1
|
Huang L, Feng Z, Yang W, Zhu Y, Li J, Huang L, Wang R, Peng L, He M, Tang Y, Chen P, Lan C, Zhou X, Zhou L, Ye C, Zhang L, Jiang J, Ye Y, Wang R, He Y, Liu Y, Gong H, Xiong H, Xia L, Xu H, Zhang B, Tu R, Du C, Cui L, Gao J, Huang Z, Tang C. Parecoxib sequential with imrecoxib for occurrence and remission of severe acute pancreatitis: a multicentre, double-blind, randomised, placebo-controlled trial. Gut 2025:gutjnl-2024-334038. [PMID: 40301118 DOI: 10.1136/gutjnl-2024-334038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 04/12/2025] [Indexed: 05/01/2025]
Abstract
BACKGROUND There is no effective drug treatment for the organ failure (OF) caused by severe acute pancreatitis (SAP). OBJECTIVE We aimed to evaluate the efficacy of cyclooxygenase-2 inhibitors (COX-2-Is) on the treatment of SAP and its safety. DESIGN In this multicentre, double-blind, randomised, placebo-controlled, investigator-initiated trial, 348 patients with acute pancreatitis aged 18-75 years, <1 week from onset of illness to admission, and Acute Physiology and Chronic Health Evaluation II Score ≥7 or modified Marshall Score ≥2, were randomly assigned (1:1) to the COX-2-Is group (parecoxib sequential with imrecoxib) or the placebo group. SAP occurrence, duration of OF, local complications, clinical outcomes and serum inflammatory mediators were measured. RESULTS Compared with the placebo group, SAP occurrence was reduced by 20.7% (77.6% vs 61.5%, p=0.001) and the persistent OF duration in SAP was shortened by 2 days (p<0.001) after COX-2-Is treatment. For patients enrolled within or after 48 hours from symptom onset, SAP occurrence was reduced by 23.8% (p=0.001) and 8.5% (p=0.202), and the persistent OF duration in SAP was shortened by 3 days (p=0.001) and 2 days (p=0.010) after COX-2-Is treatment, respectively. The occurrence of local complications in the COX-2-Is group was significantly lower than those in the placebo group, 33.7% vs 49.1%, p=0.004. The serum levels of inflammatory mediators and 30-day mortality (from 8.6% to 3.4%) were significantly reduced after COX-2-Is treatment, p<0.05. The incidence of adverse events was similar between the two treatment groups. CONCLUSION Parecoxib sequential with imrecoxib was effective and well tolerated in reducing the occurrence and duration of SAP and local complications through suppression of systemic inflammatory response, leading to decreased morbidity.
Collapse
Affiliation(s)
- Luming Huang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Lab of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zhe Feng
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wenjuan Yang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yin Zhu
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Libin Huang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Rui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lan Peng
- Department of Gastroenterology, Wenjiang District People's Hospital, Chengdu, Sichuan, China
| | - Mingshun He
- Department of Gastroenterology, Nanbu Country People's Hospital, Nanchong, Sichuan, China
| | - Yingmei Tang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ping Chen
- Department of Gastroenterology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Cheng Lan
- Department of Gastroenterology, Hainan Medical University Affiliated Hainan Hospital, Haikou, Hainan, China
| | - Xiaoqing Zhou
- Department of Gastroenterology, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Lin Zhou
- Department of Gastroenterology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Cheng Ye
- Department of Gastroenterology, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, Zhejiang, China
| | - Linhao Zhang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jingsun Jiang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yanting Ye
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Rui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yan He
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yan Liu
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hui Gong
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Huifang Xiong
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Liang Xia
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Haiyan Xu
- Department of Gastroenterology, Wenjiang District People's Hospital, Chengdu, Sichuan, China
| | - Bin Zhang
- Department of Gastroenterology, Nanbu Country People's Hospital, Nanchong, Sichuan, China
| | - Rongfang Tu
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chun Du
- Department of Gastroenterology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Lujia Cui
- Department of Gastroenterology, Hainan Medical University Affiliated Hainan Hospital, Haikou, Hainan, China
| | - Jinhang Gao
- Lab of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zhiyin Huang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Lab of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Chengwei Tang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Lab of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Liou GY, Byrd CJ, Storz P, Messex JK. Cytokine CCL9 Mediates Oncogenic KRAS-Induced Pancreatic Acinar-to-Ductal Metaplasia by Promoting Reactive Oxygen Species and Metalloproteinases. Int J Mol Sci 2024; 25:4726. [PMID: 38731942 PMCID: PMC11083758 DOI: 10.3390/ijms25094726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) can originate from acinar-to-ductal metaplasia (ADM). Pancreatic acini harboring oncogenic Kras mutations are transdifferentiated to a duct-like phenotype that further progresses to become pancreatic intraepithelial neoplasia (PanIN) lesions, giving rise to PDAC. Although ADM formation is frequently observed in KrasG12D transgenic mouse models of PDAC, the exact mechanisms of how oncogenic KrasG12D regulates this process remain an enigma. Herein, we revealed a new downstream target of oncogenic Kras, cytokine CCL9, during ADM formation. Higher levels of CCL9 and its receptors, CCR1 and CCR3, were detected in ADM regions of the pancreas in p48cre:KrasG12D mice and human PDAC patients. Knockdown of CCL9 in KrasG12D-expressed pancreatic acini reduced KrasG12D-induced ADM in a 3D organoid culture system. Moreover, exogenously added recombinant CCL9 and overexpression of CCL9 in primary pancreatic acini induced pancreatic ADM. We also showed that, functioning as a downstream target of KrasG12D, CCL9 promoted pancreatic ADM through upregulation of the intracellular levels of reactive oxygen species (ROS) and metalloproteinases (MMPs), including MMP14, MMP3 and MMP2. Blockade of MMPs via its generic inhibitor GM6001 or knockdown of specific MMP such as MMP14 and MMP3 decreased CCL9-induced pancreatic ADM. In p48cre:KrasG12D transgenic mice, blockade of CCL9 through its specific neutralizing antibody attenuated pancreatic ADM structures and PanIN lesion formation. Furthermore, it also diminished infiltrating macrophages and expression of MMP14, MMP3 and MMP2 in the ADM areas. Altogether, our results provide novel mechanistic insight into how oncogenic Kras enhances pancreatic ADM through its new downstream target molecule, CCL9, to initiate PDAC.
Collapse
Affiliation(s)
- Geou-Yarh Liou
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Crystal J. Byrd
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Justin K. Messex
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| |
Collapse
|
3
|
Otsuka Y, Hara A, Minaga K, Sekai I, Kurimoto M, Masuta Y, Takada R, Yoshikawa T, Kamata K, Kudo M, Watanabe T. Leucine-rich repeat kinase 2 promotes the development of experimental severe acute pancreatitis. Clin Exp Immunol 2023; 214:182-196. [PMID: 37847786 PMCID: PMC10714192 DOI: 10.1093/cei/uxad106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/10/2023] [Accepted: 09/08/2023] [Indexed: 10/19/2023] Open
Abstract
Translocation of gut bacteria into the pancreas promotes the development of severe acute pancreatitis (SAP). Recent clinical studies have also highlighted the association between fungal infections and SAP. The sensing of gut bacteria by pattern recognition receptors promotes the development of SAP via the production of proinflammatory cytokines; however, the mechanism by which gut fungi mediate SAP remains largely unknown. Leucine-rich repeat kinase 2 (LRRK2) is a multifunctional protein that regulates innate immunity against fungi via Dectin-1 activation. Here, we investigated the role of LRRK2 in SAP development and observed that administration of LRRK2 inhibitors attenuated SAP development. The degree of SAP was greater in Lrrk2 transgenic (Tg) mice than in control mice and was accompanied by an increased production of nuclear factor-kappaB-dependent proinflammatory cytokines. Ablation of the fungal mycobiome by anti-fungal drugs inhibited SAP development in Lrrk2 Tg mice, whereas the degree of SAP was comparable in Lrrk2 Tg mice with or without gut sterilization by a broad range of antibiotics. Pancreatic mononuclear cells from Lrrk2 Tg mice produced large amounts of IL-6 and TNF-α upon stimulation with Dectin-1 ligands, and inhibition of the Dectin-1 pathway by a spleen tyrosine kinase inhibitor protected Lrrk2 Tg mice from SAP. These data indicate that LRRK2 activation is involved in the development of SAP through proinflammatory cytokine responses upon fungal exposure.
Collapse
Affiliation(s)
- Yasuo Otsuka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Akane Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Ikue Sekai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Masayuki Kurimoto
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yasuhiro Masuta
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Ryutaro Takada
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Tomoe Yoshikawa
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
4
|
Single-cell transcriptomics of immune cells in lymph nodes reveals their composition and alterations in functional dynamics during the early stages of bubonic plague. SCIENCE CHINA. LIFE SCIENCES 2023; 66:110-126. [PMID: 35943690 DOI: 10.1007/s11427-021-2119-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 04/26/2022] [Indexed: 02/04/2023]
Abstract
Bubonic plague caused by Yersinia pestis is highly infectious and often fatal. Characterization of the host immune response and its subsequent suppression by Y. pestis is critical to understanding the pathogenesis of Y. pestis. Here, we utilized single-cell RNA sequencing to systematically profile the transcriptomes of immune cells in draining lymph nodes (dLNs) during the early stage of Y. pestis infection. Dendritic cells responded to Y. pestis within 2 h post-infection (hpi), followed by the activation of macrophages/monocytes (Mφs/Mons) and recruitment of polymorphonuclear neutrophils (PMNs) to dLNs at 24 hpi. Analysis of cell-to-cell communication suggests that PMNs may be recruited to lymph nodes following the secretion of CCL9 by Mφs/Mons stimulated through CCR1-CCL9 interaction. Significant functional suppression of all the three innate immune cell types occurred during the early stage of infection. In summary, we present a dynamic immune landscape, at single-cell resolution, of murine dLNs involved in the response to Y. pestis infection, which may facilitate the understanding of the plague pathogenesis of during the early stage of infection.
Collapse
|
5
|
Du W, Adkisson C, Ye X, Duran CL, Chellakkan Selvanesan B, Gravekamp C, Oktay MH, McAuliffe JC, Condeelis JS, Panarelli NC, Norgard RJ, Sela Y, Stanger BZ, Entenberg D. SWIP-a stabilized window for intravital imaging of the murine pancreas. Open Biol 2022; 12:210273. [PMID: 35702996 PMCID: PMC9198798 DOI: 10.1098/rsob.210273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 05/17/2022] [Indexed: 01/04/2023] Open
Abstract
Pancreatitis and pancreatic ductal adenocarcinoma (PDAC) are grave illnesses with high levels of morbidity and mortality. Intravital imaging (IVI) is a powerful technique for visualizing physiological processes in both health and disease. However, the application of IVI to the murine pancreas presents significant challenges, as it is a deep, compliant, visceral organ that is difficult to access, easily damaged and susceptible to motion artefacts. Existing imaging windows for stabilizing the pancreas during IVI have unfortunately shown poor stability for time-lapsed imaging on the minutes to hours scale, or are unable to accommodate both the healthy and tumour-bearing pancreata. To address these issues, we developed an improved stabilized window for intravital imaging of the pancreas (SWIP), which can be applied to not only the healthy pancreas but also to solid tumours like PDAC. Here, we validate the SWIP and use it to visualize a variety of processes for the first time, including (1) single-cell dynamics within the healthy pancreas, (2) transformation from healthy pancreas to acute pancreatitis induced by cerulein, and (3) the physiology of PDAC in both autochthonous and orthotopically injected models. SWIP can not only improve the imaging stability but also expand the application of IVI in both benign and malignant pancreas diseases.
Collapse
Affiliation(s)
- Wei Du
- Breast Center, Peking University People's Hospital, Beijing, People's Republic of China
- Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Christian Adkisson
- Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Cell Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Xianjun Ye
- Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Camille L. Duran
- Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Benson Chellakkan Selvanesan
- Department of Microbiology and Immunology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Claudia Gravekamp
- Department of Microbiology and Immunology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Maja H. Oktay
- Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - John C. McAuliffe
- Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - John S. Condeelis
- Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Cell Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Nicole C. Panarelli
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Robert J. Norgard
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yogev Sela
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ben Z. Stanger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Entenberg
- Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
6
|
Durst M, Graf TR, Graf R, Kron M, Arras M, Zechner D, Palme R, Talbot SR, Jirkof P. Analysis of Pain and Analgesia Protocols in Acute Cerulein-Induced Pancreatitis in Male C57BL/6 Mice. Front Physiol 2021; 12:744638. [PMID: 34880773 PMCID: PMC8645955 DOI: 10.3389/fphys.2021.744638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Pancreatitis is known to be painful in humans and companion animals. However, the extent of pain in experimental mouse models of acute pancreatitis is unknown. Consequently, the severity classification of acute pancreatitis in mice is controversially discussed and standardized pain management is missing. In this study, we investigated acute Cerulein-induced pancreatitis with pain-specific and well-being orientated parameters to detect its impact on mice. Male C57BL/6J male mice were injected with Cerulein; animals that received saline injections served as control group. The animals were observed for weight change and water intake. To assess pain, behaviors like stretch-and-press and reduced rearing, the Mouse Grimace Scale, and von Frey hypersensitivity were assessed. Fecal corticosterone metabolites and burrowing behavior were assessed to detect changes in the animal’s well-being. Pancreatitis severity was evaluated with amylase and lipase in the blood and pancreas histology. To investigate whether different analgesics can alleviate signs of pain, and if they influence pancreas inflammation, animals received Buprenorphine, Paracetamol in combination with Tramadol, or Metamizole in the drinking water. The calculated intake of these analgesics via drinking reached values stated to be efficient for pain alleviation. While pancreatitis did not seem to be painful, we detected acute pain from Cerulein injections that could not be alleviated by analgesics. The number of inflammatory cells in the pancreas did not differ with the analgesic administered. In conclusion: (1) Cerulein injections appear to be acutely painful but pain could not be alleviated by the tested analgesics, (2) acute pancreatitis induced by our protocol did not induce obvious signs of pain, (3) analgesic substances had no detectable influence on inflammation. Nevertheless, protocols inducing more severe or even chronic pancreatitis might evoke more pain and analgesic treatment might become imperative. Considering our results, we recommend the use of Buprenorphine via drinking water in these protocols. Further studies to search for efficient analgesics that can alleviate the acute pain induced by Cerulein injections are needed.
Collapse
Affiliation(s)
- Mattea Durst
- Centre for Surgical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Theresia Reding Graf
- Pancreas Research Laboratory, Department of Visceral Surgery & Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Rolf Graf
- Pancreas Research Laboratory, Department of Visceral Surgery & Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Mareike Kron
- Centre for Surgical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Margarete Arras
- Centre for Surgical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Dietmar Zechner
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center, Rostock, Germany
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Steven R Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Paulin Jirkof
- Centre for Surgical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Office for Animal Welfare & 3R, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Boonchan M, Arimochi H, Otsuka K, Kobayashi T, Uehara H, Jaroonwitchawan T, Sasaki Y, Tsukumo SI, Yasutomo K. Necroptosis protects against exacerbation of acute pancreatitis. Cell Death Dis 2021; 12:601. [PMID: 34112763 PMCID: PMC8192754 DOI: 10.1038/s41419-021-03847-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
The sensing of various extrinsic stimuli triggers the receptor-interacting protein kinase-3 (RIPK3)-mediated signaling pathway, which leads to mixed-lineage kinase-like (MLKL) phosphorylation followed by necroptosis. Although necroptosis is a form of cell death and is involved in inflammatory conditions, the roles of necroptosis in acute pancreatitis (AP) remain unclear. In the current study, we administered caerulein to Ripk3- or Mlkl-deficient mice (Ripk3−/− or Mlkl−/− mice, respectively) and assessed the roles of necroptosis in AP. We found that Ripk3−/− mice had significantly more severe pancreatic edema and inflammation associated with macrophage and neutrophil infiltration than control mice. Consistently, Mlkl−/− mice were more susceptible to caerulein-induced AP, which occurred in a time- and dose-dependent manner, than control mice. Mlkl−/− mice exhibit weight loss, edematous pancreatitis, necrotizing pancreatitis, and acinar cell dedifferentiation in response to tissue damage. Genetic deletion of Mlkl resulted in downregulation of the antiapoptotic genes Bclxl and Cflar in association with increases in the numbers of apoptotic cells, as detected by TUNEL assay. These findings suggest that RIPK3 and MLKL-mediated necroptosis exerts protective effects in AP and caution against the use of necroptosis inhibitors for AP treatment.
Collapse
Affiliation(s)
- Michittra Boonchan
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Hideki Arimochi
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Kunihiro Otsuka
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan.,Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
| | - Tomoko Kobayashi
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Hisanori Uehara
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Thiranut Jaroonwitchawan
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Yuki Sasaki
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Shin-Ichi Tsukumo
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan.,Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
| | - Koji Yasutomo
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan. .,Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan. .,Research Cluster Program on Immunological Diseases, Tokushima University, Tokushima, Japan.
| |
Collapse
|
8
|
Bu HF, Subramanian S, Geng H, Wang X, Liu F, Chou PM, Du C, De Plaen IG, Tan XD. MFG-E8 Plays an Important Role in Attenuating Cerulein-Induced Acute Pancreatitis in Mice. Cells 2021; 10:728. [PMID: 33806041 PMCID: PMC8064467 DOI: 10.3390/cells10040728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/23/2022] Open
Abstract
Milk fat globule-EGF factor 8 (MFG-E8) is a secreted glycoprotein that regulates tissue homeostasis, possesses potent anti-inflammatory properties, and protects against tissue injury. The human pancreas expresses MFG-E8; however, the role of MFG-E8 in the pancreas remains unclear. We examined the expression of MFG-E8 in the pancreas at baseline and during cerulein-induced acute pancreatitis in mice and determined whether MFG-E8 attenuates the progression of pancreatitis, a serious inflammatory condition that can be life-threatening. We administered cerulein to wild-type (WT) and Mfge8 knockout (KO) mice to induce pancreatitis. Immunoblot analysis showed that MFG-E8 is constitutively expressed in the murine pancreas and is increased in mice with cerulein-induced acute pancreatitis. In situ hybridization revealed that ductal epithelial cells in the mouse pancreas express Mfge8 transcripts at baseline. During pancreatitis, Mfge8 transcripts were abundantly expressed in acinar cells and endothelial cells in addition to ductal epithelial cells. Knocking out Mfge8 in mice exacerbated the severity of cerulein-induced acute pancreatitis and delayed its resolution. In contrast, administration of recombinant MFG-E8 attenuated cerulein-induced acute pancreatitis and promoted repair of pancreatic injury in Mfge8 KO mice. Taken together, our study suggests that MFG-E8 protects the pancreas against inflammatory injury and promotes pancreatic tissue repair. MFG-E8 may represent a novel therapeutic target in acute pancreatitis.
Collapse
Affiliation(s)
- Heng-Fu Bu
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Saravanan Subramanian
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Hua Geng
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Xiao Wang
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Fangyi Liu
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Pauline M. Chou
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Chao Du
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Isabelle G. De Plaen
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Division of Neonatology, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Xiao-Di Tan
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Department of Research & Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
9
|
New-Aaron M, Ganesan M, Dagur RS, Kharbanda KK, Poluektova LY, Osna NA. Pancreatogenic Diabetes: Triggering Effects of Alcohol and HIV. BIOLOGY 2021; 10:108. [PMID: 33546230 PMCID: PMC7913335 DOI: 10.3390/biology10020108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Multiorgan failure may not be completely resolved among people living with HIV despite HAART use. Although the chances of organ dysfunction may be relatively low, alcohol may potentiate HIV-induced toxic effects in the organs of alcohol-abusing, HIV-infected individuals. The pancreas is one of the most implicated organs, which is manifested as diabetes mellitus or pancreatic cancer. Both alcohol and HIV may trigger pancreatitis, but the combined effects have not been explored. The aim of this review is to explore the literature for understanding the mechanisms of HIV and alcohol-induced pancreatotoxicity. We found that while premature alcohol-inducing zymogen activation is a known trigger of alcoholic pancreatitis, HIV entry through C-C chemokine receptor type 5(CCR5)into pancreatic acinar cells may also contribute to pancreatitis in people living with HIV (PLWH). HIV proteins induce oxidative and ER stresses, causing necrosis. Furthermore, infiltrative immune cells induce necrosis on HIV-containing acinar cells. When necrotic products interact with pancreatic stellate cells, they become activated, leading to the release of both inflammatory and profibrotic cytokines and resulting in pancreatitis. Effective therapeutic strategies should block CCR5 and ameliorate alcohol's effects on acinar cells.
Collapse
Affiliation(s)
- Moses New-Aaron
- Department of Environmental Health, Occupational Health and Toxicology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
| | - Murali Ganesan
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Raghubendra Singh Dagur
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kusum K. Kharbanda
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Natalia A. Osna
- Department of Environmental Health, Occupational Health and Toxicology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
10
|
Jiang X, Zheng YW, Bao S, Zhang H, Chen R, Yao Q, Kou L. Drug discovery and formulation development for acute pancreatitis. Drug Deliv 2020; 27:1562-1580. [PMID: 33118404 PMCID: PMC7598990 DOI: 10.1080/10717544.2020.1840665] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute pancreatitis is a sudden inflammation and only last for a short time, but might lead to a life-threatening emergency. Traditional drug therapy is an essential supportive method for acute pancreatitis treatment, yet, failed to achieve satisfactory therapeutic outcomes. To date, it is still challenging to develop therapeutic medicine to redress the intricate microenvironment promptly in the inflamed pancreas, and more importantly, avoid multi-organ failure. The understanding of the acute pancreatitis, including the causes, mechanism, and severity judgment, could help the scientists bring up more effective intervention and treatment strategies. New formulation approaches have been investigated to precisely deliver therapeutics to inflammatory lesions in the pancreas, and some even could directly attenuate the pancreatic damages. In this review, we will briefly introduce the involved pathogenesis and underlying mechanisms of acute pancreatitis, as well as the traditional Chinese medicine and the new drug option. Most of all, we will summarize the drug delivery strategies to reduce inflammation and potentially prevent the further development of pancreatitis, with an emphasis on the bifunctional nanoparticles that act as both drug delivery carriers and therapeutics.
Collapse
Affiliation(s)
- Xue Jiang
- Municipal Key Laboratory of Paediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ya-Wen Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shihui Bao
- Municipal Key Laboratory of Paediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hailin Zhang
- Municipal Key Laboratory of Paediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Children's Respiration Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruijie Chen
- Municipal Key Laboratory of Paediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing Yao
- Municipal Key Laboratory of Paediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- Municipal Key Laboratory of Paediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Geng C, Li X, Li Y, Song S, Wang C. Nonsteroidal anti-inflammatory drugs alleviate severity of post-endoscopic retrograde cholangiopancreatography pancreatitis by inhibiting inflammation and reducing apoptosis. J Gastroenterol Hepatol 2020; 35:896-904. [PMID: 32064683 DOI: 10.1111/jgh.15012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/08/2020] [Accepted: 02/14/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIM The prophylactic effect of nonselective nonsteroidal anti-inflammatory drugs on post-ERCP (endoscopic retrograde cholangiopancreatography) pancreatitis has been observed for a long time. However, whether the selective nonsteroidal anti-inflammatory drugs possess similar abilities and the mechanisms by which nonsteroidal anti-inflammatory drugs work remain unclear. The present study aimed to determine the protective effects of nonsteroidal anti-inflammatory drugs on post-ERCP pancreatitis in a rat model and examine underlying mechanisms. METHODS Thirty-two female rats were equally and randomly divided into four groups: the sham group, post-ERCP pancreatitis model group, indomethacin-pretreated group, and parecoxib-pretreated group. Indomethacin or parecoxib was delivered 30 min prior to surgery; 24 h after post-ERCP pancreatitis establishment, the rats were sacrificed. Serum amylase and lipase activities, inflammatory cytokine release, pancreatic histopathological scores, neutrophil infiltration, and the expression pattern cyclooxygenase at the protein level and pancreatic apoptosis were quantified and analyzed. RESULTS Both indomethacin and parecoxib inhibited the activities of serum amylase and lipase and reduced the severity of pancreatic histopathology. Mechanistically, both drugs decreased the expression level of cyclooxygenase 2; however, they had no influence on the cyclooxygenase 1 protein level. Moreover, they reduced inflammatory cytokine release, neutrophil infiltration into the pancreas, and NF-κB p65 activation. Notably, we found that apoptotic cells in the pancreas were remarkably diminished after the administration of both nonsteroidal anti-inflammatory drugs. CONCLUSIONS Both selective and nonselective nonsteroidal anti-inflammatory drugs exert protective effects against post-ERCP pancreatitis by restraining inflammation and reducing acinar cell apoptosis through the inhibition of cyclooxygenase 2.
Collapse
Affiliation(s)
- Chong Geng
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Yanni Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Shuailing Song
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|