1
|
Łabędź-Masłowska A, Wieczorek J, Mierzwiński M, Sekuła-Stryjewska M, Noga S, Rajca J, Duda P, Milian-Ciesielska K, Karnas E, Kmiotek-Caller K, Szkaradek A, Madeja Z, Ficek K, Jura J, Zuba-Surma E. Evaluation of the Safety and Regenerative Potential of Human Mesenchymal Stem Cells and Their Extracellular Vesicles in a Transgenic Pig Model of Cartilage-Bone Injury In Vivo - Preclinical Study. Stem Cell Rev Rep 2025; 21:1075-1095. [PMID: 40380984 PMCID: PMC12102096 DOI: 10.1007/s12015-025-10853-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 05/19/2025]
Abstract
Osteoarthritis (OA) is a degenerative joint condition leading to disability. The lack of effective treatment for OA creates a need for the development of new therapeutic approaches that may rely on stem cells including mesenchymal stem/stromal cells (MSCs) and their derivatives such as extracellular vesicles (EVs). The objective of this study was to evaluate the impact of MSCs derived from adipose tissue (AT-MSCs) and umbilical cord (UC-MSCs) and their EVs on cartilage-bone injury in vivo, to identify the specimen with the highest regenerative potential for further clinical applications in patients with OA. Humanized pigs underwent cartilage-bone injuries followed by intraarticular administration of products containing AT-MSCs, UC-MSCs, AT-MSC-EVs or UC-MSC-EVs mixed with hyaluronic acid (HA) or HA alone (for comparison). After 6-m follow-up, almost-fully-healed cartilage-bone defects were observed in the AT-MSC- and UC-MSC-treated pigs, and the defects were filled primarily with hyaline cartilage. In AT-MSC-EV- and UC-MSC-EV-treated pigs, a partial cartilage-bone tissue repair was observed, and the defects were filled primarily with fibrocartilage. The control pigs demonstrated limited regeneration capacity. The microcomputed tomography parameters of the subchondral bone indicated the ongoing progression of OA in controls, whereas in the MSC- and MSC-EV-treated pigs, the parameters indicated the cessation of OA progression. Moreover, no serious side effects were observed after the administration of products containing MSCs or MSC-EVs. The results indicate the safety and regenerative activity of MSCs on injured tissues, which favors not only the healing and improvement of bone structure but also the formation of hyaline cartilage. Superior tissue repair was observed after the administration of products containing AT-MSCs. The treatment of OA with MSC-EVs needs further standardization.
Collapse
Affiliation(s)
- Anna Łabędź-Masłowska
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jarosław Wieczorek
- University Center of Veterinary Medicine UJ-UR, University of Agriculture in Krakow, Krakow, Poland
| | - Maciej Mierzwiński
- Department of Science, Innovation and Development, Galen-Orthopaedics, Bierun, Poland
| | - Małgorzata Sekuła-Stryjewska
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sylwia Noga
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Laboratory of Stem Cell Biotechnology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jolanta Rajca
- Department of Science, Innovation and Development, Galen-Orthopaedics, Bierun, Poland
- Spin-Lab Centre for Microscopic Research on Matter, University of Silesia in Katowice, Katowice, Poland
| | - Piotr Duda
- Institute of Biomedical Engineering, Faculty of Science and Technology, University of Silesia in Katowice, Katowice, Poland
| | | | - Elżbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Katarzyna Kmiotek-Caller
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agnieszka Szkaradek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Ficek
- Department of Science, Innovation and Development, Galen-Orthopaedics, Bierun, Poland
| | - Jacek Jura
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Balice, Poland.
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
2
|
Li CS, Xu Y, Li J, Qin SH, Huang SW, Chen XM, Luo Y, Gao CT, Xiao JH. Ultramodern natural and synthetic polymer hydrogel scaffolds for articular cartilage repair and regeneration. Biomed Eng Online 2025; 24:13. [PMID: 39920742 PMCID: PMC11804105 DOI: 10.1186/s12938-025-01342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/20/2025] [Indexed: 02/09/2025] Open
Abstract
Articular cartilage injury is a serious bone disease that can result in disabilities. With the rapid increase in the aging population, this disorder has become an increasingly important public health issue. Recently, stem cell-based cartilage tissue engineering has emerged as a promising therapeutic option for treating articular cartilage damage. Cellular scaffolds, which are among three key elements of tissue engineering, play significant roles in the repair of damaged articular cartilage by regulating cellular responses and promoting cartilage tissue regeneration. Biological macromolecules are commonly used as scaffold materials owing to their unique properties. For example, natural and synthetic polymer hydrogel scaffolds can effectively mimic the microenvironment of the natural extracellular matrix; exhibit high cytocompatibility, biocompatibility, and biodegradability; and have attracted increasing attention in bone and cartilage tissue engineering and regeneration medicine. Several types of hydrogel scaffolds have been fabricated to treat articular cartilage abnormalities. This article outlines the recent progress in the field of hydrogel scaffolds manufactured from various biomaterials for repairing damaged articular cartilage, discusses their advantages and disadvantages, and proposes directions for their future development.
Collapse
Affiliation(s)
- Chun-Sheng Li
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
| | - Yan Xu
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
- Guizhou Provincial Key Laboratory of Medicinal Biotechnology and Research Center for Translational Medicine in Colleges and Universities, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
| | - Juan Li
- National Engineering Research Center for Compounding and Modification of Polymer Materials, Guizhou Material Industrial Technology Research Institute, Guiyang, 550014, China
| | - Shu-Hao Qin
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China.
- National Engineering Research Center for Compounding and Modification of Polymer Materials, Guizhou Material Industrial Technology Research Institute, Guiyang, 550014, China.
| | - Shao-Wen Huang
- National Engineering Research Center for Compounding and Modification of Polymer Materials, Guizhou Material Industrial Technology Research Institute, Guiyang, 550014, China
| | - Xue-Mei Chen
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
| | - Yi Luo
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
- Guizhou Provincial Key Laboratory of Medicinal Biotechnology and Research Center for Translational Medicine in Colleges and Universities, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
| | - Cheng-Tao Gao
- National Engineering Research Center for Compounding and Modification of Polymer Materials, Guizhou Material Industrial Technology Research Institute, Guiyang, 550014, China
| | - Jian-Hui Xiao
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China.
- Guizhou Provincial Key Laboratory of Medicinal Biotechnology and Research Center for Translational Medicine in Colleges and Universities, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China.
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China.
| |
Collapse
|
3
|
Al-Sherief S, El-Hadidy A, Hamed S, El-Hawwary A, Mazroa S. Bone marrow mesenchymal stem cells (BM-MSCs) modulate MMP9 expression and promote articular cartilage regeneration in knee joint of a model of arthritis induced in adult rat: histological and immunohistochemical study. J Mol Histol 2024; 56:38. [PMID: 39661261 DOI: 10.1007/s10735-024-10284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 10/31/2024] [Indexed: 12/12/2024]
Abstract
Arthritis is characterized by the progressive degeneration of articular cartilage, and the avascular nature of cartilage limits its capacity for self-repair. Stem cells are considered a promising treatment option due to their multipotent differentiation potential. The aim of this work was to investigate the structural changes in the hyaline articular cartilage of the knee joint in a model of arthritis induced by complete Freund's adjuvant, and to assess intra-articular injection of bone marrow mesenchymal stem cells (BM-MSCs) through both histological and immunohistochemical study. Adult male albino rats were divided into four groups: group 0 (donor group), group I (control group), group II (arthritis group) and group III (BM-MSCs treated arthritis group). Samples were collected 2, 6 and 10 weeks after the onset of the experiment. Sections were stained with; hematoxylin and eosin, Safranin O fast green stain, Masson's trichrome stain and anti-MMP9 antibody. In Group II (arthritis group), the articular cartilage showed signs of degeneration, including chondrocyte extensive proliferation, fibrillations, fissuring, and denudation, with fibrous tissue covering the exposed surface. There was a significant decrease in cartilage thickness, collagen content, and proteoglycan levels. The integrated density of MMP9 in the cartilage was significantly increased compared to Group I (control group). In contrast, Group III (BM-MSCs-treated arthritis group) exhibited a continuous cartilage surface with no cracks or fissures. There was a significant increase in cartilage thickness, collagen content, and proteoglycan levels, while the integrated density of MMP9 was significantly decreased compared to Group II (arthritis group).
Collapse
Affiliation(s)
- Sara Al-Sherief
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Azza El-Hadidy
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Shereen Hamed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Amany El-Hawwary
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Shireen Mazroa
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Assi MM, Grawish ME, Elsabaa HM, Helal ME, Ezzat SK. Therapeutic potential of hyaluronic acid hydrogel combined with bone marrow stem cells-conditioned medium on arthritic rats' TMJs. Sci Rep 2024; 14:26828. [PMID: 39500985 PMCID: PMC11538243 DOI: 10.1038/s41598-024-77325-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Conditioned media (CM) is derived from mesenchymal stem cells (MSC) culture and contains biologically active components. CM is easy to handle and reduces inflammation while repairing injured joints. Combination therapy of the CM with cross-linked hyaluronic acid (HA) could ameliorate the beneficial effect of HA in treating degenerative changes of articulating surfaces associated with arthritic rats' temporomandibular joints (TMJs). This study aimed to evaluate the therapeutic potential of HA hydrogel combined with bone marrow stem cells-conditioned medium (BMSCs-CM) on the articulating surfaces of TMJs associated with complete Freund's adjuvant (CFA)-induced arthritis. Fifty female Sprague-Dawley rats were divided randomly into five equal groups. Rats of group I served as the negative controls and received intra-articular (IA) injections of 50 µl saline solution, whereas rats of group II were subjected to twice IA injections of 50 µg CFA in 50 µl; on day 1 of the experiment to induce persistent inflammation and on day 14 to induce arthritis. Rats of group III and IV were handled as group II and instead, they received an IA injection of 50 µl HA hydrogel and 50 µl of BMSCs-CM, respectively. Rats of group V were given combined IA injections of 50 µl HA hydrogel and BMSCs-CM. All rats were euthanized after the 4th week of inducing arthritis. The joints were processed for sectioning and histological staining using hematoxylin and eosin, Masson's trichrome and toluidine blue special staining, and immunohistochemical staining for nuclear factor-kappa B (NF-κB). SPSS software was used to analyze the data and one-way analysis of variance followed by post-hoc Tukey statistical tests were used to test the statistical significance at 0.05 for alpha and 0.2 for beta. In the pooled BMSC-CM, 197.14 pg/ml of platelet-derived growth factor and 112.22 pg/ml of interleukin-10 were detected. Compared to TMJs of groups III and IV, TMJs of group V showed significant improvements (P = 0.001) in all parameters tested as the disc thickness was decreased (331.79 ± 0.73), the fibrocartilaginous layer was broadened (0.96 ± 0.04), and the amount of the trabecular bone was distinctive (19.35 ± 1.07). The mean values for the collagen amount were increased (12.29 ± 1.38) whereas the mean values for the NF-κB expression were decreased (0.62 ± 0.15). Combination therapy of HA hydrogel and BMSCs-CM is better than using HA hydrogel or BMSCs-CM, separately to repair degenerative changes in rats' TMJs associated with CFA-induced arthritis.
Collapse
Affiliation(s)
- Mai M Assi
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, 35511, Egypt
| | - Mohammed E Grawish
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, 35511, Egypt.
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Dakahlia, Egypt.
| | - Heba Mahmoud Elsabaa
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, 35511, Egypt
- Department of Oral Biology and Pathology, Faculty of Dentistry, Badr University in Cairo, Cairo, Egypt
| | - Mohamad E Helal
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, 35511, Egypt
| | - Samah K Ezzat
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, 35511, Egypt
| |
Collapse
|
5
|
Khatami SM, Hanaee-Ahvaz H, Parivar K, Soleimani M, Abedin Dargoush S, Naderi Sohi A. Cell-free bilayer functionalized scaffold for osteochondral tissue engineering. J Biosci Bioeng 2024; 138:452-461. [PMID: 39227279 DOI: 10.1016/j.jbiosc.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
Osteochondral tissue engineering using layered scaffolds is a promising approach for treating osteochondral defects as an alternative to microfracture procedure, autologous chondrocyte implantation, and cartilage-bone grafting. The team previously investigated the chondrogenesis of mesenchymal stem cells (MSCs) on a polycaprolactone (PCL)/acetylated hyaluronic acid scaffold. The present study first focused on fabricating a novel osteoconductive scaffold utilizing bismuth-nanohydroxyapatite/reduced graphene oxide (Bi-nHAp/rGO) nanocomposite and electrospun PCL. The osteoconductive ability of the scaffold was investigated by evaluating the alkaline phosphatase (ALP) activity and the osteogenic genes expression in the adipose-derived MSCs. The expression of Runx2, collagen I, ALP, and osteocalcin as well as the result of ALP activity indicated the osteoconductive potential of the Bi-nHA-rGO/PCL scaffold. In the next step, a bilayer scaffold containing Bi-nHAp/rGO/PCL as an osteogenic layer and acetylated hyaluronic acid/PCL as a chondrogenic layer was prepared by the electrospinning technique and transplanted into osteochondral defects of rats. The chondrogenic and osteogenic markers corresponding to the surrounding tissues of the transplanted scaffold were surveyed 60 days later by real-time polymerase chain reaction (PCR) and immunohistochemistry methods. The results showed increased chondrogenic (Sox9 and collagen II) and osteogenic (osteocalcin and ALP) gene expression and augmented secretion of collagens II and X after transplantation. The results strongly support the efficacy of this constructed cell-free bilayer scaffold to induce osteochondral defect regeneration.
Collapse
Affiliation(s)
- Seyedeh Mahsa Khatami
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Soleimani
- Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Alireza Naderi Sohi
- Department of Stem Cells and Regenerative Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
6
|
Mormone E, Cisternino A, Capone L, Caradonna E, Sbarbati A. The Model of Interstitial Cystitis for Evaluating New Molecular Strategies of Interstitial Regeneration in Humans. Int J Mol Sci 2024; 25:2326. [PMID: 38397003 PMCID: PMC10889234 DOI: 10.3390/ijms25042326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Given the recent evidence in the clinical application of regenerative medicine, mostly on integumentary systems, we focused our interests on recent bladder regeneration approaches based on mesenchymal stem cells (MSCs), platelet-rich plasma (PRP), and hyaluronic acid (HA) in the treatment of interstitial cystitis/bladder pain syndrome (IC/BPS) in humans. IC/BPS is a heterogeneous chronic disease with not-well-understood etiology, characterized by suprapubic pain related to bladder filling and urothelium dysfunction, in which the impairment of immunological processes seems to play an important role. The histopathological features of IC include ulceration of the mucosa, edema, denuded urothelium, and increased detection of mast cells and other inflammatory cells. A deeper understanding of the molecular mechanism underlying this disease is essential for the selection of the right therapeutic approach. In fact, although various therapeutic strategies exist, no efficient therapy for IC/BPS has been discovered yet. This review gives an overview of the clinical and pathological features of IC/BPS, with a particular focus on the molecular pathways involved and a special interest in the ongoing few investigational therapies in IC/BPS, which use new regenerative medicine approaches, and their synergetic combination. Good knowledge of the molecular aspects related to stem cell-, PRP-, and biomaterial-based treatments, as well as the understanding of the molecular mechanism of this pathology, will allow for the selection of the right and best use of regenerative approaches of structures involving connective tissue and epithelia, as well as in other diseases.
Collapse
Affiliation(s)
- Elisabetta Mormone
- Intitute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Italy
| | - Antonio Cisternino
- Santa Maria di Bari Hospital, Via Antonio de Ferraris 22, 70124 Bari, Italy;
| | - Lorenzo Capone
- Department of Urology, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Italy;
| | | | - Andrea Sbarbati
- Department of Neuroscience, Biomedicine and Movement Sciences, Human Anatomy and Histology Section, University of Verona, 37129 Verona, Italy;
| |
Collapse
|
7
|
Chen M, Jiang Z, Zou X, You X, Cai Z, Huang J. Advancements in tissue engineering for articular cartilage regeneration. Heliyon 2024; 10:e25400. [PMID: 38352769 PMCID: PMC10862692 DOI: 10.1016/j.heliyon.2024.e25400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
Articular cartilage injury is a prevalent clinical condition resulting from trauma, tumors, infection, osteoarthritis, and other factors. The intrinsic lack of blood vessels, nerves, and lymphatic vessels within cartilage tissue severely limits its self-regenerative capacity after injury. Current treatment options, such as conservative drug therapy and joint replacement, have inherent limitations. Achieving perfect regeneration and repair of articular cartilage remains an ongoing challenge in the field of regenerative medicine. Tissue engineering has emerged as a key focus in articular cartilage injury research, aiming to utilize cultured and expanded tissue cells combined with suitable scaffold materials to create viable, functional tissues. This review article encompasses the latest advancements in seed cells, scaffolds, and cytokines. Additionally, the role of stimulatory factors including cytokines and growth factors, genetic engineering techniques, biophysical stimulation, and bioreactor systems, as well as the role of scaffolding materials including natural scaffolds, synthetic scaffolds, and nanostructured scaffolds in the regeneration of cartilage tissues are discussed. Finally, we also outline the signaling pathways involved in cartilage regeneration. Our review provides valuable insights for scholars to address the complex problem of cartilage regeneration and repair.
Collapse
Affiliation(s)
- Maohua Chen
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zhiyuan Jiang
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiuyuan Zou
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiaobo You
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zhen Cai
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jinming Huang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Lei L, Cong R, Ni Y, Cui X, Wang X, Ren H, Wang Z, Liu M, Tu J, Jiang L. Dual-Functional Injectable Hydrogel for Osteoarthritis Treatments. Adv Healthc Mater 2024; 13:e2302551. [PMID: 37988224 DOI: 10.1002/adhm.202302551] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Osteoarthritis (OA) is a prevalent, chronic degenerative disease that affects people worldwide. It is characterized by the destruction of cartilage and inflammatory reactions. High levels of reactive oxygen species (ROS) cause oxidative stress, which damages lipids, proteins, and DNA, leading to cell damage and death. Furthermore, ROS also induces the production of inflammatory cytokines and cell chemotaxis, further worsening the inflammatory response and damaging cartilage resulted in limited movement. Herein, this work reports a dual-functional injectable hydrogel, which can help inhibit inflammation by scavenging ROS and provide lubrication to reduce wear and tear on the joints. To create the hydrogel, 3-aminophenylboronic acid modified hyaluronic acid is synthesized, then which is crosslinked with hydroxyl-containing polyvinyl alcohol (PVA) to construct a dual dynamic covalent crosslinked hydrogel oHA-PBA-PVA gel, Gel (HPP). The hydrogel mentioned here possesses a unique bond structure that allows it to be injected, self-heal, and provide lubrication. This innovative approach offers a new possibility for treating osteoarthritis by combining anti-inflammatory and lubrication effects.
Collapse
Affiliation(s)
- Lei Lei
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Rui Cong
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Yifei Ni
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Xin Cui
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Xulei Wang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Hongmei Ren
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Zun Wang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Mengyuan Liu
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Jiasheng Tu
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Lei Jiang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| |
Collapse
|
9
|
Beerts C, Broeckx SY, Depuydt E, Tack L, Van Hecke L, Chiers K, Van Brantegem L, Braun G, Hellmann K, de Bouvre N, Van Bruaene N, De Ryck T, Duchateau L, Van Ryssen B, Peremans K, Saunders JH, Verhoeven G, Pauwelyn G, Spaas JH. Low-dose xenogeneic mesenchymal stem cells target canine osteoarthritis through systemic immunomodulation and homing. Arthritis Res Ther 2023; 25:190. [PMID: 37789403 PMCID: PMC10546732 DOI: 10.1186/s13075-023-03168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND As current therapies for canine osteoarthritis (OA) provide mainly symptomatic improvement and fail to address the complex pathology of the disease, mesenchymal stem cells (MSCs) offer a promising biological approach to address both aspects of OA through their immunomodulatory properties. METHODS This study aimed to investigate the safety and efficacy of xenogeneic MSCs in dogs with OA at different dose levels after intravenous injection. OA was surgically induced in the right stifle joint. Thirty-two male and female dogs were divided into three treatment groups and a control group. Regular general physical examinations; lameness, joint, radiographic, and animal caretaker assessments; pressure plate analyses; and blood analyses were performed over 42 days. At study end, joint tissues were evaluated regarding gross pathology, histopathology, and immunohistochemistry. In a follow-up study, the biodistribution of intravenously injected 99mTc-labeled equine peripheral blood-derived MSCs was evaluated over 24h in three dogs after the cruciate ligament section. RESULTS The dose determination study showed the systemic administration of ePB-MSCs in a canine OA model resulted in an analgesic, anti-inflammatory, and joint tissue protective effect associated with improved clinical signs and improved cartilage structure, as well as a good safety profile. Furthermore, a clear dose effect was found with 0.3 × 106 ePB-MSCs as the most effective dose. In addition, this treatment was demonstrated to home specifically towards the injury zone in a biodistribution study. CONCLUSION This model-based study is the first to confirm the efficacy and safety of systemically administered xenogeneic MSCs in dogs with OA. The systemic administration of a low dose of xenogeneic MSCs could offer a widely accessible, safe, and efficacious treatment to address the complex pathology of canine OA and potentially slow down the disease progression by its joint tissue protective effect.
Collapse
Affiliation(s)
- Charlotte Beerts
- Boehringer Ingelheim Veterinary Medicine Belgium, Noorwegenstraat 4, 9940, Evergem, Belgium
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Sarah Y Broeckx
- Boehringer Ingelheim Veterinary Medicine Belgium, Noorwegenstraat 4, 9940, Evergem, Belgium
| | - Eva Depuydt
- Boehringer Ingelheim Veterinary Medicine Belgium, Noorwegenstraat 4, 9940, Evergem, Belgium
- Department of Surgery and Anesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Liesa Tack
- Boehringer Ingelheim Veterinary Medicine Belgium, Noorwegenstraat 4, 9940, Evergem, Belgium
| | - Lore Van Hecke
- Boehringer Ingelheim Veterinary Medicine Belgium, Noorwegenstraat 4, 9940, Evergem, Belgium
| | - Koen Chiers
- Department of Pathology, Bacteriology and Poultry diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Leen Van Brantegem
- Department of Pathology, Bacteriology and Poultry diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Gabriele Braun
- Klifovet AG, Geyerspergerstrasse 27, 80689, Munich, Germany
| | - Klaus Hellmann
- Klifovet AG, Geyerspergerstrasse 27, 80689, Munich, Germany
| | - Nathalie de Bouvre
- Private Referral Veterinary Practice 'De Molenkreek', Polderdreef 31, 4554 AD, Westdrope, The Netherlands
| | | | - Tine De Ryck
- Anacura, Noorwegenstraat 4, 9940, Evergem, Belgium
| | - Luc Duchateau
- Biometrics Research Group, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Bernadette Van Ryssen
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Kathelijne Peremans
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Jimmy H Saunders
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Geert Verhoeven
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Glenn Pauwelyn
- Boehringer Ingelheim Veterinary Medicine Belgium, Noorwegenstraat 4, 9940, Evergem, Belgium.
| | - Jan H Spaas
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
- Boehringer Ingelheim Animal Health, 1730 Olympic Drive, Athens, GA, 30606, USA
| |
Collapse
|
10
|
Zhang Z, Mu Y, Zhou H, Yao H, Wang DA. Cartilage Tissue Engineering in Practice: Preclinical Trials, Clinical Applications, and Prospects. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:473-490. [PMID: 36964757 DOI: 10.1089/ten.teb.2022.0190] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Articular cartilage defects significantly compromise the quality of life in the global population. Although many strategies are needed to repair articular cartilage, including microfracture, autologous osteochondral transplantation, and osteochondral allograft, the therapeutic effects remain suboptimal. In recent years, with the development of cartilage tissue engineering, scientists have continuously improved the formulations of therapeutic cells, biomaterial-based scaffolds, and biological factors, which have opened new avenues for better therapeutics of cartilage lesions. This review focuses on advances in cartilage tissue engineering, particularly in preclinical trials and clinical applications, prospects, and challenges.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Yulei Mu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Huiqun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P.R. China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, P.R. China
| |
Collapse
|
11
|
Wang Y, Alexander M, Scott T, Cox DCT, Wellington A, Chan MKS, Wong MBF, Adalsteinsson O, Lakey JRT. Stem Cell Therapy for Aging Related Diseases and Joint Diseases in Companion Animals. Animals (Basel) 2023; 13:2457. [PMID: 37570266 PMCID: PMC10417747 DOI: 10.3390/ani13152457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Stem cell therapy is an attractive treatment for diseases in companion animals that cannot be treated by conventional veterinary medicine practices. The unique properties of stem cells, particularly the ability to differentiate into specific cell types, makes them a focal point in regenerative medicine treatments. Stem cell transplantation, especially using mesenchymal stem cells, has been proposed as a means to treat a wide range of injuries and ailments, resulting in tissue regeneration or repair. This review aims to summarize the veterinary use of stem cells for treating age-related and joint diseases, which are common conditions in pets. While additional research is necessary and certain limitations exist, the potential of stem cell therapy for companion animals is immense.
Collapse
Affiliation(s)
- Yanmin Wang
- California Medical Innovations Institute, 11107 Roselle Street, San Diego, CA 92121, USA
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Irvine, CA 92868, USA
| | - Todd Scott
- Crestwood Veterinary Clinic, Edmonton, AB T5P 1J9, Canada
| | - Desiree C. T. Cox
- European Wellness Group, Klosterstrasse 205ID, 67480 Edenkoben, Germany
- Graduate Faculty, School of Graduate Studies, Rutgers University, New Brunswick, NJ 07013, USA
| | | | - Mike K. S. Chan
- European Wellness Group, Klosterstrasse 205ID, 67480 Edenkoben, Germany
| | | | - Orn Adalsteinsson
- European Wellness Group, Klosterstrasse 205ID, 67480 Edenkoben, Germany
| | - Jonathan R. T. Lakey
- California Medical Innovations Institute, 11107 Roselle Street, San Diego, CA 92121, USA
- Department of Surgery, University of California Irvine, Irvine, CA 92868, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
12
|
Domaniza M, Hluchy M, Cizkova D, Humenik F, Slovinska L, Hudakova N, Hornakova L, Vozar J, Trbolova A. Two Amnion-Derived Mesenchymal Stem-Cells Injections to Osteoarthritic Elbows in Dogs-Pilot Study. Animals (Basel) 2023; 13:2195. [PMID: 37443993 DOI: 10.3390/ani13132195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of the study was to investigate the potential of cell-based regenerative therapy for elbow joints affected by osteoarthritis. Interest was focused on two intra-articular applications of amnion-derived mesenchymal stem cells (A-MSCs) to a group of different breeds of dogs with elbow osteoarthritis (13 joints). Two injections were performed 14 days apart. We evaluated synovial fluid biomarkers, such as IFN-γ, IL-6, IL-15, IL-10, MCP-1, TNF-α, and GM-CSF, by multiplex fluorescent micro-bead immunoassay in the treated group of elbows (n = 13) (day 0, day 14, and day 28) and in the control group of elbows (n = 9). Kinematic gait analysis determined the joint range of motion (ROM) before and after each A-MSCs application. Kinematic gait analysis was performed on day 0, day 14, and day 28. Kinematic gait analysis pointed out improvement in the average range of motion of elbow joints from day 0 (38.45 ± 5.74°), day 14 (41.7 ± 6.04°), and day 28 (44.78 ± 4.69°) with statistical significance (p < 0.05) in nine elbows. Correlation analyses proved statistical significance (p < 0.05) in associations between ROM (day 0, day 14, and day 28) and IFN-γ, IL-6, IL-15, MCP-1, TNF-α, and GM-CSF concentrations (day 0, day 14, and day 28). IFN-γ, IL-6, IL-15, MCP-1, GM-CSF, and TNF- α showed negative correlation with ROM at day 0, day 14, and day 28, while IL-10 demonstrated positive correlation with ROM. As a consequence of A-MSC application to the elbow joint, we detected a statistically significant (p < 0.05) decrease in concentration levels between day 0 and day 28 for IFN-γ, IL-6, and TNF-α and statistically significant increase for IL-10. Statistical significance (p < 0.05) was detected in TNF-α, IFN-γ, and GM-CSF concentrations between day 14 and the control group as well as at day 28 and the control group. IL-6 concentrations showed statistical significance (p < 0.05) between day 14 and the control group.
Collapse
Affiliation(s)
- Michal Domaniza
- Small Animal Hospital, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Marian Hluchy
- Small Animal Hospital, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Dasa Cizkova
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy, Komenskeho 68/73, 041 81 Kosice, Slovakia
| | - Filip Humenik
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy, Komenskeho 68/73, 041 81 Kosice, Slovakia
| | - Lucia Slovinska
- Associated Tissue Bank, Faculty of Medicine, P.J. Safarik University and L.Pasteur University Hospital, Trieda SNP 1, 040 11 Kosice, Slovakia
| | - Nikola Hudakova
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy, Komenskeho 68/73, 041 81 Kosice, Slovakia
| | - Lubica Hornakova
- Small Animal Hospital, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Juraj Vozar
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy, Komenskeho 68/73, 041 81 Kosice, Slovakia
| | - Alexandra Trbolova
- Small Animal Hospital, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| |
Collapse
|
13
|
Noriega-González D, Caballero-García A, Roche E, Álvarez-Mon M, Córdova A. Inflammatory Process on Knee Osteoarthritis in Cyclists. J Clin Med 2023; 12:jcm12113703. [PMID: 37297897 DOI: 10.3390/jcm12113703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Osteoarthritis is a disorder affecting the joints and is characterized by cellular stress and degradation of the extracellular matrix cartilage. It begins with the presence of micro- and macro-lesions that fail to repair properly, which can be initiated by multiple factors: genetic, developmental, metabolic, and traumatic. In the case of the knee, osteoarthritis affects the tissues of the diarthrodial joint, manifested by morphological, biochemical, and biomechanical modifications of the cells and the extracellular matrix. All this leads to remodeling, fissuring, ulceration, and loss of articular cartilage, as well as sclerosis of the subchondral bone with the production of osteophytes and subchondral cysts. The symptomatology appears at different time points and is accompanied by pain, deformation, disability, and varying degrees of local inflammation. Repetitive concentric movements, such as while cycling, can produce the microtrauma that leads to osteoarthritis. Aggravation of the gradual lesion in the cartilage matrix can evolve to an irreversible injury. The objective of the present review is to explain the evolution of knee osteoarthritis in cyclists, to show the scarce research performed in this particular field and extract recommendations to propose future therapeutic strategies.
Collapse
Affiliation(s)
- David Noriega-González
- Department of Surgery, Ophthalmology, Otorhinolaryngology and Physiotherapy, Faculty of Medicine, HVUV, 47003 Valladolid, Spain
| | - Alberto Caballero-García
- Department of Anatomy and Radiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Los Pajaritos, 42004 Soria, Spain
| | - Enrique Roche
- Department of Applied Biology-Nutrition and Institute of Bioengineering, Miguel Hernández University (UMH), 03202 Elche, Spain
- Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Internal Medicine, University of Alcalá de Henares, 28801 Alcalá de Henares, Spain
| | - Alfredo Córdova
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain
| |
Collapse
|
14
|
Porcello A, Gonzalez-Fernandez P, Jeannerat A, Peneveyre C, Abdel-Sayed P, Scaletta C, Raffoul W, Hirt-Burri N, Applegate LA, Allémann E, Laurent A, Jordan O. Thermo-Responsive Hyaluronan-Based Hydrogels Combined with Allogeneic Cytotherapeutics for the Treatment of Osteoarthritis. Pharmaceutics 2023; 15:pharmaceutics15051528. [PMID: 37242774 DOI: 10.3390/pharmaceutics15051528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Thermo-responsive hyaluronan-based hydrogels and FE002 human primary chondroprogenitor cell sources have both been previously proposed as modern therapeutic options for the management of osteoarthritis (OA). For the translational development of a potential orthopedic combination product based on both technologies, respective technical aspects required further optimization phases (e.g., hydrogel synthesis upscaling and sterilization, FE002 cytotherapeutic material stabilization). The first aim of the present study was to perform multi-step in vitro characterization of several combination product formulas throughout the established and the optimized manufacturing workflows, with a strong focus set on critical functional parameters. The second aim of the present study was to assess the applicability and the efficacy of the considered combination product prototypes in a rodent model of knee OA. Specific characterization results (i.e., spectral analysis, rheology, tribology, injectability, degradation assays, in vitro biocompatibility) of hyaluronan-based hydrogels modified with sulfo-dibenzocyclooctyne-PEG4-amine linkers and poly(N-isopropylacrylamide) (HA-L-PNIPAM) containing lyophilized FE002 human chondroprogenitors confirmed the suitability of the considered combination product components. Specifically, significantly enhanced resistance toward oxidative and enzymatic degradation was shown in vitro for the studied injectable combination product prototypes. Furthermore, extensive multi-parametric (i.e., tomography, histology, scoring) in vivo investigation of the effects of FE002 cell-laden HA-L-PNIPAM hydrogels in a rodent model revealed no general or local iatrogenic adverse effects, whereas it did reveal some beneficial trends against the development of knee OA. Overall, the present study addressed key aspects of the preclinical development process for novel biologically-based orthopedic combination products and shall serve as a robust methodological basis for further translational investigation and clinical work.
Collapse
Affiliation(s)
- Alexandre Porcello
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Paula Gonzalez-Fernandez
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Annick Jeannerat
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
| | - Cédric Peneveyre
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
- STI School of Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Wassim Raffoul
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Plastic, Reconstructive, and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Alexis Laurent
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Olivier Jordan
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| |
Collapse
|
15
|
Nguyen L, Lin X, Verma S, Puri S, Hascall V, Gesteira TF, Coulson-Thomas VJ. Characterization of the Molecular Weight of Hyaluronan in Eye Products Using a Novel Method of Size Exclusion High-Pressure Liquid Chromatography. Transl Vis Sci Technol 2023; 12:13. [PMID: 37052911 PMCID: PMC10103721 DOI: 10.1167/tvst.12.4.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Purpose Hyaluronan (HA) exists in two forms, high molecular weight HA (HMWHA) and low molecular weight HA (LMWHA), which have distinct physiological functions. Therefore it is imperative to know the form of HA within pharmaceutical products, including eye products. This study developed an accurate, sensitive, and quantitative method to characterize the form of HA in eye products. Thereafter, the effects of the HA-containing eye products on corneal wound healing were investigated. Methods The MW distributions and concentrations of HA in over the counter eye products were determined by size exclusion chromatography (SEC) high-pressure liquid chromatography (HPLC). The effects of the eye products containing HA on corneal wound healing were characterized both in vitro and in vivo using the scratch assay and the debridement wound model, respectively. Results The concentrations and MWs of HA were successfully determined within a range of 0.014 to 0.25 mg/mL using SEC HPLC. The concentrations of HA in the ophthalmic products varied from 0.14 to 4.0 mg/mL and the MWs varied from ∼100 kDa to >2500 kDa. All but one HA-containing eye product had an inhibitory effect on corneal wound healing, whereas pure HA promoted corneal wound healing. Conclusions A novel SEC-HPLC method was developed for quantifying and characterizing the MW of HA in eye products. Although HA promoted corneal wound healing, HA-containing eye products inhibited corneal wound healing, likely caused by preservatives. Translational Relevance SEC-HPLC could be implemented as a routine method for determining the form of HA in commercially available ophthalmic products.
Collapse
Affiliation(s)
- Lawrence Nguyen
- College of Optometry, University of Houston, Houston, TX, USA
| | - Xiao Lin
- College of Optometry, University of Houston, Houston, TX, USA
| | - Sudhir Verma
- College of Optometry, University of Houston, Houston, TX, USA
- Department of Zoology, Deen Dayal Upadhyaya College (University of Delhi), Delhi, India
| | - Sudan Puri
- College of Optometry, University of Houston, Houston, TX, USA
| | | | | | | |
Collapse
|
16
|
Gao F, Mao X, Wu X. Mesenchymal stem cells in osteoarthritis: The need for translation into clinical therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:199-225. [PMID: 37678972 DOI: 10.1016/bs.pmbts.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Widely used for cell-based therapy in various medical fields, mesenchymal stem cells (MSCs) show capacity for anti-inflammatory effects, anti-apoptotic activity, immunomodulation, and tissue repair and regeneration. As such, they can potentially be used to treat osteoarthritis (OA). However, MSCs from different sources have distinct advantages and disadvantages, and various animal models and clinical trials using different sources of MSCs are being conducted in OA regenerative medicine. It is now widely believed that the primary tissue regeneration impact of MSCs is via paracrine effects, rather than direct differentiation and replacement. Cytokines and molecules produced by MSCs, including extracellular vesicles with mRNAs, microRNAs, and bioactive substances, play a significant role in OA repair. This chapter outlines the properties of MSCs and recent animal models and clinical trials involving MSCs-based OA therapy, as well as how the paracrine effect of MSCs acts in OA cartilage repair. Additionally, it discusses challenges and controversies in MSCs-based OA therapy. Despite its limits and unanticipated hazards, MSCs have the potential to be translated into therapeutic therapy for future OA treatment.
Collapse
Affiliation(s)
- Feng Gao
- Department of Orthopaedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xinzhan Mao
- Department of Orthopaedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xiaoxin Wu
- Department of Orthopaedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
17
|
Lyophilized Progenitor Tenocyte Extracts: Sterilizable Cytotherapeutic Derivatives with Antioxidant Properties and Hyaluronan Hydrogel Functionalization Effects. Antioxidants (Basel) 2023; 12:antiox12010163. [PMID: 36671025 PMCID: PMC9854832 DOI: 10.3390/antiox12010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
Cultured primary progenitor tenocytes in lyophilized form were previously shown to possess intrinsic antioxidant properties and hyaluronan-based hydrogel viscosity-modulating effects in vitro. The aim of this study was to prepare and functionally characterize several stabilized (lyophilized) cell-free progenitor tenocyte extracts for inclusion in cytotherapy-inspired complex injectable preparations. Fractionation and sterilization methods were included in specific biotechnological manufacturing workflows of such extracts. Comparative and functional-oriented characterizations of the various extracts were performed using several orthogonal descriptive, colorimetric, rheological, mechanical, and proteomic readouts. Specifically, an optimal sugar-based (saccharose/dextran) excipient formula was retained to produce sterilizable cytotherapeutic derivatives with appropriate functions. It was shown that extracts containing soluble cell-derived fractions possessed conserved and significant antioxidant properties (TEAC) compared to the freshly harvested cellular starting materials. Progenitor tenocyte extracts submitted to sub-micron filtration (0.22 µm) and 60Co gamma irradiation terminal sterilization (5−50 kGy) were shown to retain significant antioxidant properties and hyaluronan-based hydrogel viscosity modulating effects. Hydrogel combination products displayed important efficacy-related characteristics (friction modulation, tendon bioadhesivity) with significant (p < 0.05) protective effects of the cellular extracts in oxidative environments. Overall, the present study sets forth robust control methodologies (antioxidant assays, H2O2-challenged rheological setups) for stabilized cell-free progenitor tenocyte extracts. Importantly, it was shown that highly sensitive phases of cytotherapeutic derivative manufacturing process development (purification, terminal sterilization) allowed for the conservation of critical biological extract attributes.
Collapse
|
18
|
França CG, Leme KC, Luzo ÂCM, Hernandez-Montelongo J, Santana MHA. Oxidized hyaluronic acid/adipic acid dihydrazide hydrogel as cell microcarriers for tissue regeneration applications. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Hyaluronic acid (HA) is a biopolymer present in various human tissues, whose degradation causes tissue damage and diseases. The oxidized hyaluronic acid/adipic acid dihydrazide (oxi-HA/ADH) hydrogels have attracted attention due to their advantages such as thermosensitivity, injectability, in situ gelation, and sterilization. However, studies are still scarce in the literature as microcarriers. In that sense, this work is a study of oxi-HA/ADH microparticles of 215.6 ± 2.7 µm obtained by high-speed shearing (18,000 rpm at pH 7) as cell microcarriers. Results showed that BALB/c 3T3 fibroblasts and adipose mesenchymal stem cells (h-AdMSC) cultured on the oxi-HA/ADH microcarriers presented a higher growth of both cells in comparison with the hydrogel. Moreover, the extrusion force of oxi-HA/ADH microparticles was reduced by 35% and 55% with the addition of 25% and 75% HA fluid, respectively, thus improving its injectability. These results showed that oxi-HA/ADH microcarriers can be a potential injectable biopolymer for tissue regeneration applications.
Collapse
Affiliation(s)
- Carla Giometti França
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas , 13083-852 , Campinas , SP , Brazil
| | - Krissia Caroline Leme
- Haematology & Hemotherapy Center, Umbilical Cord Blood Bank, University of Campinas , 13083-878 , Campinas , SP , Brazil
| | - Ângela Cristina Malheiros Luzo
- Haematology & Hemotherapy Center, Umbilical Cord Blood Bank, University of Campinas , 13083-878 , Campinas , SP , Brazil
| | | | - Maria Helena Andrade Santana
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas , 13083-852 , Campinas , SP , Brazil
| |
Collapse
|
19
|
El-Husseiny HM, Mady EA, Helal MAY, Tanaka R. The Pivotal Role of Stem Cells in Veterinary Regenerative Medicine and Tissue Engineering. Vet Sci 2022; 9:648. [PMID: 36423096 PMCID: PMC9698002 DOI: 10.3390/vetsci9110648] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 07/30/2023] Open
Abstract
The introduction of new regenerative therapeutic modalities in the veterinary practice has recently picked up a lot of interest. Stem cells are undifferentiated cells with a high capacity to self-renew and develop into tissue cells with specific roles. Hence, they are an effective therapeutic option to ameliorate the ability of the body to repair and engineer damaged tissues. Currently, based on their facile isolation and culture procedures and the absence of ethical concerns with their use, mesenchymal stem cells (MSCs) are the most promising stem cell type for therapeutic applications. They are becoming more and more well-known in veterinary medicine because of their exceptional immunomodulatory capabilities. However, their implementation on the clinical scale is still challenging. These limitations to their use in diverse affections in different animals drive the advancement of these therapies. In the present article, we discuss the ability of MSCs as a potent therapeutic modality for the engineering of different animals' tissues including the heart, skin, digestive system (mouth, teeth, gastrointestinal tract, and liver), musculoskeletal system (tendons, ligaments, joints, muscles, and nerves), kidneys, respiratory system, and eyes based on the existing knowledge. Moreover, we highlighted the promises of the implementation of MSCs in clinical use in veterinary practice.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Eman A. Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Mahmoud A. Y. Helal
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
- Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
| |
Collapse
|
20
|
Punzón E, Salgüero R, Totusaus X, Mesa-Sánchez C, Badiella L, García-Castillo M, Pradera A. Equine umbilical cord mesenchymal stem cells demonstrate safety and efficacy in the treatment of canine osteoarthritis: a randomized placebo-controlled trial. J Am Vet Med Assoc 2022; 260:1947-1955. [PMID: 36198051 DOI: 10.2460/javma.22.06.0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To demonstrate the efficacy and safety of mesenchymal stem cells (MSCs) for xenogeneic use with intra-articular administration in dogs with osteoarthritis. ANIMALS 80 client-owned dogs with naturally occurring osteoarthritis in elbow or hip. PROCEDURES A multicentric, double-blinded, parallel, randomized and placebo-controlled clinical trial was performed. After intra-articular injection of equine umbilical cord MSCs, dogs were reexamined at weeks 4, 8, and 12 using a force platform (gait analysis), orthopedic assessment, and validated owner questionnaire. Eighteen months after treatment, a long-term follow-up was done. RESULTS Best results were obtained 8 weeks after treatment, where 63% of the patients showed an improvement in the gait analysis. Also 8 weeks after treatment, 77% of the dogs improved in the orthopedic examination; 65% of the owners considered that the treatment improved their pet's quality of life 8 weeks after treatment. The long-term follow-up revealed that 59% of the owners observed a duration of effect longer than 6 months after a single intra-articular injection of equine umbilical cord MSCs. No systemic or permanent adverse events were detected at any time point. CLINICAL RELEVANCE Results of this study demonstrated the safety and efficacy of intra-articular administration of xenogeneic MSCs for the treatment of canine osteoarthritis.
Collapse
Affiliation(s)
| | - Raquel Salgüero
- 2Departament de Diagnóstico por Imágenes, Hospital Veterinario Veterios, Madrid, Spain.,4VetOracle Teleradiology, Diss, UK
| | | | | | - Llorenç Badiella
- 6Servei d'Estadística Aplicada, Universitat Autònoma de Barcelona, Cerdanyola, Spain.,7Departament de Matemàtiques, Universitat Autònoma de Barcelona, Cerdanyola, Spain
| | | | | |
Collapse
|
21
|
Liu TP, Ha P, Xiao CY, Kim SY, Jensen AR, Easley J, Yao Q, Zhang X. Updates on mesenchymal stem cell therapies for articular cartilage regeneration in large animal models. Front Cell Dev Biol 2022; 10:982199. [PMID: 36147737 PMCID: PMC9485723 DOI: 10.3389/fcell.2022.982199] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
There is an unmet need for novel and efficacious therapeutics for regenerating injured articular cartilage in progressive osteoarthritis (OA) and/or trauma. Mesenchymal stem cells (MSCs) are particularly promising for their chondrogenic differentiation, local healing environment modulation, and tissue- and organism-specific activity; however, despite early in vivo success, MSCs require further investigation in highly-translatable models prior to disseminated clinical usage. Large animal models, such as canine, porcine, ruminant, and equine models, are particularly valuable for studying allogenic and xenogenic human MSCs in a human-like osteochondral microenvironment, and thus play a critical role in identifying promising approaches for subsequent clinical investigation. In this mini-review, we focus on [1] considerations for MSC-harnessing studies in each large animal model, [2] source tissues and organisms of MSCs for large animal studies, and [3] tissue engineering strategies for optimizing MSC-based cartilage regeneration in large animal models, with a focus on research published within the last 5 years. We also highlight the dearth of standard assessments and protocols regarding several crucial aspects of MSC-harnessing cartilage regeneration in large animal models, and call for further research to maximize the translatability of future MSC findings.
Collapse
Affiliation(s)
- Timothy P. Liu
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Pin Ha
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Crystal Y. Xiao
- Samueli School of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sang Yub Kim
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Andrew R. Jensen
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jeremiah Easley
- Preclinical Surgical Research Laboratory, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Qingqiang Yao, ; Xinli Zhang,
| | - Xinli Zhang
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Qingqiang Yao, ; Xinli Zhang,
| |
Collapse
|
22
|
Pan C, Huang W, Chen Q, Xu J, Yao G, Li B, Wu T, Yin C, Cheng X. LncRNA Malat-1 From MSCs-Derived Extracellular Vesicles Suppresses Inflammation and Cartilage Degradation in Osteoarthritis. Front Bioeng Biotechnol 2022; 9:772002. [PMID: 34976968 PMCID: PMC8715093 DOI: 10.3389/fbioe.2021.772002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
Purpose: Extracellular Vesicles (EVs) derived from hMSCs, have the potential to alleviate cartilage damage and inflammation. We aimed to explore the effects of EVs derived from lncRNA malat‐1-overexpressing human mesenchymal stem cells (hMSCs) on chondrocytes. Material and Methods: hMSCs-derived Extracellular Vesicles (hMSCs-EVs) were identified by transmission electron microscopy and western blot. We used a Sprague-Dawley (SD) rat model of CollagenaseⅡ-induced osteoarthritis (OA) as well as IL-1β-induced OA chondrocytes. Lentiviral vectors were used to overexpress lncRNA malat‐1 in hMSCs. Chondrocyte proliferation, inflammation, extracellular matrix degradation, and cell migration were measured by Edu staining, ELISA, western blot analysis, and transwell assay. Chondrocyte apoptosis was evaluated by flow cytometry, Hoechst 33342/PI Staining, and western blot. Safranine O-fast green (S-O) staining and HE staining were used to assess morphologic alterations of the rat knee joint. Results: hMSCsmalat−1-EVs decreased MMP-13, IL-6, and Caspase-3 expression in IL-1β-induced OA chondrocytes. Moreover, hMSCsmalat−1-EVs promoted chondrocyte proliferation and migration, suppressed apoptosis, and attenuated IL-1β-induced chondrocyte injury. Our animal experiments suggested that hMSCsmalat−1-EVs were sufficient to prevent cartilage degeneration. Conclusion: Our findings show that lncRNA malat-1from hMSCs‐delivered EVs can promote chondrocyte proliferation, alleviate chondrocyte inflammation and cartilage degeneration, and enhance chondrocyte repair. Overall, hMSCsmalat−1-EVs might be a new potential therapeutic option for patients with OA.
Collapse
Affiliation(s)
- Chongzhi Pan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Orthopedics of Jiangxi Province, Nanchang, China.,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, China
| | - Wenzhou Huang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Orthopedics of Jiangxi Province, Nanchang, China.,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, China
| | - Qi Chen
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Orthopedics of Jiangxi Province, Nanchang, China.,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, China
| | - Jiu Xu
- Second Clinical College, Nanchang University, Nanchang, China
| | - Guoyu Yao
- Second Clinical College, Nanchang University, Nanchang, China
| | - Bin Li
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Orthopedics of Jiangxi Province, Nanchang, China.,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, China.,Second Clinical College, Nanchang University, Nanchang, China
| | - Tianlong Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Orthopedics of Jiangxi Province, Nanchang, China.,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, China
| | - Changchang Yin
- Jiujiang University, Key Laboratory of Medical Transformation of Jiujiang, Jiujiang, China
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Orthopedics of Jiangxi Province, Nanchang, China.,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, China.,Second Clinical College, Nanchang University, Nanchang, China
| |
Collapse
|
23
|
Li M, Sun D, Zhang J, Wang Y, Wei Q, Wang Y. Application and development of 3D bioprinting in cartilage tissue engineering. Biomater Sci 2022; 10:5430-5458. [DOI: 10.1039/d2bm00709f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioprinting technology can build complex tissue structures and has the potential to fabricate engineered cartilage with bionic structures for achieving cartilage defect repair/regeneration.
Collapse
Affiliation(s)
- Mingyang Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Daocen Sun
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Juan Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanmei Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qinghua Wei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanen Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
24
|
Nakielski P, Rinoldi C, Pruchniewski M, Pawłowska S, Gazińska M, Strojny B, Rybak D, Jezierska-Woźniak K, Urbanek O, Denis P, Sinderewicz E, Czelejewska W, Staszkiewicz-Chodor J, Grodzik M, Ziai Y, Barczewska M, Maksymowicz W, Pierini F. Laser-Assisted Fabrication of Injectable Nanofibrous Cell Carriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104971. [PMID: 34802179 DOI: 10.1002/smll.202104971] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Indexed: 06/13/2023]
Abstract
The use of injectable biomaterials for cell delivery is a rapidly expanding field which may revolutionize the medical treatments by making them less invasive. However, creating desirable cell carriers poses significant challenges to the clinical implementation of cell-based therapeutics. At the same time, no method has been developed to produce injectable microscaffolds (MSs) from electrospun materials. Here the fabrication of injectable electrospun nanofibers is reported on, which retain their fibrous structure to mimic the extracellular matrix. The laser-assisted micro-scaffold fabrication has produced tens of thousands of MSs in a short time. An efficient attachment of cells to the surface and their proliferation is observed, creating cell-populated MSs. The cytocompatibility assays proved their biocompatibility, safety, and potential as cell carriers. Ex vivo results with the use of bone and cartilage tissues proved that NaOH hydrolyzed and chitosan functionalized MSs are compatible with living tissues and readily populated with cells. Injectability studies of MSs showed a high injectability rate, while at the same time, the force needed to eject the load is no higher than 25 N. In the future, the produced MSs may be studied more in-depth as cell carriers in minimally invasive cell therapies and 3D bioprinting applications.
Collapse
Affiliation(s)
- Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Chiara Rinoldi
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Michał Pruchniewski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-787, Poland
| | - Sylwia Pawłowska
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Małgorzata Gazińska
- Department of Engineering and Technology of Polymers, Wrocław University of Science and Technology, Wrocław, 50-370, Poland
| | - Barbara Strojny
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-787, Poland
| | - Daniel Rybak
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Katarzyna Jezierska-Woźniak
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, 10-082, Poland
| | - Olga Urbanek
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Piotr Denis
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Emilia Sinderewicz
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, 10-082, Poland
| | - Wioleta Czelejewska
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, 10-082, Poland
| | - Joanna Staszkiewicz-Chodor
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, 10-082, Poland
| | - Marta Grodzik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-787, Poland
| | - Yasamin Ziai
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Monika Barczewska
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, 10-082, Poland
| | - Wojciech Maksymowicz
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, 10-082, Poland
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
| |
Collapse
|
25
|
Laurent A, Porcello A, Fernandez PG, Jeannerat A, Peneveyre C, Abdel-Sayed P, Scaletta C, Hirt-Burri N, Michetti M, de Buys Roessingh A, Raffoul W, Allémann E, Jordan O, Applegate LA. Combination of Hyaluronan and Lyophilized Progenitor Cell Derivatives: Stabilization of Functional Hydrogel Products for Therapeutic Management of Tendinous Tissue Disorders. Pharmaceutics 2021; 13:2196. [PMID: 34959477 PMCID: PMC8706504 DOI: 10.3390/pharmaceutics13122196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 01/10/2023] Open
Abstract
Cultured progenitor cells and derivatives have been used in various homologous applications of cutaneous and musculoskeletal regenerative medicine. Active pharmaceutical ingredients (API) in the form of progenitor cell derivatives such as lysates and lyophilizates were shown to retain function in controlled cellular models of wound repair. On the other hand, hyaluronan-based hydrogels are widely used as functional vehicles in therapeutic products for tendon tissue disorders. The aim of this study was the experimental characterization of formulations containing progenitor tenocyte-derived APIs and hyaluronan, for the assessment of ingredient compatibility and stability in view of eventual therapeutic applications in tendinopathies. Lyophilized APIs were determined to contain relatively low quantities of proteins and growth factors, while being physicochemically stable and possessing significant intrinsic antioxidant properties. Physical and rheological quantifications of the combination formulas were performed after hydrogen peroxide challenge, outlining significantly improved evolutive viscoelasticity values in accelerated degradation settings. Thus, potent effects of physicochemical protection or stability enhancement of hyaluronan by the incorporated APIs were observed. Finally, combination formulas were found to be easily injectable into ex vivo tendon tissues, confirming their compatibility with further translational clinical approaches. Overall, this study provides the technical bases for the development of progenitor tenocyte derivative-based injectable therapeutic products or devices, to potentially be applied in tendinous tissue disorders.
Collapse
Affiliation(s)
- Alexis Laurent
- Applied Research Department, LAM Biotechnologies SA, CH-1066 Épalinges, Switzerland; (A.J.); (C.P.)
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Lausanne, Switzerland; (P.A.-S.); (C.S.); (N.H.-B.); (M.M.); (L.A.A.)
- Manufacturing Department, TEC-PHARMA SA, CH-1038 Bercher, Switzerland
| | - Alexandre Porcello
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland; (A.P.); (P.G.F.); (E.A.); (O.J.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Paula Gonzalez Fernandez
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland; (A.P.); (P.G.F.); (E.A.); (O.J.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Annick Jeannerat
- Applied Research Department, LAM Biotechnologies SA, CH-1066 Épalinges, Switzerland; (A.J.); (C.P.)
| | - Cédric Peneveyre
- Applied Research Department, LAM Biotechnologies SA, CH-1066 Épalinges, Switzerland; (A.J.); (C.P.)
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Lausanne, Switzerland; (P.A.-S.); (C.S.); (N.H.-B.); (M.M.); (L.A.A.)
- DLL Bioengineering, Discovery Learning Program, STI School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Lausanne, Switzerland; (P.A.-S.); (C.S.); (N.H.-B.); (M.M.); (L.A.A.)
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Lausanne, Switzerland; (P.A.-S.); (C.S.); (N.H.-B.); (M.M.); (L.A.A.)
| | - Murielle Michetti
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Lausanne, Switzerland; (P.A.-S.); (C.S.); (N.H.-B.); (M.M.); (L.A.A.)
| | - Anthony de Buys Roessingh
- Children and Adolescent Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
| | - Wassim Raffoul
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
- Plastic, Reconstructive, and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland; (A.P.); (P.G.F.); (E.A.); (O.J.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Olivier Jordan
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland; (A.P.); (P.G.F.); (E.A.); (O.J.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Lausanne, Switzerland; (P.A.-S.); (C.S.); (N.H.-B.); (M.M.); (L.A.A.)
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
- Plastic, Reconstructive, and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| |
Collapse
|
26
|
Yang J, Wang X, Fan Y, Song X, Wu J, Fu Z, Li T, Huang Y, Tang Z, Meng S, Liu N, Chen J, Liu P, Yang L, Gong X, Chen C. Tropoelastin improves adhesion and migration of intra-articular injected infrapatellar fat pad MSCs and reduces osteoarthritis progression. Bioact Mater 2021; 10:443-459. [PMID: 34901559 PMCID: PMC8636741 DOI: 10.1016/j.bioactmat.2021.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 12/16/2022] Open
Abstract
Intra-articular injection of mesenchymal stem cells (MSCs) is a promising strategy for osteoarthritis (OA) treatment. However, more and more studies reveal that the injected MSCs have poor adhesion, migration, and survival in the joint cavity. A recent study shows that tropoelastin (TE) regulates adhesion, proliferation and phenotypic maintenance of MSCs as a soluble additive, indicating that TE could promote MSCs-homing in regenerative medicine. In this study, we used TE as injection medium, and compared it with classic media in MSCs intra-articular injection such as normal saline (NS), hyaluronic acid (HA), and platelet-rich plasma (PRP). We found that TE could effectively improve adhesion, migration, chondrogenic differentiation of infrapatellar fat pad MSCs (IPFP-MSCs) and enhance matrix synthesis of osteoarthritic chondrocytes (OACs) in indirect-coculture system. Moreover, TE could significantly enhance IPFP-MSCs adhesion via activation of integrin β1, ERK1/2 and vinculin (VCL) in vitro. In addition, intra-articular injection of TE-IPFP MSCs suspension resulted in a short-term increase in survival rate of IPFP-MSCs and better histology scores of rat joint tissues. Inhibition of integrin β1 or ERK1/2 attenuated the protective effect of TE-IPFP MSCs suspension in vivo. In conclusion, TE promotes performance of IPFP-MSCs and protects knee cartilage from damage in OA through enhancement of cell adhesion and activation of integrin β1/ERK/VCL pathway. Our findings may provide new insights in MSCs intra-articular injection for OA treatment.
Collapse
Affiliation(s)
- Junjun Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xin Wang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yahan Fan
- Blood Transfusion Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiangyi Wu
- Department of Sports Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, China
| | - Zhenlan Fu
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Tao Li
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yang Huang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - ZheXiong Tang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Shuo Meng
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Na Liu
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.,Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, 400038, China
| | - Jiajia Chen
- Biomedical Analysis Center, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Pingju Liu
- Department of Orthopedics, Zunyi Traditional Chinese Medicine Hospital, Zunyi, 563099, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Cheng Chen
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
27
|
Ge D, O'Brien MJ, Savoie FH, Gimble JM, Wu X, Gilbert MH, Clark-Patterson GL, Schuster JD, Miller KS, Wang A, Myers L, You Z. Human adipose-derived stromal/stem cells expressing doublecortin improve cartilage repair in rabbits and monkeys. NPJ Regen Med 2021; 6:82. [PMID: 34848747 PMCID: PMC8633050 DOI: 10.1038/s41536-021-00192-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022] Open
Abstract
Localized cartilage lesions in early osteoarthritis and acute joint injuries are usually treated surgically to restore function and relieve pain. However, a persistent clinical challenge remains in how to repair the cartilage lesions. We expressed doublecortin (DCX) in human adipose-derived stromal/stem cells (hASCs) and engineered hASCs into cartilage tissues using an in vitro 96-well pellet culture system. The cartilage tissue constructs with and without DCX expression were implanted in the knee cartilage defects of rabbits (n = 42) and monkeys (n = 12). Cohorts of animals were euthanized at 6, 12, and 24 months after surgery to evaluate the cartilage repair outcomes. We found that DCX expression in hASCs increased expression of growth differentiation factor 5 (GDF5) and matrilin 2 in the engineered cartilage tissues. The cartilage tissues with DCX expression significantly enhanced cartilage repair as assessed macroscopically and histologically at 6, 12, and 24 months after implantation in the rabbits and 24 months after implantation in the monkeys, compared to the cartilage tissues without DCX expression. These findings suggest that hASCs expressing DCX may be engineered into cartilage tissues that can be used to treat localized cartilage lesions.
Collapse
Affiliation(s)
- Dongxia Ge
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Michael J O'Brien
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Felix H Savoie
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jeffrey M Gimble
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
- LaCell LLC and Obatala Sciences Inc., New Orleans, LA, USA
- Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Xiying Wu
- LaCell LLC and Obatala Sciences Inc., New Orleans, LA, USA
| | - Margaret H Gilbert
- Tulane National Primate Research Center, Tulane University, New Orleans, LA, USA
| | | | - Jason D Schuster
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Kristin S Miller
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Alun Wang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Leann Myers
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropic Medicine, New Orleans, LA, USA
| | - Zongbing You
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA.
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA, USA.
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA.
| |
Collapse
|
28
|
Human Umbilical Mesenchymal Stromal Cells Mixed with Hyaluronan Transplantation Decreased Cartilage Destruction in a Rabbit Osteoarthritis Model. Stem Cells Int 2021; 2021:2989054. [PMID: 34721588 PMCID: PMC8553511 DOI: 10.1155/2021/2989054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/14/2021] [Accepted: 10/05/2021] [Indexed: 01/18/2023] Open
Abstract
Osteoarthritis (OA), the most common type of arthritis, causes pain in joints and disability. Due to the absence of ideal effective medication, stem cell transplantation emerges as a new hope for OA therapy. This study is aimed at evaluating the capability of human umbilical cord mesenchymal stromal cells (HUCMSCs) mixed with hyaluronan (HA) to treat osteoarthritis in a rabbit model. Differentiation capability of HUCMSCs, magnetic resonance image examination, and immunohistochemistry of the cartilage after transplantation of HUCMSCs mixed with HA in a rabbit OA model were explored. HUCMSCs exhibited typical mesenchymal stromal cell (MSC) characteristics, including spindle-shaped morphology, surface marker expressions (positive for human leukocyte antigen- (HLA-) ABC, CD44, CD73, CD90, and CD105; negative for HLA-DR, CD34, and CD45), and trilineage differentiation (chondrogenesis, adipogenesis, and osteogenesis). The gene expression of SOX9, type II collagen, and aggrecan in the HUCMSC-derived chondrocytes mixed with HA was increased after in vitro chondrogenesis compared with HUCMSCs. A gross and histological significant improvement in hyaline cartilage destruction after HUCMSCs mixed with HA was noted in the animal model compared to the OA knees. The International Cartilage Repair Society histological score and Safranin O staining were significantly higher for the treated knees than the control knees (p < 0.05). Moreover, the expression of MMP13 was significantly decreased in the treated knees than in the OA knees. In conclusion, HUCMSCs mixed with HA in vitro and in vivo might attenuate the cartilage destruction in osteoarthritis. Our study provided evidence for future clinical trials.
Collapse
|
29
|
Ferreira H, Amorim D, Lima AC, Pirraco RP, Costa-Pinto AR, Almeida R, Almeida A, Reis RL, Pinto-Ribeiro F, Neves NM. A biocompatible and injectable hydrogel to boost the efficacy of stem cells in neurodegenerative diseases treatment. Life Sci 2021; 287:120108. [PMID: 34717909 DOI: 10.1016/j.lfs.2021.120108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023]
Abstract
AIMS Stem cell therapies emerged as treatment modalities with potential to cure neurodegenerative diseases (NDs). However, despite high expectations, their clinical use is still limited. Critical issues in treatment outcomes may be related to stem cells formulation and administration route. We develop a hydrogel as a cell carrier, consisting of compounds (phospholipids and hyaluronic acid-HA) naturally present in the central nervous system (CNS). The HA-based hydrogel physically crosslinked with liposomes is designed for direct injection into the CNS to significantly increase the bone marrow mesenchymal stem cells (BMSCs) bioavailability. MATERIALS AND METHODS Hydrogel compatibility is confirmed in vitro with BMSCs and in vivo through its intracerebroventricular injection in rats. To assess its efficacy, the main cause of chronic neurologic disability in young adults is selected, namely multiple sclerosis (MS). The efficacy of the developed formulation containing a lower number of cells than previously reported is demonstrated using an experimental autoimmune encephalomyelitis (EAE) rat model. KEY FINDINGS The distribution of the engineered hydrogel into corpus callosum can be ideal for NDs treatment, since damage of this white matter structure is responsible for important neuronal deficits. Moreover, the BMSCs-laden hydrogel significantly decreases disease severity and maximum clinical score and eliminated the relapse. SIGNIFICANCE The engineering of advanced therapies using this natural carrier can result in efficacious treatments for MS and related debilitating conditions.
Collapse
Affiliation(s)
- Helena Ferreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Diana Amorim
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Life and Health Sciences Research Institute, School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana Cláudia Lima
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Rita Costa-Pinto
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui Almeida
- Neurosurgery Department, Hospital de Braga, Braga, Portugal
| | - Armando Almeida
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Life and Health Sciences Research Institute, School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Filipa Pinto-Ribeiro
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Life and Health Sciences Research Institute, School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
30
|
Chen T, Weng W, Liu Y, Aspera-Werz RH, Nüssler AK, Xu J. Update on Novel Non-Operative Treatment for Osteoarthritis: Current Status and Future Trends. Front Pharmacol 2021; 12:755230. [PMID: 34603064 PMCID: PMC8481638 DOI: 10.3389/fphar.2021.755230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/06/2021] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is a leading cause of pain and disability which results in a reduced quality of life. Due to the avascular nature of cartilage, damaged cartilage has a finite capacity for healing or regeneration. To date, conservative management, including physical measures and pharmacological therapy are still the principal choices offered for OA patients. Joint arthroplasties or total replacement surgeries are served as the ultimate therapeutic option to rehabilitate the joint function of patients who withstand severe OA. However, these approaches are mainly to relieve the symptoms of OA, instead of decelerating or reversing the progress of cartilage damage. Disease-modifying osteoarthritis drugs (DMOADs) aiming to modify key structures within the OA joints are in development. Tissue engineering is a promising strategy for repairing cartilage, in which cells, genes, and biomaterials are encompassed. Here, we review the current status of preclinical investigations and clinical translations of tissue engineering in the non-operative treatment of OA. Furthermore, this review provides our perspective on the challenges and future directions of tissue engineering in cartilage regeneration.
Collapse
Affiliation(s)
- Tao Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Weidong Weng
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Yang Liu
- Department of Clinical Sciences, Orthopedics, Faculty of Medicine, Lund University, Lund, Sweden
| | - Romina H. Aspera-Werz
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas K Nüssler
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Jianzhong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
31
|
Luo M, Zhang X, Wu J, Zhao J. Modifications of polysaccharide-based biomaterials under structure-property relationship for biomedical applications. Carbohydr Polym 2021; 266:118097. [PMID: 34044964 DOI: 10.1016/j.carbpol.2021.118097] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/20/2022]
Abstract
Polysaccharides are well accepted biomaterials that have attracted considerable attention. Compared with other materials under research, polysaccharides show unique advantages: they are available in nature and are normally easily acquired, those acquired from nature show favorable immunogenicity, and are biodegradable and bioavailable. The bioactivity and possible applications are based on their chemical structure; however, naturally acquired polysaccharides sometimes have unwanted flaws that limit further applications. For this reason, carefully summarizing the possible modifications of polysaccharides to improve them is crucial. Structural modifications can not only provide polysaccharides with additional functional groups but also change their physicochemical properties. This review based on the structure-property relation summarizes the common chemical modifications of polysaccharides, the related bioactivity changes, possible functionalization methods, and major possible biomedical applications based on modified polysaccharides.
Collapse
Affiliation(s)
- Moucheng Luo
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
32
|
An S, Choi S, Min S, Cho SW. Hyaluronic Acid-based Biomimetic Hydrogels for Tissue Engineering and Medical Applications. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0343-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Alonci G, Mocchi R, Sommatis S, Capillo MC, Liga E, Janowska A, Nachbaur L, Zerbinati N. Physico-Chemical Characterization and In Vitro Biological Evaluation of a Bionic Hydrogel Based on Hyaluronic Acid and l-Lysine for Medical Applications. Pharmaceutics 2021; 13:pharmaceutics13081194. [PMID: 34452157 PMCID: PMC8400252 DOI: 10.3390/pharmaceutics13081194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022] Open
Abstract
Hyaluronic acid (HA) is an endogenous polysaccharide, whose hydrogels have been used in medical applications for decades. Here, we present a technology platform for stabilizing HA with a biocrosslinker, the amino acid l-Lysine, to manufacture bionic hydrogels for regenerative medicine. We synthetized bionic hydrogels with tailored composition with respect to HA concentration and degree of stabilization depending on the envisaged medical use. The structure of the hydrogels was assessed by microscopy and rheology, and the resorption behavior through enzymatic degradation with hyaluronidase. The biological compatibility was evaluated in vitro with human dermal fibroblast cell lines. HA bionic hydrogels stabilized with lysine show a 3D network structure, with a rheological profile that mimics biological matrixes, as a harmless biodegradable substrate for cell proliferation and regeneration and a promising candidate for wound healing and other medical applications.
Collapse
Affiliation(s)
- Giuseppe Alonci
- Qventis GmbH, 16761 Hennigsdorf, Germany;
- Matex Lab Switzerland SA, 1228 Plan-les-Ouates, Switzerland
| | - Roberto Mocchi
- UB—CARE S.r.l.-Spin-off University of Pavia, 27100 Pavia, Italy; (R.M.); (S.S.); (M.C.C.); (E.L.)
| | - Sabrina Sommatis
- UB—CARE S.r.l.-Spin-off University of Pavia, 27100 Pavia, Italy; (R.M.); (S.S.); (M.C.C.); (E.L.)
| | - Maria Chiara Capillo
- UB—CARE S.r.l.-Spin-off University of Pavia, 27100 Pavia, Italy; (R.M.); (S.S.); (M.C.C.); (E.L.)
| | - Elsa Liga
- UB—CARE S.r.l.-Spin-off University of Pavia, 27100 Pavia, Italy; (R.M.); (S.S.); (M.C.C.); (E.L.)
| | - Agata Janowska
- Department of Dermatology, University of Pisa, 56121 Pisa, Italy;
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Lidia Nachbaur
- Qventis GmbH, 16761 Hennigsdorf, Germany;
- Correspondence: (L.N.); (N.Z.)
| | - Nicola Zerbinati
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
- Correspondence: (L.N.); (N.Z.)
| |
Collapse
|
34
|
Wang X, Li Z, Cui Y, Cui X, Chen C, Wang Z. Exosomes Isolated From Bone Marrow Mesenchymal Stem Cells Exert a Protective Effect on Osteoarthritis via lncRNA LYRM4-AS1-GRPR-miR-6515-5p. Front Cell Dev Biol 2021; 9:644380. [PMID: 34124036 PMCID: PMC8193855 DOI: 10.3389/fcell.2021.644380] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Objectives The aim of this study was to investigate the effects of exosomes isolated from human bone marrow mesenchymal stem cells (BMSCs) on osteoarthritis (OA) and a competitive endogenous RNA (ceRNA) network. Methods Exosomes were isolated from human BMSCs and characterized by transmission electron microscopy (TEM), Nanosight (NTA), and western blotting. Chondrocytes were treated with interleukin-1β (IL-1β) and then transfected with exosomes. Cell viability and apoptosis were determined using Cell Counting Kit-8 (CCK-8) and flow cytometry, respectively. Cells with IL-1β and exosomes were sequenced, and differentially expressed lncRNAs (DE-lncRNAs) and miRNAs (DE-miRNAs) were identified. Thereafter, a ceRNA network (LYRM4-AS1-GRPR-miR-6515-5p) was chosen for further validation. Results TEM, NTA, and western blotting showed that exosomes were successfully isolated, and PKH67 staining showed that exosomes could be taken up by IL-1β-induced chondrocytes. Compared with the control group, IL-1β significantly decreased cell viability and promoted apoptosis (P < 0.05), while exosomes reversed the changes induced by IL-1β. For MMP3, AKT, and GRPR, IL-1β upregulated their expression, while exosomes downregulated their expression. For PTEN, there was no significant difference in PTEN expression between the control and IL-1β groups; however, exosomes markedly upregulated PTEN expression. By sequencing, 907 DE-lncRNAs and 25 DE-miRNAs were identified, and a ceRNA network was constructed. The dual-luciferase reporter gene indicated that LYRM4-AS1, miR-6515-5, and GRPR interacted with each other. The results of cell experiments showed that LYRM4-AS1 regulated the growth of IL-1β-induced chondrocytes by GRPR/miR-6515-5p. Conclusion Exosomes may alleviate OA inflammation by regulating the LYRM4-AS1/GRPR/miR-6515-5p signaling pathway.
Collapse
Affiliation(s)
- Xiuhui Wang
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Zhuokai Li
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yin Cui
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xu Cui
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Cheng Chen
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Zhe Wang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Brondeel C, Pauwelyn G, de Bakker E, Saunders J, Samoy Y, Spaas JH. Review: Mesenchymal Stem Cell Therapy in Canine Osteoarthritis Research: "Experientia Docet" (Experience Will Teach Us). Front Vet Sci 2021; 8:668881. [PMID: 34095280 PMCID: PMC8169969 DOI: 10.3389/fvets.2021.668881] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is currently an incurable and progressive condition in dogs causing chronic joint pain and possibly increasing disability. Due to the poor healing capacity of cartilage lesions that occur with OA, development of effective therapeutics is difficult. For this reason, current OA therapy is mostly limited to the management of pain and inflammation, but not directed ad disease modification. In the search for a safe and effective OA treatment, mesenchymal stem cells (MSCs) have been of great interest since these cells might be able to restore cartilage defects. The designs of OA studies on MSC usage, however, are not always consistent and complete, which limits a clear evaluation of MSC efficacy. The general study results show a tendency to improve lameness, joint pain and range of motion in dogs suffering from naturally-occurring OA. Assessment of the cartilage surface demonstrated the ability of MSCs to promote cartilage-like tissue formation in artificially created cartilage defects. Immunomodulatory capacities of MSCs also seem to play an important role in reducing pain and inflammation in dogs. It should be mentioned, however, that in the current studies in literature there are specific design limitations and further research is warranted to confirm these findings.
Collapse
Affiliation(s)
- Carlien Brondeel
- Department of Medical Imaging and Orthopedics of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Glenn Pauwelyn
- Global Stem Cell Technology NV, Part of Boehringer-Ingelheim, Evergem, Belgium
| | - Evelien de Bakker
- Department of Medical Imaging and Orthopedics of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jimmy Saunders
- Department of Medical Imaging and Orthopedics of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Yves Samoy
- Department of Medical Imaging and Orthopedics of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jan H Spaas
- Department of Medical Imaging and Orthopedics of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Global Stem Cell Technology NV, Part of Boehringer-Ingelheim, Evergem, Belgium
| |
Collapse
|
36
|
Hyaluronic Acid Supplement as a Chondrogenic Adjuvant in Promoting the Therapeutic Efficacy of Stem Cell Therapy in Cartilage Healing. Pharmaceutics 2021; 13:pharmaceutics13030432. [PMID: 33806959 PMCID: PMC8004652 DOI: 10.3390/pharmaceutics13030432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/05/2021] [Accepted: 03/16/2021] [Indexed: 01/03/2023] Open
Abstract
The main aim of this study is to investigate the therapeutic efficacy of direct intra-articular injection of bone-marrow-derived stem/stromal cells (BMSCs) and the adjuvant role of hyaluronic acid (HA) in facilitating rabbit articular cartilage repair. First, rabbit BMSCs were treated with a medium containing different concentrations of HA. Later, HA’s influence on BMSCs’ CD44 expression, cell viability, extracellular glycosaminoglycan (GAG) synthesis, and chondrogenic gene expression was evaluated during seven-day cultivation. For the in vivo experiment, 24 rabbits were used for animal experiments and 6 rabbits were randomly allocated to each group. Briefly, chondral defects were created at the medial femoral condyle; group 1 was left untreated, group 2 was injected with HA, group 3 was transplanted with 3 × 106 BMSCs, and group 4 was transplanted with 3 × 106 BMSCs suspended in HA. Twelve weeks post-treatment, the repair outcome in each group was assessed and compared both macroscopically and microscopically. Results showed that HA treatment can promote cellular CD44 expression. However, the proliferation rate of BMSCs was downregulated when treated with 1 mg/mL (3.26 ± 0.03, p = 0.0002) and 2 mg/mL (2.61 ± 0.04, p = 0.0001) of HA compared to the control group (3.49 ± 0.05). In contrast, 2 mg/mL (2.86 ± 0.3) of HA treatment successfully promoted normalized GAG expression compared to the control group (1.88 ± 0.06) (p = 0.0009). The type II collagen gene expression of cultured BMSCs was significantly higher in BMSCs treated with 2 mg/mL of HA (p = 0.0077). In the in vivo experiment, chondral defects treated with combined BMSC and HA injection demonstrated better healing outcomes than BMSC or HA treatment alone in terms of gross grading and histological scores. In conclusion, this study helps delineate the role of HA as a chondrogenic adjuvant in augmenting the effectiveness of stem-cell-based injection therapy for in vivo cartilage repair. From a translational perspective, the combination of HA and BMSCs is a convenient, ready-to-use, and effective formulation that can improve the therapeutic efficacy of stem-cell-based therapies.
Collapse
|
37
|
Jiang S, Tian G, Yang Z, Gao X, Wang F, Li J, Tian Z, Huang B, Wei F, Sang X, Shao L, Zhou J, Wang Z, Liu S, Sui X, Guo Q, Guo W, Li X. Enhancement of acellular cartilage matrix scaffold by Wharton's jelly mesenchymal stem cell-derived exosomes to promote osteochondral regeneration. Bioact Mater 2021; 6:2711-2728. [PMID: 33665503 PMCID: PMC7895679 DOI: 10.1016/j.bioactmat.2021.01.031] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Articular cartilage defect repair is a problem that has long plagued clinicians. Although mesenchymal stem cells (MSCs) have the potential to regenerate articular cartilage, they also have many limitations. Recent studies have found that MSC-derived exosomes (MSC-Exos) play an important role in tissue regeneration. The purpose of this study was to verify whether MSC-Exos can enhance the reparative effect of the acellular cartilage extracellular matrix (ACECM) scaffold and to explore the underlying mechanism. The results of in vitro experiments show that human umbilical cord Wharton's jelly MSC-Exos (hWJMSC-Exos) can promote the migration and proliferation of bone marrow-derived MSCs (BMSCs) and the proliferation of chondrocytes. We also found that hWJMSC-Exos can promote the polarization of macrophages toward the M2 phenotype. The results of a rabbit knee osteochondral defect repair model confirmed that hWJMSC-Exos can enhance the effect of the ACECM scaffold and promote osteochondral regeneration. We demonstrated that hWJMSC-Exos can regulate the microenvironment of the articular cavity using a rat knee joint osteochondral defect model. This effect was mainly manifested in promoting the polarization of macrophages toward the M2 phenotype and inhibiting the inflammatory response, which may be a promoting factor for osteochondral regeneration. In addition, microRNA (miRNA) sequencing confirmed that hWJMSC-Exos contain many miRNAs that can promote the regeneration of hyaline cartilage. We further clarified the role of hWJMSC-Exos in osteochondral regeneration through target gene prediction and pathway enrichment analysis. In summary, this study confirms that hWJMSC-Exos can enhance the effect of the ACECM scaffold and promote osteochondral regeneration. hWJMSC-Exos can promote cell proliferation, migration and polarization in vitro. hWJMSC-Exos can enhance the repair effect of ACECM scaffold in vivo. hWJMSC-Exos can inhibit inflammation in the joint cavity. hWJMSC-Exos contain a variety of miRNAs that promote osteochondral regeneration.
Collapse
Affiliation(s)
- Shuangpeng Jiang
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Guangzhao Tian
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.,School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhen Yang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.,School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiang Gao
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Fuxin Wang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Juntan Li
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Zhuang Tian
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Bo Huang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Fu Wei
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xinyu Sang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Liuqi Shao
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Jian Zhou
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Zhenyong Wang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Shuyun Liu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xiang Sui
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Quanyi Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Weimin Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xu Li
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| |
Collapse
|
38
|
Research Progress on Stem Cell Therapies for Articular Cartilage Regeneration. Stem Cells Int 2021; 2021:8882505. [PMID: 33628274 PMCID: PMC7895563 DOI: 10.1155/2021/8882505] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
Injury of articular cartilage can cause osteoarthritis and seriously affect the physical and mental health of patients. Unfortunately, current surgical treatment techniques that are commonly used in the clinic cannot regenerate articular cartilage. Regenerative medicine involving stem cells has entered a new stage and is considered the most promising way to regenerate articular cartilage. In terms of theories on the mechanism, it was thought that stem cell-mediated articular cartilage regeneration was achieved through the directional differentiation of stem cells into chondrocytes. However, recent evidence has shown that the stem cell secretome plays an important role in biological processes such as the immune response, inflammation regulation, and drug delivery. At the same time, the stem cell secretome can effectively mediate the process of tissue regeneration. This new theory has attributed the therapeutic effect of stem cells to their paracrine effects. The application of stem cells is not limited to exogenous stem cell transplantation. Endogenous stem cell homing and in situ regeneration strategies have received extensive attention. The application of stem cell derivatives, such as conditioned media, extracellular vesicles, and extracellular matrix, is an extension of stem cell paracrine theory. On the other hand, stem cell pretreatment strategies have also shown promising therapeutic effects. This article will systematically review the latest developments in these areas, summarize challenges in articular cartilage regeneration strategies involving stem cells, and describe prospects for future development.
Collapse
|
39
|
Davis S, Roldo M, Blunn G, Tozzi G, Roncada T. Influence of the Mechanical Environment on the Regeneration of Osteochondral Defects. Front Bioeng Biotechnol 2021; 9:603408. [PMID: 33585430 PMCID: PMC7873466 DOI: 10.3389/fbioe.2021.603408] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Articular cartilage is a highly specialised connective tissue of diarthrodial joints which provides a smooth, lubricated surface for joint articulation and plays a crucial role in the transmission of loads. In vivo cartilage is subjected to mechanical stimuli that are essential for cartilage development and the maintenance of a chondrocytic phenotype. Cartilage damage caused by traumatic injuries, ageing, or degradative diseases leads to impaired loading resistance and progressive degeneration of both the articular cartilage and the underlying subchondral bone. Since the tissue has limited self-repairing capacity due its avascular nature, restoration of its mechanical properties is still a major challenge. Tissue engineering techniques have the potential to heal osteochondral defects using a combination of stem cells, growth factors, and biomaterials that could produce a biomechanically functional tissue, representative of native hyaline cartilage. However, current clinical approaches fail to repair full-thickness defects that include the underlying subchondral bone. Moreover, when tested in vivo, current tissue-engineered grafts show limited capacity to regenerate the damaged tissue due to poor integration with host cartilage and the failure to retain structural integrity after insertion, resulting in reduced mechanical function. The aim of this review is to examine the optimal characteristics of osteochondral scaffolds. Additionally, an overview on the latest biomaterials potentially able to replicate the natural mechanical environment of articular cartilage and their role in maintaining mechanical cues to drive chondrogenesis will be detailed, as well as the overall mechanical performance of grafts engineered using different technologies.
Collapse
Affiliation(s)
- Sarah Davis
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Marta Roldo
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, United Kingdom
| | - Tosca Roncada
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
40
|
Köhnke R, Ahlers MO, Birkelbach MA, Ewald F, Krueger M, Fiedler I, Busse B, Heiland M, Vollkommer T, Gosau M, Smeets R, Rutkowski R. Temporomandibular Joint Osteoarthritis: Regenerative Treatment by a Stem Cell Containing Advanced Therapy Medicinal Product (ATMP)-An In Vivo Animal Trial. Int J Mol Sci 2021; 22:E443. [PMID: 33466246 PMCID: PMC7795212 DOI: 10.3390/ijms22010443] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
Temporomandibular joint osteoarthritis (TMJ-OA) is a chronic degenerative disease that is often characterized by progressive impairment of the temporomandibular functional unit. The aim of this randomized controlled animal trial was a comparative analysis regarding the chondroregenerative potency of intra-articular stem/stromal cell therapy. Four weeks after combined mechanical and biochemical osteoarthritis induction in 28 rabbits, therapy was initiated by a single intra-articular injection, randomized into the following groups: Group 1: AB Serum (ABS); Group 2: Hyaluronic acid (HA); Group 3: Mesenchymal stromal cells (STx.); Group 4: Mesenchymal stromal cells in hyaluronic acid (HA + STx.). After another 4 weeks, the animals were euthanized, followed by histological examination of the removed joints. The histological analysis showed a significant increase in cartilage thickness in the stromal cell treated groups (HA + STx. vs. ABS, p = 0.028; HA + ST.x vs. HA, p = 0.042; STx. vs. ABS, p = 0.036). Scanning electron microscopy detected a similar heterogeneity of mineralization and tissue porosity in the subchondral zone in all groups. The single intra-articular injection of a stem cell containing, GMP-compliant advanced therapy medicinal product for the treatment of iatrogen induced osteoarthritis of the temporomandibular joint shows a chondroregenerative effect.
Collapse
Affiliation(s)
- Robert Köhnke
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.K.); (M.A.B.); (T.V.); (M.G.); (R.S.)
| | - Marcus Oliver Ahlers
- Department of Prosthetic Dentistry School of Dental Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- CMD-Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Moritz Alexander Birkelbach
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.K.); (M.A.B.); (T.V.); (M.G.); (R.S.)
| | - Florian Ewald
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany;
| | | | - Imke Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.F.); (B.B.)
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.F.); (B.B.)
| | - Max Heiland
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, 14197 Berlin, Germany;
| | - Tobias Vollkommer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.K.); (M.A.B.); (T.V.); (M.G.); (R.S.)
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.K.); (M.A.B.); (T.V.); (M.G.); (R.S.)
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.K.); (M.A.B.); (T.V.); (M.G.); (R.S.)
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Rico Rutkowski
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.K.); (M.A.B.); (T.V.); (M.G.); (R.S.)
| |
Collapse
|
41
|
Taghiyar L, Jahangir S, Khozaei Ravari M, Shamekhi MA, Eslaminejad MB. Cartilage Repair by Mesenchymal Stem Cell-Derived Exosomes: Preclinical and Clinical Trial Update and Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1326:73-93. [PMID: 33629260 DOI: 10.1007/5584_2021_625] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) and other degenerative joint diseases are characterized by articular cartilage destruction, synovial inflammation, sclerosis of subchondral bone, and loss of extracellular matrix (ECM). Worldwide, these diseases are major causes of disability. Cell therapies have been considered to be the best therapeutic strategies for long-term treatment of articular cartilage diseases. It has been suggested that the mechanism of stem cell-based therapy is related to paracrine secretion of extracellular vesicles (EVs), which are recognized as the main secretion factors of stem cells. EVs, and in particular the subclass exosomes (Exos), are novel therapeutic approaches for treatment of cartilage lesions and OA. The results of recent studies have shown that EVs isolated from mesenchymal stem cells (MSCs) could inhibit OA progression. EVs isolated from various stem cell sources, such as MSCs, may contribute to tissue regeneration of the limbs, skin, heart, and other tissues. Here, we summarize recent findings of preclinical and clinical studies on different MSC-derived EVs and their effectiveness as a treatment for damaged cartilage. The Exos isolation techniques in OA treatment are also highlighted.
Collapse
Affiliation(s)
- Leila Taghiyar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shahrbano Jahangir
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mojtaba Khozaei Ravari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
42
|
Dorcemus DL, Kim HS, Nukavarapu SP. Gradient scaffold with spatial growth factor profile for osteochondral interface engineering. Biomed Mater 2020; 16. [PMID: 33291092 DOI: 10.1088/1748-605x/abd1ba] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/08/2020] [Indexed: 11/11/2022]
Abstract
Osteochondral (OC) matrix design poses a significant engineering challenge due to the complexity involved with bone-cartilage interfaces. To better facilitate the regeneration of OC tissue, we developed and evaluated a biodegradable matrix with uniquely arranged bone and cartilage supporting phases: a poly(lactic-co-glycolic) acid (PLGA) template structure with a porosity gradient along its longitudinal axis uniquely integrated with hyaluronic acid hydrogel. Micro-CT scanning and imaging confirmed the formation of an inverse gradient matrix. Hydroxyapatite was added to the PLGA template which was then plasma-treated to increase hydrophilicity and growth factor affinity. An osteogenic growth factor (bone morphogenetic protein 2; BMP-2) was loaded onto the template scaffold via adsorption, while a chondrogenic growth factor (transforming growth factor beta 1; TGF-β1) was incorporated into the hydrogel phase. Confocal microscopy of the growth factor loaded matrix confirmed the spatial distribution of the two growth factors, with chondrogenic factor confined to the cartilaginous portion and osteogenic factor present throughout the scaffold. We observed spatial differentiation of human mesenchymal stem cells (hMSCs) into cartilage and bone cells in the scaffolds in vitro: cartilaginous regions were marked by increased glycosaminoglycan production, and osteogenesis was seen throughout the graft by alizarin red staining. In a dose-dependent study of BMP-2, hMSC pellet cultures with TGF-β1 and BMP-2 showed synergistic effects on chondrogenesis. These results indicate that development of an inverse gradient matrix can spatially distribute two different growth factors to facilitate chondrogenesis and osteogenesis along different portions of a scaffold, which are key steps needed for formation of an osteochondral interface.
Collapse
Affiliation(s)
- Deborah Leonie Dorcemus
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, Connecticut, 06269, UNITED STATES
| | - Hyun Sung Kim
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, Connecticut, 06269, UNITED STATES
| | - Syam Prasad Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, Connecticut, 06269, UNITED STATES
| |
Collapse
|
43
|
Martínez-Santamaría L, Cárcamo C, García-Pardo L, García-Arranz M, Melen G, Guerrero-Aspizua S, Llanos L, Río MD, García-Olmo D, Escámez MJ. Combined adipose mesenchymal stromal cell advanced therapy resolved a recalcitrant leg ulcer in an 85-year-old patient. Regen Med 2020; 15:2053-2065. [PMID: 33245008 DOI: 10.2217/rme-2020-0139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Venous leg ulcers (VLU) represent an uphill economic, health and social burden, aggravated in the elderly. Best-practice care interventions are often insufficient and alternative therapies need to be explored. Herein, we have treated for the first time a chronic VLU in an elderly patient by combining cell therapy and tissue engineering in the context of a compassionate use. The administration of allogeneic adipose-derived mesenchymal stromal cells (MSCs) embedded in a plasma-based bioengineered dermis covering the ulcer bed and also injected into the ulcer margins led to the complete closure of a 10-year recalcitrant VLU in an 85-year-old patient. Regenerative properties of MSCs might be boosted by the use of bioengineered matrices for their delivery.
Collapse
Affiliation(s)
- Lucía Martínez-Santamaría
- Department of Bioengineering, Carlos III University (UC3M). Avda. Universidad, 30. 28911. Leganés, Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), U714. C/ Monforte de Lemos 3-5. 28029 Madrid, Spain.,Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz. Avda. de los Reyes Católicos, 2, 28040 Madrid, Spain.,Centre for Energy, Environment & Technology Research (CIEMAT). Avda. Complutense, 40, 28040 Madrid, Spain
| | - Carmen Cárcamo
- Plastic & Reconstructive Surgery Department, Hospital Universitario Fundación Jiménez Díaz. Avda. de los Reyes Católicos, 2, 28040 Madrid, Spain
| | - Lourdes García-Pardo
- Plastic & Reconstructive Surgery Department, Hospital Universitario Fundación Jiménez Díaz. Avda. de los Reyes Católicos, 2, 28040 Madrid, Spain
| | - Mariano García-Arranz
- New Therapy Unit, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz & Universidad Autónoma de Madrid. Avda. de los Reyes Católicos, 2, 28040 Madrid, Spain.,Department of Surgery, Medicine School, Universidad Autónoma de Madrid. C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Gustavo Melen
- Production Unit of Advanced Therapies Medicines, Fundación para la Investigación Biomédica del Hospital Infantil Universitario Niño Jesús. Avda. de Menéndez Pelayo,65, 28009 Madrid, Spain
| | - Sara Guerrero-Aspizua
- Department of Bioengineering, Carlos III University (UC3M). Avda. Universidad, 30. 28911. Leganés, Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), U714. C/ Monforte de Lemos 3-5. 28029 Madrid, Spain.,Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz. Avda. de los Reyes Católicos, 2, 28040 Madrid, Spain.,Centre for Energy, Environment & Technology Research (CIEMAT). Avda. Complutense, 40, 28040 Madrid, Spain
| | - Lucía Llanos
- Clinical Research Unit, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz. Avda. de los Reyes Católicos, 2, 28040 Madrid, Spain
| | - Marcela Del Río
- Department of Bioengineering, Carlos III University (UC3M). Avda. Universidad, 30. 28911. Leganés, Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), U714. C/ Monforte de Lemos 3-5. 28029 Madrid, Spain.,Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz. Avda. de los Reyes Católicos, 2, 28040 Madrid, Spain.,Centre for Energy, Environment & Technology Research (CIEMAT). Avda. Complutense, 40, 28040 Madrid, Spain
| | - Damián García-Olmo
- New Therapy Unit, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz & Universidad Autónoma de Madrid. Avda. de los Reyes Católicos, 2, 28040 Madrid, Spain.,Department of Surgery, Medicine School, Universidad Autónoma de Madrid. C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - María-José Escámez
- Department of Bioengineering, Carlos III University (UC3M). Avda. Universidad, 30. 28911. Leganés, Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), U714. C/ Monforte de Lemos 3-5. 28029 Madrid, Spain.,Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz. Avda. de los Reyes Católicos, 2, 28040 Madrid, Spain.,Centre for Energy, Environment & Technology Research (CIEMAT). Avda. Complutense, 40, 28040 Madrid, Spain
| |
Collapse
|
44
|
Ran J, Fei Y, Wang C, Ruan D, Hu Y, Zheng Z, Chen X, Yin Z, Tang C, Chen Y, Huang J, Shen L, Wu L, Heng BC, Pioletti D, Shen W, Ouyang H. An Off-the-Shelf Tissue Engineered Cartilage Composed of Optimally Sized Pellets of Cartilage Progenitor/Stem Cells. ACS Biomater Sci Eng 2020; 7:881-892. [PMID: 33715373 DOI: 10.1021/acsbiomaterials.9b01863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Articular cartilage focal lesion remains an intractable challenge in sports medicine, and autologous chondrocytes' implantation (ACI) is one of the most commonly utilized treatment modality for this ailment. However, the current ACI technique requires two surgical steps which increases patients' morbidity and incurs additional medical costs. In the present study, we developed a one-step cryopreserved off-the-shelf ACI tissue-engineered (TE) cartilage by seeding pellets of spheroidal cartilage stem/progenitor cells (CSPCs) on a silk scaffold. The pellets were developed through a hanging-drop method, and the incubation time of 1 day could efficiently produce spheroidal pellets without any adverse influence on the cell activity. The pellet size was also optimized. Under chondrogenic induction, pellets consisting of 40 000 CSPCs were found to exhibit the most abundant cartilage matrix deposition and the highest mRNA expression levels of SOX9, aggrecan, and COL2A1, as compared with pellets consisting of 10 000, 100 000, or 200 000 CSPCs. Scaffolds seeded with CSPCs pellets containing 40 000 cells could be preserved in liquid nitrogen with the viability, migration, and chondrogenic ability remaining unaffected for as long as 3 months. When implanted in a rat trochlear cartilage defect model for 3 months, the ready-to-use, cryopreserved TE cartilage yielded fully cartilage reconstruction, which was comparable with the uncryopreserved control. Hence, our study provided preliminary data that our off-the-shell TE cartilage with optimally sized CSPCs pellets seeded within silk scaffolds exhibited strong cartilage repair capacity, which provided a convenient and promising one-step surgical approach to ACI.
Collapse
Affiliation(s)
- Jisheng Ran
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Yang Fei
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Canlong Wang
- Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Yejun Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zefeng Zheng
- Department of Orthopedic Surgery, The Children's Hospital, School of Medicine, Zhejiang University,3333 Binsheng Road, Hangzhou, China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Yangwu Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Jiayun Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Lingfang Shen
- Air Force Health Care Center for Special Services, 15 Yanggongdi Road, Hangzhou 310000, China
| | - Lidong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Boon Chin Heng
- Peking University School of Stomatology, 5 Yiheyuan Road, Beijing, China
| | - Dominique Pioletti
- Laboratory of Biomechanical Orthopedics, EPFL, MED 3 2626 (Bâtiment MED), Station 9, Lausanne CH-1015, Switzerland
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
45
|
Liu D, Tang W, Zhang H, Huang H, Zhang Z, Tang D, Jiao F. Icariin protects rabbit BMSCs against OGD-induced apoptosis by inhibiting ERs-mediated autophagy via MAPK signaling pathway. Life Sci 2020; 253:117730. [DOI: 10.1016/j.lfs.2020.117730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/10/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
|
46
|
Clinical Application Status of Articular Cartilage Regeneration Techniques: Tissue-Engineered Cartilage Brings New Hope. Stem Cells Int 2020; 2020:5690252. [PMID: 32676118 PMCID: PMC7345961 DOI: 10.1155/2020/5690252] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
Hyaline articular cartilage lacks blood vessels, lymphatics, and nerves and is characterised by limited self-repair ability following injury. Traditional techniques of articular cartilage repair and regeneration all have certain limitations. The development of tissue engineering technology has brought hope to the regeneration of articular cartilage. The strategies of tissue-engineered articular cartilage can be divided into three types: “cell-scaffold construct,” cell-free, and scaffold-free. In “cell-scaffold construct” strategies, seed cells can be autologous chondrocytes or stem. Among them, some commercial products with autologous chondrocytes as seed cells, such as BioSeed®-C and CaReS®, have been put on the market and some products are undergoing clinical trials, such as NOVOCART® 3D. The stem cells are mainly pluripotent stem cells and mesenchymal stem cells from different sources. Cell-free strategies that indirectly utilize the repair and regeneration potential of stem cells have also been used in clinical settings, such as TruFit and MaioRegen. Finally, the scaffold-free strategy is also a new development direction, and the short-term repair results of related products, such as NOVOCART® 3D, are encouraging. In this paper, the commonly used techniques of articular cartilage regeneration in surgery are reviewed. By studying different strategies and different seed cells, the clinical application status of tissue-engineered articular cartilage is described in detail.
Collapse
|
47
|
Voga M, Adamic N, Vengust M, Majdic G. Stem Cells in Veterinary Medicine-Current State and Treatment Options. Front Vet Sci 2020; 7:278. [PMID: 32656249 PMCID: PMC7326035 DOI: 10.3389/fvets.2020.00278] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine is a branch of medicine that develops methods to grow, repair, or replace damaged or diseased cells, organs or tissues. It has gained significant momentum in recent years. Stem cells are undifferentiated cells with the capability to self—renew and differentiate into tissue cells with specialized functions. Stem cell therapies are therefore used to overcome the body's inability to regenerate damaged tissues and metabolic processes after acute or chronic insult. The concept of stem cell therapy was first introduced in 1991 by Caplan, who proposed that massive differentiation of cells into the desired tissue could be achieved by isolation, cultivation, and expansion of stem cells in in vitro conditions. Among different stem cell types, mesenchymal stem cells (MSC) currently seem to be the most suitable for therapeutic purposes, based on their simple isolation and culturing techniques, and lack of ethical issues regarding their usage. Because of their remarkable immunomodulatory abilities, MSCs are increasingly gaining recognition in veterinary medicine. Developments are primarily driven by the limitations of current treatment options for various medical problems in different animal species. MSCs represent a possible therapeutic option for many animal diseases, such as orthopedic, orodental and digestive tract diseases, liver, renal, cardiac, respiratory, neuromuscular, dermal, olfactory, and reproductive system diseases. Although we are progressively gaining an understanding of MSC behavior and their mechanisms of action, some of the issues considering their use for therapy are yet to be resolved. The aim of this review is first to summarize the current knowledge and stress out major issues in stem cell based therapies in veterinary medicine and, secondly, to present results of clinical usage of stem cells in veterinary patients.
Collapse
Affiliation(s)
- Metka Voga
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neza Adamic
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Modest Vengust
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
48
|
New Insights on Mechanical Stimulation of Mesenchymal Stem Cells for Cartilage Regeneration. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082927] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Successful tissue regeneration therapies require further understanding of the environment in which the cells are destined to be set. The aim is to structure approaches that aspire to a holistic view of biological systems and to scientific reliability. Mesenchymal stem cells represent a valuable resource for cartilage tissue engineering, due to their chondrogenic differentiation capacity. Promoting chondrogenesis, not only by growth factors but also by exogenous enhancers such as biomechanics, represents a technical enhancement. Tribological evaluation of the articular joint has demonstrated how mechanical stimuli play a pivotal role in cartilage repair and participate in the homeostasis of this tissue. Loading stresses, physiologically experienced by chondrocytes, can upregulate the production of proteins like glycosaminoglycan or collagen, fundamental for articular wellness, as well as promote and preserve cell viability. Therefore, there is a rising interest in the development of bioreactor devices that impose compression, shear stress, and hydrostatic pressure on stem cells. This strategy aims to mimic chondrogenesis and overcome complications like hypertrophic phenotyping and inappropriate mechanical features. This review will analyze the dynamics inside the joint, the natural stimuli experienced by the chondrocytes, and how the biomechanical stimuli can be applied to a stem cell culture in order to induce chondrogenesis.
Collapse
|
49
|
Lam AT, Reuveny S, Oh SKW. Human mesenchymal stem cell therapy for cartilage repair: Review on isolation, expansion, and constructs. Stem Cell Res 2020; 44:101738. [DOI: 10.1016/j.scr.2020.101738] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/29/2022] Open
|
50
|
Monaco G, El Haj AJ, Alini M, Stoddart MJ. Sodium Hyaluronate Supplemented Culture Media as a New hMSC Chondrogenic Differentiation Media-Model for in vitro/ex vivo Screening of Potential Cartilage Repair Therapies. Front Bioeng Biotechnol 2020; 8:243. [PMID: 32296689 PMCID: PMC7136394 DOI: 10.3389/fbioe.2020.00243] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/09/2020] [Indexed: 12/19/2022] Open
Abstract
Surgical strategies to treat articular cartilage injury such as microfracture, expose human bone marrow stem cells (hMSCs) to synovial fluid and its components. High molecular weight hyaluronan (hMwt HA) is one of the most abundant bioactive macromolecules of healthy synovial fluid (hSF) and it plays an important role in the protection of opposing articular cartilage surfaces within the synovial joint. Although hMwt HA has been extensively used to attempt the engineering of the cartilage tissue, its effect as media supplement has not been established. Indeed, current media are often simple in their composition and doesn't recapitulate the rheological and biological features of hSF. In addition, critical in vivo molecules that can potentially change the chondrogenic behavior of hBMSCs to make the in vitro results more predictive of the real in vivo outcome, are lacking. In order to be one step closer to the in vivo physiology of hSF, a new culture media supplemented with physiological level of hMwt HA was developed and the effect of the hMwt HA on the chondrogenesis of hMSCs that would be present in a traumatic defect after marrow stimulation techniques, was investigated. hBMSC-seeded fibrin-polyurethane constructs were cultured in a serum free chondropermissive control medium (HA- TGFβ-). This medium was further supplemented with 10 ng/mL TGFβ1 (HA- TGFβ+) or 2 mg/ml hMwt HA 1.8 MDa (HA+ TGFβ-) or both (HA+ TGFβ+). Alternatively, 1 MDa HA was mixed with the fibrin at 0.2 mg/ml (HASc TGFβ+). The effect of hMwt HA on hMSC differentiation was investigated at the gene expression level by RT-qPCR and total DNA, sulfated glycosaminoglycans and Safranin O staining were evaluated. Addition of hMwt HA to the culture media, significantly increased the synthesis of sulfated glycosaminoglycans, especially in the early days of chondrogenesis, and reduced the upregulation of the hypertrophic cartilage marker collagen X. hMwt HA added inside the fibrin gel(HASc TGF+) led to the best matrix deposition. hMwt HA can be one key medium component in a more reliable in vitro/ex vivo system to reduce in vitro artifacts, enable more accurate pre-screening of potential cartilage repair therapies and reduce the need for animal studies.
Collapse
Affiliation(s)
- Graziana Monaco
- AO Research Institute Davos, Davos, Switzerland
- School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, United Kingdom
| | - Alicia Jennifer El Haj
- Healthcare Technology Institute, Institute of Translational Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | - Martin James Stoddart
- AO Research Institute Davos, Davos, Switzerland
- School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, United Kingdom
| |
Collapse
|