residing in the liver of patients. We screened several compound libraries against P. vivax liver stages, including 1565 compounds against mature hypnozoites, resulting in one drug-like and several probe-like hits useful for investigating hypnozoite biology. Primaquine and tafenoquine, administered in combination with chloroquine, are currently the only FDA-approved antimalarials for radical cure, yet their activity against mature P. vivax hypnozoites has not yet been demonstrated in vitro. By developing an extended assay, we show both drugs are individually hypnozonticidal and made more potent when partnered with chloroquine, similar to clinically relevant combinations. Post-hoc analyses of screening data revealed excellent performance of ionophore controls and the high quality of single point assays, demonstrating a platform able to support screening of greater compound numbers. A comparison of P. vivax liver stage activity data with that of the P. cynomolgi blood, P. falciparum blood, and P. berghei liver stages reveals overlap in schizonticidal but not hypnozonticidal activity, indicating that the delivery of new radical curative agents killing P. vivax hypnozoites requires an independent and focused drug development test cascade.
Collapse
Affiliation(s)
- Steven P Maher
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr. Suite 370, Athens, GA, 30602, USA.
| | - Amélie Vantaux
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Rd., Mae Sot, Tak, 63110, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Oxford, UK
| | - Adeline C Y Chua
- Infectious Diseases Laboratories (ID Labs), Agency for Science, Technology and Research (A*STAR), Immunos, Biopolis, Singapore, 138648, Singapore
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Caitlin A Cooper
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr. Suite 370, Athens, GA, 30602, USA
| | - Chiara Andolina
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Rd., Mae Sot, Tak, 63110, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Oxford, UK
| | - Julie Péneau
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Mélanie Rouillier
- Medicines for Malaria Venture (MMV), Route de Pré-Bois 20, 1215, Geneva, Switzerland
| | - Zaira Rizopoulos
- Medicines for Malaria Venture (MMV), Route de Pré-Bois 20, 1215, Geneva, Switzerland
| | - Sivchheng Phal
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Eakpor Piv
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Chantrea Vong
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Sreyvouch Phen
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Chansophea Chhin
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Baura Tat
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Sivkeng Ouk
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Bros Doeurk
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Saorin Kim
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Sangrawee Suriyakan
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Rd., Mae Sot, Tak, 63110, Thailand
| | - Praphan Kittiphanakun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Rd., Mae Sot, Tak, 63110, Thailand
| | - Nana Akua Awuku
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr. Suite 370, Athens, GA, 30602, USA
| | - Amy J Conway
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Disease Research, University of South Florida, 3720 Spectrum Blvd Suite 402, Tampa, FL, 33612, USA
| | - Rays H Y Jiang
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Disease Research, University of South Florida, 3720 Spectrum Blvd Suite 402, Tampa, FL, 33612, USA
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Pablo Bifani
- Infectious Diseases Laboratories (ID Labs), Agency for Science, Technology and Research (A*STAR), Immunos, Biopolis, Singapore, 138648, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Brice Campo
- Medicines for Malaria Venture (MMV), Route de Pré-Bois 20, 1215, Geneva, Switzerland
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Rd., Mae Sot, Tak, 63110, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Oxford, UK
| | - Benoît Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 12201, Cambodia.
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr. Suite 370, Athens, GA, 30602, USA.
| |
Collapse
|
19
|
Brown AC, Guler JL. From Circulation to Cultivation: Plasmodium In Vivo versus In Vitro. Trends Parasitol 2020; 36:914-926. [DOI: 10.1016/j.pt.2020.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022]
|
20
|
Whole-Cell Phenotypic Screening of Medicines for Malaria Venture Pathogen Box Identifies Specific Inhibitors of Plasmodium falciparum Late-Stage Development and Egress. Antimicrob Agents Chemother 2020; 64:AAC.01802-19. [PMID: 32071059 DOI: 10.1128/aac.01802-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
We report a systematic, cellular phenotype-based antimalarial screening of the Medicines for Malaria Venture Pathogen Box collection, which facilitated the identification of specific blockers of late-stage intraerythrocytic development of Plasmodium falciparum First, from standard growth inhibition assays, we identified 173 molecules with antimalarial activity (50% effective concentration [EC50] ≤ 10 μM), which included 62 additional molecules over previously known antimalarial candidates from the Pathogen Box. We identified 90 molecules with EC50 of ≤1 μM, which had significant effect on the ring-trophozoite transition, while 9 molecules inhibited the trophozoite-schizont transition and 21 molecules inhibited the schizont-ring transition (with ≥50% parasites failing to proceed to the next stage) at 1 μM. We therefore rescreened all 173 molecules and validated hits in microscopy to prioritize 12 hits as selective blockers of the schizont-ring transition. Seven of these molecules inhibited the calcium ionophore-induced egress of Toxoplasma gondii, a related apicomplexan parasite, suggesting that the inhibitors may be acting via a conserved mechanism which could be further exploited for target identification studies. We demonstrate that two molecules, MMV020670 and MMV026356, identified as schizont inhibitors in our screens, induce the fragmentation of DNA in merozoites, thereby impairing their ability to egress and invade. Further mechanistic studies would facilitate the therapeutic exploitation of these molecules as broadly active inhibitors targeting late-stage development and egress of apicomplexan parasites relevant to human health.
Collapse
|
21
|
Mi-ichi F, Ishikawa T, Tam VK, Deloer S, Hamano S, Hamada T, Yoshida H. Characterization of Entamoeba histolytica adenosine 5'-phosphosulfate (APS) kinase; validation as a target and provision of leads for the development of new drugs against amoebiasis. PLoS Negl Trop Dis 2019; 13:e0007633. [PMID: 31425516 PMCID: PMC6715247 DOI: 10.1371/journal.pntd.0007633] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 08/29/2019] [Accepted: 07/15/2019] [Indexed: 12/18/2022] Open
Abstract
Background Amoebiasis, caused by Entamoeba histolytica infection, is a global public health problem. However, available drugs to treat amoebiasis are currently limited, and no effective vaccine exists. Therefore, development of new preventive measures against amoebiasis is urgently needed. Methodology/Principal findings Here, to develop new drugs against amoebiasis, we focused on E. histolytica adenosine 5′-phosphosulfate kinase (EhAPSK), an essential enzyme in Entamoeba sulfolipid metabolism. Fatty alcohol disulfates and cholesteryl sulfate, sulfolipids synthesized in Entamoeba, play important roles in trophozoite proliferation and cyst formation. These processes are closely associated with clinical manifestation and severe pathogenesis of amoebiasis and with disease transmission, respectively. We validated a combination approach of in silico molecular docking analysis and an in vitro enzyme activity assay for large scale screening. Docking simulation ranked the binding free energy between a homology modeling structure of EhAPSK and 400 compounds. The 400 compounds were also screened by a 96-well plate-based in vitro APSK activity assay. Among fifteen compounds identified as EhAPSK inhibitors by the in vitro system, six were ranked by the in silico analysis as having high affinity toward EhAPSK. Furthermore, 2-(3-fluorophenoxy)-N-[4-(2-pyridyl)thiazol-2-yl]-acetamide, 3-phenyl-N-[4-(2-pyridyl)thiazol-2-yl]-imidazole-4-carboxamide, and auranofin, which were identified as EhAPSK inhibitors by both in silico and in vitro analyses, halted not only Entamoeba trophozoite proliferation but also cyst formation. These three compounds also dose-dependently impaired the synthesis of sulfolipids in E. histolytica. Conclusions/Significance Hence, the combined approach of in silico and in vitro-based EhAPSK analyses identified compounds that can be evaluated for their effects on Entamoeba. This can provide leads for the development of new anti-amoebic and amoebiasis transmission-blocking drugs. This strategy can also be applied to identify specific APSK inhibitors, which will benefit research into sulfur metabolism and the ubiquitous pathway terminally synthesizing essential sulfur-containing biomolecules. Amoebiasis is a parasitic disease caused by Entamoeba histolytica that is an important health problem worldwide because of high morbidity and mortality rates. However, clinical options are inadequate; therefore, developing new preventive measures, such as anti-amoebic drugs, is urgently needed. In general, for the development of new drugs, the identification of appropriate leads and targets is a prerequisite. Here, to develop new drugs against amoebiasis, we focused on E. histolytica adenosine 5′-phosphosulfate kinase (EhAPSK), an essential enzyme in sulfur metabolism. An EhAPSK-based combination approach of computer-based in silico and laboratory-based in vitro analyses enabled us to screen 400 chemicals, from which we identified 15 that inhibit EhAPSK activity. Furthermore, among them, three compounds halted biological processes in Entamoeba that are closely associated with the clinical manifestation and pathogenesis of amoebiasis and with disease transmission. Hence, this study provides leads as well as a target for the development of new drugs against amoebiasis. This study also provides a basis to identify inhibitors for use in the study of sulfur metabolism, an important topic in general biochemistry and physiology.
Collapse
Affiliation(s)
- Fumika Mi-ichi
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Nabeshima, Saga, Japan
- * E-mail:
| | - Takeshi Ishikawa
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Vo Kha Tam
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Nabeshima, Saga, Japan
| | - Sharmina Deloer
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Nabeshima, Saga, Japan
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Tsuyoshi Hamada
- Nagasaki Advanced Computing Center, Nagasaki University, Bunkyo-machi, Nagasaki, Japan
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Nabeshima, Saga, Japan
| |
Collapse
|
22
|
Gilson PR, Kumarasingha R, Thompson J, Zhang X, Penington JS, Kalhor R, Bullen HE, Lehane AM, Dans MG, de Koning-Ward TF, Holien JK, Soares da Costa TP, Hulett MD, Buskes MJ, Crabb BS, Kirk K, Papenfuss AT, Cowman AF, Abbott BM. A 4-cyano-3-methylisoquinoline inhibitor of Plasmodium falciparum growth targets the sodium efflux pump PfATP4. Sci Rep 2019; 9:10292. [PMID: 31311978 PMCID: PMC6635429 DOI: 10.1038/s41598-019-46500-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022] Open
Abstract
We developed a novel series of antimalarial compounds based on a 4-cyano-3-methylisoquinoline. Our lead compound MB14 achieved modest inhibition of the growth in vitro of the human malaria parasite, Plasmodium falciparum. To identify its biological target we selected for parasites resistant to MB14. Genome sequencing revealed that all resistant parasites bore a single point S374R mutation in the sodium (Na+) efflux transporter PfATP4. There are many compounds known to inhibit PfATP4 and some are under preclinical development. MB14 was shown to inhibit Na+ dependent ATPase activity in parasite membranes, consistent with the compound targeting PfATP4 directly. PfATP4 inhibitors cause swelling and lysis of infected erythrocytes, attributed to the accumulation of Na+ inside the intracellular parasites and the resultant parasite swelling. We show here that inhibitor-induced lysis of infected erythrocytes is dependent upon the parasite protein RhopH2, a component of the new permeability pathways that are induced by the parasite in the erythrocyte membrane. These pathways mediate the influx of Na+ into the infected erythrocyte and their suppression via RhopH2 knockdown limits the accumulation of Na+ within the parasite hence protecting the infected erythrocyte from lysis. This study reveals a role for the parasite-induced new permeability pathways in the mechanism of action of PfATP4 inhibitors.
Collapse
Affiliation(s)
- Paul R Gilson
- Burnet Institute, Melbourne, Victoria, 3004, Australia. .,Monash University, Melbourne, Victoria, 3800, Australia.
| | | | - Jennifer Thompson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Xinxin Zhang
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | | | - Robabeh Kalhor
- La Trobe University, Melbourne, Victoria, 3086, Australia
| | | | - Adele M Lehane
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Madeline G Dans
- Burnet Institute, Melbourne, Victoria, 3004, Australia.,School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | | | - Jessica K Holien
- St. Vincent's Institute of Medical Research, Melbourne, Victoria, 3065, Australia
| | | | - Mark D Hulett
- La Trobe University, Melbourne, Victoria, 3086, Australia
| | | | - Brendan S Crabb
- Burnet Institute, Melbourne, Victoria, 3004, Australia.,Monash University, Melbourne, Victoria, 3800, Australia.,University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Kiaran Kirk
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Anthony T Papenfuss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,University of Melbourne, Melbourne, Victoria, 3010, Australia
| | | |
Collapse
|
23
|
Bhatnagar S, Nicklas S, Morrisey JM, Goldberg DE, Vaidya AB. Diverse Chemical Compounds Target Plasmodium falciparum Plasma Membrane Lipid Homeostasis. ACS Infect Dis 2019; 5:550-558. [PMID: 30638365 DOI: 10.1021/acsinfecdis.8b00277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Lipid homeostasis is essential to the maintenance of life. We previously reported that disruptions of the parasite Na+ homeostasis via inhibition of PfATP4 resulted in elevated cholesterol within the parasite plasma membrane as assessed by saponin sensitivity. A large number of compounds have been shown to target the parasite Na+ homeostasis. We screened 800 compounds from the Malaria and Pathogen Boxes to identify chemotypes that disrupted the parasite plasma membrane lipid homeostasis. Here, we show that the compounds disrupting parasite Na+ homeostasis also induced saponin sensitivity, an indication of parasite lipid homeostasis disruption. Remarkably, 13 compounds were identified that altered the plasma membrane lipid composition independently of the Na+ homeostasis disruption. Further studies suggest that these compounds target the Plasmodium falciparum Niemann-Pick type C1-related (PfNCR1) protein, which is hypothesized to be involved in maintaining plasma membrane lipid composition. PfNCR1, like PfATP4, appears to be targeted by multiple chemotypes with the potential for drug discovery.
Collapse
Affiliation(s)
- Suyash Bhatnagar
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, United States of America
| | - Sezin Nicklas
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, United States of America
| | - Joanne M. Morrisey
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, United States of America
| | - Daniel E. Goldberg
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, 4990 Children’s Place, St. Louis, Missouri 63110, United States of America
| | - Akhil B. Vaidya
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, United States of America
| |
Collapse
|
24
|
Tse EG, Korsik M, Todd MH. The past, present and future of anti-malarial medicines. Malar J 2019; 18:93. [PMID: 30902052 PMCID: PMC6431062 DOI: 10.1186/s12936-019-2724-z] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/12/2019] [Indexed: 11/10/2022] Open
Abstract
Great progress has been made in recent years to reduce the high level of suffering caused by malaria worldwide. Notably, the use of insecticide-treated mosquito nets for malaria prevention and the use of artemisinin-based combination therapy (ACT) for malaria treatment have made a significant impact. Nevertheless, the development of resistance to the past and present anti-malarial drugs highlights the need for continued research to stay one step ahead. New drugs are needed, particularly those with new mechanisms of action. Here the range of anti-malarial medicines developed over the years are reviewed, beginning with the discovery of quinine in the early 1800s, through to modern day ACT and the recently-approved tafenoquine. A number of new potential anti-malarial drugs currently in development are outlined, along with a description of the hit to lead campaign from which it originated. Finally, promising novel mechanisms of action for these and future anti-malarial medicines are outlined.
Collapse
Affiliation(s)
- Edwin G Tse
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Marat Korsik
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Matthew H Todd
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia. .,School of Pharmacy, University College London, London, WC1N 1AX, United Kingdom.
| |
Collapse
|
25
|
Lehane AM, Dennis ASM, Bray KO, Li D, Rajendran E, McCoy JM, McArthur HM, Winterberg M, Rahimi F, Tonkin CJ, Kirk K, van Dooren GG. Characterization of the ATP4 ion pump in Toxoplasma gondii. J Biol Chem 2019; 294:5720-5734. [PMID: 30723156 DOI: 10.1074/jbc.ra118.006706] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/31/2019] [Indexed: 12/22/2022] Open
Abstract
The Plasmodium falciparum ATPase PfATP4 is the target of a diverse range of antimalarial compounds, including the clinical drug candidate cipargamin. PfATP4 was originally annotated as a Ca2+ transporter, but recent evidence suggests that it is a Na+ efflux pump, extruding Na+ in exchange for H+ Here we demonstrate that ATP4 proteins belong to a clade of P-type ATPases that are restricted to apicomplexans and their closest relatives. We employed a variety of genetic and physiological approaches to investigate the ATP4 protein of the apicomplexan Toxoplasma gondii, TgATP4. We show that TgATP4 is a plasma membrane protein. Knockdown of TgATP4 had no effect on resting pH or Ca2+ but rendered parasites unable to regulate their cytosolic Na+ concentration ([Na+]cyt). PfATP4 inhibitors caused an increase in [Na+]cyt and a cytosolic alkalinization in WT but not TgATP4 knockdown parasites. Parasites in which TgATP4 was knocked down or disrupted exhibited a growth defect, attributable to reduced viability of extracellular parasites. Parasites in which TgATP4 had been disrupted showed reduced virulence in mice. These results provide evidence for ATP4 proteins playing a key conserved role in Na+ regulation in apicomplexan parasites.
Collapse
Affiliation(s)
- Adele M Lehane
- From the Research School of Biology, Australian National University, Canberra, ACT 2601, Australia,
| | - Adelaide S M Dennis
- From the Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Katherine O Bray
- From the Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Dongdi Li
- From the Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Esther Rajendran
- From the Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - James M McCoy
- the Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia, and.,the Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Hillary M McArthur
- From the Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Markus Winterberg
- From the Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Farid Rahimi
- From the Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Christopher J Tonkin
- the Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia, and.,the Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kiaran Kirk
- From the Research School of Biology, Australian National University, Canberra, ACT 2601, Australia,
| | - Giel G van Dooren
- From the Research School of Biology, Australian National University, Canberra, ACT 2601, Australia,
| |
Collapse
|
26
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
27
|
Tougan T, Toya Y, Uchihashi K, Horii T. Application of the automated haematology analyzer XN-30 for discovery and development of anti-malarial drugs. Malar J 2019; 18:8. [PMID: 30642330 PMCID: PMC6332852 DOI: 10.1186/s12936-019-2642-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/09/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The erythrocytic stage of Plasmodium falciparum parasites in humans is clinically important, as the parasites at this growth stage causes malarial symptoms. Most of the currently available anti-malarial drugs target this stage, but the emergence and spread of parasites resistant to anti-malarial drugs are a major challenge to global eradication efforts; therefore, the development of novel medicines is urgently required. In this study, the in vitro anti-malarial activity of five current anti-malarial drugs (artemisinin, atovaquone, chloroquine, mefloquine, and pyrimethamine) and 400 compounds from the Pathogen Box provided by the Medicines for Malaria Venture on P. falciparum parasites was characterized using the XN-30 analyzer. Furthermore, the outcomes obtained using the analyser were classified according to the parasitaemias of total and each developmental stages. RESULTS The growth inhibition rate and the half-maximal (50%) inhibitory concentration (IC50) of the five current anti-malarial drugs were calculated from the parasitaemia detected using the XN-30 analyzer. Respective strains and drugs presented strongly fitted sigmoidal curves, and the median SD at all tested concentrations was 1.6, suggesting that the variation in values measured with the analyser was acceptably low for the comparison of drug efficacy. Furthermore, the anti-malarial activity of the 400 compounds from the Pathogen Box was tested, and 141 drugs were found to be effective. In addition, the efficacy was classified into 4 types (Type I, parasites were arrested or killed without DNA replication; Type II, parasites were arrested or killed similar to Type I, and the parasitaemia was apparently decreased; Type III, parasites progressed to trophozoite without sufficient DNA replication; and Type IV, parasites were arrested at late trophozoite or schizont after DNA replication). CONCLUSION The current study demonstrates that the XN-30 analyzer objectively, reproducibly, and easily evaluated and characterized the anti-malarial efficacy of various compounds. The results indicate the potential of the XN-30 analyzer as a powerful tool for drug discovery and development in addition to its use as an important diagnostic tool.
Collapse
Affiliation(s)
- Takahiro Tougan
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuji Toya
- Sysmex Corporation, 4-4-4 Takatsukadai Nishiku, Kobe, Hyogo, 651-2271, Japan
| | - Kinya Uchihashi
- Sysmex Corporation, 4-4-4 Takatsukadai Nishiku, Kobe, Hyogo, 651-2271, Japan
| | - Toshihiro Horii
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
28
|
Rufener R, Dick L, D'Ascoli L, Ritler D, Hizem A, Wells TNC, Hemphill A, Lundström-Stadelmann B. Repurposing of an old drug: In vitro and in vivo efficacies of buparvaquone against Echinococcus multilocularis. Int J Parasitol Drugs Drug Resist 2018; 8:440-450. [PMID: 30396011 PMCID: PMC6216040 DOI: 10.1016/j.ijpddr.2018.10.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
The metacestode stage of the fox tapeworm Echinococcus multilocularis causes the lethal disease alveolar echinococcosis. Current chemotherapeutic treatment options are based on benzimidazoles (albendazole and mebendazole), which are insufficient and hence alternative drugs are needed. In this study, we screened the 400 compounds of the Medicines for Malaria Venture (MMV) Pathogen Box against E. multilocularis metacestodes. For the screen, we employed the phosphoglucose isomerase (PGI) assay which assesses drug-induced damage on metacestodes, and identified ten new compounds with activity against the parasite. The anti-theilerial drug MMV689480 (buparvaquone) and MMV671636 (ELQ-400) were the most promising compounds, with an IC50 of 2.87 μM and 0.02 μM respectively against in vitro cultured E. multilocularis metacestodes. Both drugs suggested a therapeutic window based on their cytotoxicity against mammalian cells. Transmission electron microscopy revealed that treatment with buparvaquone impaired parasite mitochondria early on and additional tests showed that buparvaquone had a reduced activity under anaerobic conditions. Furthermore, we established a system to assess mitochondrial respiration in isolated E. multilocularis cells in real time using the Seahorse XFp Analyzer and demonstrated inhibition of the cytochrome bc1 complex by buparvaquone. Mice with secondary alveolar echinococcosis were treated with buparvaquone (100 mg/kg per dose, three doses per week, four weeks of treatment), but the drug failed to reduce the parasite burden in vivo. Future studies will reveal whether improved formulations of buparvaquone could increase its effectivity.
Collapse
Affiliation(s)
- Reto Rufener
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Luca Dick
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Laura D'Ascoli
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Dominic Ritler
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Amani Hizem
- Laboratory of Medical and Molecular Parasitology-Mycology, LR 12ES08, Department of Clinical Biology B, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, 5000, Tunisia
| | - Timothy N C Wells
- Medicines for Malaria Venture (MMV), Route de Pré-Bois 20, 1215, Geneva, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Britta Lundström-Stadelmann
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland.
| |
Collapse
|
29
|
Rosling JEO, Ridgway MC, Summers RL, Kirk K, Lehane AM. Biochemical characterization and chemical inhibition of PfATP4-associated Na +-ATPase activity in Plasmodium falciparum membranes. J Biol Chem 2018; 293:13327-13337. [PMID: 29986883 DOI: 10.1074/jbc.ra118.003640] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/26/2018] [Indexed: 11/06/2022] Open
Abstract
The antimalarial activity of chemically diverse compounds, including the clinical candidate cipargamin, has been linked to the ATPase PfATP4 in the malaria-causing parasite Plasmodium falciparum The characterization of PfATP4 has been hampered by the inability thus far to achieve its functional expression in a heterologous system. Here, we optimized a membrane ATPase assay to probe the function of PfATP4 and its chemical sensitivity. We found that cipargamin inhibited the Na+-dependent ATPase activity present in P. falciparum membranes from WT parasites and that its potency was reduced in cipargamin-resistant PfATP4-mutant parasites. The cipargamin-sensitive fraction of membrane ATPase activity was inhibited by all 28 of the compounds in the "Malaria Box" shown previously to disrupt ion regulation in P. falciparum in a cipargamin-like manner. This is consistent with PfATP4 being the direct target of these compounds. Characterization of the cipargamin-sensitive ATPase activity yielded data consistent with PfATP4 being a Na+ transporter that is sensitive to physiologically relevant perturbations of pH, but not of [K+] or [Ca2+]. With an apparent Km for ATP of 0.2 mm and an apparent Km for Na+ of 16-17 mm, the protein is predicted to operate at below its half-maximal rate under normal physiological conditions, allowing the rate of Na+ efflux to increase in response to an increase in cytosolic [Na+]. In membranes from a cipargamin-resistant PfATP4-mutant line, the apparent Km for Na+ is slightly elevated. Our study provides new insights into the biochemical properties and chemical sensitivity of an important new antimalarial drug target.
Collapse
Affiliation(s)
- James E O Rosling
- From the Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Melanie C Ridgway
- From the Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Robert L Summers
- From the Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Kiaran Kirk
- From the Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Adele M Lehane
- From the Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|