1
|
Xu Q, Kang D, Meyer MD, Pennington CL, Gopal C, Schertzer JW, Kirienko NV. Cytotoxic rhamnolipid micelles drive acute virulence in Pseudomonas aeruginosa. Infect Immun 2024; 92:e0040723. [PMID: 38391248 PMCID: PMC10929412 DOI: 10.1128/iai.00407-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that has developed multi- or even pan-drug resistance toward most frontline and last resort antibiotics, leading to increasing frequency of infections and deaths among hospitalized patients, especially those with compromised immune systems. Further complicating treatment, P. aeruginosa produces numerous virulence factors that contribute to host tissue damage and immune evasion, promoting bacterial colonization and pathogenesis. In this study, we demonstrate the importance of rhamnolipid production in host-pathogen interactions. Secreted rhamnolipids form micelles that exhibited highly acute toxicity toward murine macrophages, rupturing the plasma membrane and causing organellar membrane damage within minutes of exposure. While rhamnolipid micelles (RMs) were particularly toxic to macrophages, they also caused membrane damage in human lung epithelial cells, red blood cells, Gram-positive bacteria, and even noncellular models like giant plasma membrane vesicles. Most importantly, rhamnolipid production strongly correlated with P. aeruginosa virulence against murine macrophages in various panels of clinical isolates. Altogether, our findings suggest that rhamnolipid micelles are highly cytotoxic virulence factors that drive acute cellular damage and immune evasion during P. aeruginosa infections.
Collapse
Affiliation(s)
- Qi Xu
- Department of BioSciences, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Donghoon Kang
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Matthew D. Meyer
- Shared Equipment Authority, Rice University, Houston, Texas, USA
| | | | - Citrupa Gopal
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
| | - Jeffrey W. Schertzer
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
| | | |
Collapse
|
2
|
Zhang H, Yang J, Cheng J, Zeng J, Ma X, Lin J. PQS and pyochelin in Pseudomonas aeruginosa share inner membrane transporters to mediate iron uptake. Microbiol Spectr 2024; 12:e0325623. [PMID: 38171001 PMCID: PMC10846271 DOI: 10.1128/spectrum.03256-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteria absorb different forms of iron through various channels to meet their needs. Our previous studies have shown that TseF, a type VI secretion system effector for Fe uptake, facilitates the delivery of outer membrane vesicle-associated Pseudomonas quinolone signal (PQS)-Fe3+ to bacterial cells by a process involving the Fe(III) pyochelin receptor FptA and the porin OprF. However, the form in which the PQS-Fe3+ complex enters the periplasm and how it is moved into the cytoplasm remain unclear. Here, we first demonstrate that the PQS-Fe3+ complex enters the cell directly through FptA or OprF. Next, we show that inner membrane transporters such as FptX, PchHI, and FepBCDG are not only necessary for Pseudomonas aeruginosa to absorb PQS-Fe3+ and pyochelin (PCH)-Fe3+ but are also necessary for the virulence of P. aeruginosa toward Galleria mellonella larvae. Furthermore, we suggest that the function of PQS-Fe3+ (but not PQS)-mediated quorum-sensing regulation is dependent on FptX, PchHI, and FepBCDG. Additionally, the findings indicate that unlike FptX, neither FepBCDG nor PchHI play roles in the autoregulatory loop involving PchR, but further deletion of fepBCDG and pchHI can reverse the inactive PchR phenotype caused by fptX deletion and reactivate the expression of the PCH pathway genes under iron-limited conditions. Finally, this work identifies the interaction between FptX, PchHI, and FepBCDG, indicating that a larger complex could be formed to mediate the uptake of PQS-Fe3+ and PCH-Fe3+. These results pave the way for a better understanding of the PQS and PCH iron absorption pathways and provide future directions for research on tackling P. aeruginosa infections.IMPORTANCEPseudomonas aeruginosa has evolved a number of strategies to acquire the iron it needs from its host, with the most common being the synthesis, secretion, and uptake of siderophores such as pyoverdine, pyochelin, and the quorum-sensing signaling molecule Pseudomonas quinolone signal (PQS). However, despite intensive studies of the siderophore uptake pathways of P. aeruginosa, our understanding of how siderophores transport iron across the inner membrane into the cytoplasm is still incomplete. Herein, we reveal that PQS and pyochelin in P. aeruginosa share inner membrane transporters such as FptX, PchHI, and FepBCDG to mediate iron uptake. Meanwhile, PQS and pyochelin-mediated signaling operate to a large extent via these inner membrane transporters. Our study revealed the existence of shared uptake pathways between PQS and pyochelin, which could lead us to reexamine the role of these two molecules in the iron uptake and virulence of P. aeruginosa.
Collapse
Affiliation(s)
- Heng Zhang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an, China
| | - Jianshe Yang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an, China
| | - Juanli Cheng
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an, China
| | - Jing Zeng
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an, China
| | - Xin Ma
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an, China
| | - Jinshui Lin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an, China
| |
Collapse
|
3
|
Li D, Zhu L, Wang Y, Zhou X, Li Y. Bacterial outer membrane vesicles in cancer: Biogenesis, pathogenesis, and clinical application. Biomed Pharmacother 2023; 165:115120. [PMID: 37442066 DOI: 10.1016/j.biopha.2023.115120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/18/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Outer membrane vesicles (OMVs) are spherical, nano-sized particles of bilayer lipid structure secreted by Gram-negative bacteria. They contain a series of cargos from bacteria and are important messengers for communication between bacteria and their environment. OMVs play multiple roles in bacterial survival and adaptation and can affect host physiological functions and disease development by acting on host cell membranes and altering host cell signaling pathways. This paper summarizes the mechanisms of OMV genesis and the multiple roles of OMVs in the tumor microenvironment. Also, this paper discusses the prospects of OMVs for a wide range of applications in drug delivery, tumor diagnosis, and therapy.
Collapse
Affiliation(s)
- Deming Li
- Anesthesia Department, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China
| | - Lisi Zhu
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China
| | - Yuxiao Wang
- Anesthesia Department, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China
| | - Xiangyu Zhou
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China.
| | - Yan Li
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China.
| |
Collapse
|
4
|
Rogers NMK, McCumber AW, McMillan HM, McNamara RP, Dittmer DP, Kuehn MJ, Hendren CO, Wiesner MR. Comparative electrokinetic properties of extracellular vesicles produced by yeast and bacteria. Colloids Surf B Biointerfaces 2023; 225:113249. [PMID: 36905832 PMCID: PMC10085849 DOI: 10.1016/j.colsurfb.2023.113249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/13/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
Extracellular vesicles (EVs) are nano-sized, biocolloidal proteoliposomes that have been shown to be produced by all cell types studied to date and are ubiquitous in the environment. Extensive literature on colloidal particles has demonstrated the implications of surface chemistry on transport behavior. Hence, one may anticipate that physicochemical properties of EVs, particularly surface charge-associated properties, may influence EV transport and specificity of interactions with surfaces. Here we compare the surface chemistry of EVs as expressed by zeta potential (calculated from electrophoretic mobility measurements). The zeta potentials of EVs produced by Pseudomonas fluorescens, Staphylococcus aureus, and Saccharomyces cerevisiae were largely unaffected by changes in ionic strength and electrolyte type, but were affected by changes in pH. The addition of humic acid altered the calculated zeta potential of the EVs, especially for those from S. cerevisiae. Differences in zeta potential were compared between EVs and their respective parent cell with no consistent trend emerging; however, significant differences were discovered between the different cell types and their EVs. These findings imply that, while EV surface charge (as estimated from zeta potential) is relatively insensitive to the evaluated environmental conditions, EVs from different organisms can differ regarding which conditions will cause colloidal instability.
Collapse
Affiliation(s)
- Nicholas M K Rogers
- Department of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Porter School of Earth and Environmental Studies, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Alexander W McCumber
- Department of Environmental Sciences and Engineering, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Hannah M McMillan
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Ryan P McNamara
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Dirk P Dittmer
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Meta J Kuehn
- Department of Biochemistry, Duke University, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Christine Ogilvie Hendren
- Center for the Environmental Implications of Nanotechnology, Duke University, Durham, NC, USA; Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC, USA; Research Institute for Environment, Energy and Economics, Appalachian State University, Boone, NC, USA
| | - Mark R Wiesner
- Department of Civil & Environmental Engineering, Duke University, Durham, NC, USA; Center for the Environmental Implications of Nanotechnology, Duke University, Durham, NC, USA
| |
Collapse
|
5
|
Horspool AM, Sen-Kilic E, Malkowski AC, Breslow SL, Mateu-Borras M, Hudson MS, Nunley MA, Elliott S, Ray K, Snyder GA, Miller SJ, Kang J, Blackwood CB, Weaver KL, Witt WT, Huckaby AB, Pyles GM, Clark T, Al Qatarneh S, Lewis GK, Damron FH, Barbier M. Development of an anti- Pseudomonas aeruginosa therapeutic monoclonal antibody WVDC-5244. Front Cell Infect Microbiol 2023; 13:1117844. [PMID: 37124031 PMCID: PMC10140502 DOI: 10.3389/fcimb.2023.1117844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
The rise of antimicrobial-resistant bacterial infections is a crucial health concern in the 21st century. In particular, antibiotic-resistant Pseudomonas aeruginosa causes difficult-to-treat infections associated with high morbidity and mortality. Unfortunately, the number of effective therapeutic interventions against antimicrobial-resistant P. aeruginosa infections continues to decline. Therefore, discovery and development of alternative treatments are necessary. Here, we present pre-clinical efficacy studies on an anti-P. aeruginosa therapeutic monoclonal antibody. Using hybridoma technology, we generated a monoclonal antibody and characterized its binding to P. aeruginosa in vitro using ELISA and fluorescence correlation spectroscopy. We also characterized its function in vitro and in vivo against P. aeruginosa. The anti-P. aeruginosa antibody (WVDC-5244) bound P. aeruginosa clinical strains of various serotypes in vitro, even in the presence of alginate exopolysaccharide. In addition, WVDC-5244 induced opsonophagocytic killing of P. aeruginosa in vitro in J774.1 murine macrophage, and complement-mediated killing. In a mouse model of acute pneumonia, prophylactic administration of WVDC-5244 resulted in an improvement of clinical disease manifestations and reduction of P. aeruginosa burden in the respiratory tract compared to the control groups. This study provides promising pre-clinical efficacy data on a new monoclonal antibody with therapeutic potential for P. aeruginosa infections.
Collapse
Affiliation(s)
- Alexander M. Horspool
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Aaron C. Malkowski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Scott L. Breslow
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Margalida Mateu-Borras
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Matthew S. Hudson
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Mason A. Nunley
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Sean Elliott
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Krishanu Ray
- University of Maryland, Baltimore School of Medicine, Division of Vaccine Research, Institute of Human Virology, Baltimore, MD, United States
| | - Greg A. Snyder
- University of Maryland, Baltimore School of Medicine, Division of Vaccine Research, Institute of Human Virology, Baltimore, MD, United States
| | - Sarah Jo Miller
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Jason Kang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Catherine B. Blackwood
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Kelly L. Weaver
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - William T. Witt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Annalisa B. Huckaby
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Gage M. Pyles
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Tammy Clark
- Department of Pediatrics, Division of Cystic Fibrosis, West Virginia University, Morgantown, WV, United States
| | - Saif Al Qatarneh
- Department of Pediatrics, Division of Cystic Fibrosis, West Virginia University, Morgantown, WV, United States
| | - George K. Lewis
- University of Maryland, Baltimore School of Medicine, Division of Vaccine Research, Institute of Human Virology, Baltimore, MD, United States
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| |
Collapse
|
6
|
Pirhadi E, Vanegas JM, Farin M, Schertzer JW, Yong X. Effect of Local Stress on Accurate Modeling of Bacterial Outer Membranes Using All-Atom Molecular Dynamics. J Chem Theory Comput 2023; 19:363-372. [PMID: 36579901 PMCID: PMC11521388 DOI: 10.1021/acs.jctc.2c01026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biological membranes are fundamental components of living organisms that play an undeniable role in their survival. Molecular dynamics (MD) serves as an essential computational tool for studying biomembranes on molecular and atomistic scales. The status quo of MD simulations of biomembranes studies a nanometer-sized membrane patch periodically extended under periodic boundary conditions (PBCs). In nature, membranes are usually composed of different lipids in their two layers (referred to as leaflets). This compositional asymmetry imposes a fixed ratio of lipid numbers between the two leaflets in a periodically constrained membrane, which needs to be set appropriately. The widely adopted methods of defining a leaflet lipid ratio suffer from the lack of control over the mechanical tension of each leaflet, which could significantly influence research findings. In this study, we investigate the role of membrane-building protocol and the resulting initial stress state on the interaction between small molecules and asymmetric membranes. We model the outer membrane of Pseudomonas aeruginosa bacteria using two different building protocols and probe their interactions with the Pseudomonas quinolone signal (PQS). Our results show that differential stress could shift the position of free energy minimum for the PQS molecule between the two leaflets of the asymmetric membrane. This work provides critical insights into the relationship between the initial per-leaflet tension and the spontaneous intercalation of PQS.
Collapse
Affiliation(s)
- Emad Pirhadi
- Department of Mechanical Engineering, Binghamton University, Binghamton, New York
| | - Juan M. Vanegas
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon
| | - Mithila Farin
- Department of Mechanical Engineering, Binghamton University, Binghamton, New York
| | | | - Xin Yong
- Department of Mechanical Engineering, Binghamton University, Binghamton, New York
| |
Collapse
|
7
|
Membrane-Binding Biomolecules Influence the Rate of Vesicle Exchange between Bacteria. Appl Environ Microbiol 2022; 88:e0134622. [PMID: 36342184 PMCID: PMC9746307 DOI: 10.1128/aem.01346-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The exchange of bacterial extracellular vesicles facilitates molecular exchange between cells, including the horizontal transfer of genetic material. Given the implications of such transfer events on cell physiology and adaptation, some bacterial cells have likely evolved mechanisms to regulate vesicle exchange. Past work has identified mechanisms that influence the formation of extracellular vesicles, including the production of small molecules that modulate membrane structure; however, whether these mechanisms also modulate vesicle uptake and have an overall impact on the rate of vesicle exchange is unknown. Here, we show that membrane-binding molecules produced by microbes influence both the formation and uptake of extracellular vesicles and have the overall impact of increasing the vesicle exchange rate within a bacterial coculture. In effect, production of compounds that increase vesicle exchange rates encourage gene exchange between neighboring cells. The ability of several membrane-binding compounds to increase vesicle exchange was demonstrated. Three of these compounds, nisin, colistin, and polymyxin B, are antimicrobial peptides added at sub-inhibitory concentrations. These results suggest that a potential function of exogenous compounds that bind to membranes may be the regulation of vesicle exchange between cells. IMPORTANCE The exchange of bacterial extracellular vesicles is one route of gene transfer between bacteria, although it was unclear if bacteria developed strategies to modulate the rate of gene transfer within vesicles. In eukaryotes, there are many examples of specialized molecules that have evolved to facilitate the production, loading, and uptake of vesicles. Recent work with bacteria has shown that some small molecules influence membrane curvature and induce vesicle formation. Here, we show that similar compounds facilitate vesicle uptake, thereby increasing the overall rate of vesicle exchange within bacterial populations. The addition of membrane-binding compounds, several of them antibiotics at subinhibitory concentrations, to a bacterial coculture increased the rate of horizontal gene transfer via vesicle exchange.
Collapse
|
8
|
Huang W, Meng L, Chen Y, Dong Z, Peng Q. Bacterial outer membrane vesicles as potential biological nanomaterials for antibacterial therapy. Acta Biomater 2022; 140:102-115. [PMID: 34896632 DOI: 10.1016/j.actbio.2021.12.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/05/2021] [Accepted: 12/03/2021] [Indexed: 02/05/2023]
Abstract
Antibiotic therapy is one of the most important approaches against bacterial infections. However, the improper use of antibiotics and the emergence of drug resistance have compromised the efficacy of traditional antibiotic therapy. In this regard, it is of great importance and significance to develop more potent antimicrobial therapies, including the development of functionalized antibiotics delivery systems and antibiotics-independent antimicrobial agents. Outer membrane vesicles (OMVs), secreted by Gram-negative bacteria and with similar structure to cell-derived exosomes, are natural functional nanomaterials and known to play important roles in many bacterial life events, such as communication, biofilm formation and pathogenesis. Recently, more and more reports have demonstrated the use of OMVs as either active antibacterial agents or antibiotics delivery carriers, implying the great potentials of OMVs in antibacterial therapy. Herein, we aim to provide a comprehensive understanding of OMV and its antibacterial applications, including its biogenesis, biofunctions, isolation, purification and its potentials in killing bacteria, delivering antibiotics and developing vaccine or immunoadjuvants. In addition, the concerns in clinical use of OMVs and the possible solutions are discussed. STATEMENT OF SIGNIFICANCE: The emergence of antibiotic-resistant bacteria has led to the failure of traditional antibiotic therapy, and thus become a big threat to human beings. In this regard, developing more potent antibacterial approaches is of great importance and significance. Recently, bacterial outer membrane vesicles (OMVs), which are natural functional nanomaterials secreted by Gram-negative bacteria, have been used as active agents, drug carriers and vaccine adjuvant for antibacterial therapy. This review provides a comprehensive understanding of OMVs and summarizes the recent progress of OMVs in antibacterial applications. The concerns of OMVs in clinical use and the possible solutions are also discussed. As such, this review may guide the future works in antibacterial OMVs and appeal to both scientists and clinicians.
Collapse
Affiliation(s)
- Wenlong Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lingxi Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
McMillan HM, Kuehn MJ. The extracellular vesicle generation paradox: a bacterial point of view. EMBO J 2021; 40:e108174. [PMID: 34636061 PMCID: PMC8561641 DOI: 10.15252/embj.2021108174] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/29/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022] Open
Abstract
All bacteria produce secreted vesicles that carry out a variety of important biological functions. These extracellular vesicles can improve adaptation and survival by relieving bacterial stress and eliminating toxic compounds, as well as by facilitating membrane remodeling and ameliorating inhospitable environments. However, vesicle production comes with a price. It is energetically costly and, in the case of colonizing pathogens, it elicits host immune responses, which reduce bacterial viability. This raises an interesting paradox regarding why bacteria produce vesicles and begs the question as to whether the benefits of producing vesicles outweigh their costs. In this review, we discuss the various advantages and disadvantages associated with Gram-negative and Gram-positive bacterial vesicle production and offer perspective on the ultimate score. We also highlight questions needed to advance the field in determining the role for vesicles in bacterial survival, interkingdom communication, and virulence.
Collapse
Affiliation(s)
- Hannah M McMillan
- Department of Molecular Genetics and MicrobiologyDuke UniversityDurhamNCUSA
| | - Meta J Kuehn
- Department of BiochemistryDuke UniversityDurhamNCUSA
| |
Collapse
|
10
|
Sartorio MG, Pardue EJ, Feldman MF, Haurat MF. Bacterial Outer Membrane Vesicles: From Discovery to Applications. Annu Rev Microbiol 2021; 75:609-630. [PMID: 34351789 DOI: 10.1146/annurev-micro-052821-031444] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Secretion of cellular components across the plasma membrane is an essential process that enables organisms to interact with their environments. Production of extracellular vesicles in bacteria is a well-documented but poorly understood process. Outer membrane vesicles (OMVs) are produced in gram-negative bacteria by blebbing of the outer membrane. In addition to their roles in pathogenesis, cell-to-cell communication, and stress responses, OMVs play important roles in immunomodulation and the establishment and balance of the gut microbiota. In this review, we discuss the multiple roles of OMVs and the current knowledge of OMV biogenesis. We also discuss the growing and promising biotechnological applications of OMV. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mariana G Sartorio
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA;
| | - Evan J Pardue
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA;
| | - Mario F Feldman
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA;
| | - M Florencia Haurat
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA;
| |
Collapse
|
11
|
Brown HL, Clayton A, Stephens P. The role of bacterial extracellular vesicles in chronic wound infections: Current knowledge and future challenges. Wound Repair Regen 2021; 29:864-880. [PMID: 34132443 DOI: 10.1111/wrr.12949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022]
Abstract
Chronic wounds are a significant global problem with an increasing economic and patient welfare impact. How wounds move from an acute to chronic, non-healing, state is not well understood although it is likely that it is driven by a poorly regulated local inflammatory state. Opportunistic pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa are well known to stimulate a pro-inflammatory response and so their presence may further drive chronicity. Studies have demonstrated that host cell extracellular vesicles (hEVs), in particular exosomes, have multiple roles in both increasing and decreasing chronicity within wounds; however, the role of bacterial extracellular vesicles (bEVs) is still poorly understood. The aim of this review is to evaluate bEV biogenesis and function within chronic wound relevant bacterial species to determine what, if any, role bEVs may have in driving wound chronicity. We determine that bEVs drive chronicity by both increasing persistence of key pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa and stimulating a pro-inflammatory response by the host. Data also suggest that both bEVs and hEVs show therapeutic promise, providing vaccine candidates, decoy targets for bacterial toxins or modulating the bacterial species within chronic wound biofilms. Caution should, however, be used when interpreting findings to date as the bEV field is still in its infancy and as such lacks consistency in bEV isolation and characterization. It is of primary importance that this is addressed, allowing meaningful conclusions to be drawn and increasing reproducibility within the field.
Collapse
Affiliation(s)
- Helen L Brown
- School of Dentistry, Cardiff University, Cardiff, UK
| | - Aled Clayton
- Division of Cancer & Genetics, School of Medicine, Cardiff, UK
| | - Phil Stephens
- School of Dentistry, Cardiff University, Cardiff, UK
| |
Collapse
|
12
|
Outer Membrane Vesicles (OMVs) Produced by Gram-Negative Bacteria: Structure, Functions, Biogenesis, and Vaccine Application. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1490732. [PMID: 33834062 PMCID: PMC8016564 DOI: 10.1155/2021/1490732] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 03/01/2021] [Accepted: 03/13/2021] [Indexed: 12/12/2022]
Abstract
Gram-negative bacteria produce outer membrane vesicles (OMVs) with 10 to 300 nm of diameter. The contribution of OMVs to bacterial pathogenesis is a topic of great interest, and their capacity to be combined with antigens impact in the future to the development of vaccines.
Collapse
|
13
|
Gilmore WJ, Johnston EL, Zavan L, Bitto NJ, Kaparakis-Liaskos M. Immunomodulatory roles and novel applications of bacterial membrane vesicles. Mol Immunol 2021; 134:72-85. [PMID: 33725501 DOI: 10.1016/j.molimm.2021.02.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
Bacteria release extracellular vesicles (EVs) known as bacterial membrane vesicles (BMVs) during their normal growth. Gram-negative bacteria produce BMVs termed outer membrane vesicles (OMVs) that are composed of a range of biological cargo and facilitate numerous bacterial functions, including promoting pathogenesis and mediating disease in the host. By contrast, less is understood about BMVs produced by Gram-positive bacteria, which are referred to as membrane vesicles (MVs), however their contribution to mediating bacterial pathogenesis has recently become evident. In this review, we summarise the mechanisms whereby BMVs released by Gram-negative and Gram-positive bacteria are produced, in addition to discussing their key functions in promoting bacterial survival, mediating pathogenesis and modulating host immune responses. Furthermore, we discuss the mechanisms whereby BMVs produced by both commensal and pathogenic organisms can enter host cells and interact with innate immune receptors, in addition to how they modulate host innate and adaptive immunity to promote immunotolerance or drive the onset and progression of disease. Finally, we highlight current and emerging applications of BMVs in vaccine design, biotechnology and cancer therapeutics.
Collapse
Affiliation(s)
- William J Gilmore
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia; Research Centre for Extracellular Vesicles, School of Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Ella L Johnston
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia; Research Centre for Extracellular Vesicles, School of Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Lauren Zavan
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia; Research Centre for Extracellular Vesicles, School of Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Natalie J Bitto
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia; Research Centre for Extracellular Vesicles, School of Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Maria Kaparakis-Liaskos
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia; Research Centre for Extracellular Vesicles, School of Molecular Science, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
14
|
Avila-Calderón ED, Ruiz-Palma MDS, Aguilera-Arreola MG, Velázquez-Guadarrama N, Ruiz EA, Gomez-Lunar Z, Witonsky S, Contreras-Rodríguez A. Outer Membrane Vesicles of Gram-Negative Bacteria: An Outlook on Biogenesis. Front Microbiol 2021; 12:557902. [PMID: 33746909 PMCID: PMC7969528 DOI: 10.3389/fmicb.2021.557902] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
Outer membrane vesicles (OMVs) from Gram-negative bacteria were first described more than 50 years ago. However, the molecular mechanisms involved in biogenesis began to be studied only in the last few decades. Presently, the biogenesis and molecular mechanisms for their release are not completely known. This review covers the most recent information on cellular components involved in OMV biogenesis, such as lipoproteins and outer membrane proteins, lipopolysaccharide, phospholipids, quorum-sensing molecules, and flagella.
Collapse
Affiliation(s)
- Eric Daniel Avila-Calderón
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico.,Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, CINVESTAV-IPN, México City, Mexico
| | - María Del Socorro Ruiz-Palma
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico.,División Químico Biológicas, Universidad Tecnológica de Tecámac, Tecámac, Mexico
| | - Ma Guadalupe Aguilera-Arreola
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - Norma Velázquez-Guadarrama
- Unidad de Investigación en enfermedades infecciosas, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Enrico A Ruiz
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - Zulema Gomez-Lunar
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - Sharon Witonsky
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Araceli Contreras-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| |
Collapse
|
15
|
McMillan HM, Zebell SG, Ristaino JB, Dong X, Kuehn MJ. Protective plant immune responses are elicited by bacterial outer membrane vesicles. Cell Rep 2021; 34:108645. [PMID: 33472073 PMCID: PMC8158063 DOI: 10.1016/j.celrep.2020.108645] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/26/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022] Open
Abstract
Bacterial outer membrane vesicles (OMVs) perform a variety of functions in bacterial survival and virulence. In mammalian systems, OMVs activate immune responses and are exploited as vaccines. However, little work has focused on the interactions of OMVs with plant hosts. Here, we report that OMVs from Pseudomonas syringae and P. fluorescens activate plant immune responses that protect against bacterial and oomycete pathogens. OMV-mediated immunomodulatory activity from these species displayed different sensitivity to biochemical stressors, reflecting differences in OMV content. Importantly, OMV-mediated plant responses are distinct from those triggered by conserved bacterial epitopes or effector molecules alone. Our study shows that OMV-induced protective immune responses are independent of the T3SS and protein, but that OMV-mediated seedling growth inhibition largely depends on proteinaceous components. OMVs provide a unique opportunity to understand the interplay between virulence and host response strategies and add a new dimension to consider in host-microbe interactions. The role that bacterial outer membrane vesicles (OMVs) play in plant-microbe interactions is poorly characterized. McMillan et al. show that OMVs elicit plant immune responses that protect against pathogens. This study also reveals a use for OMVs as tools to probe the plant immune system.
Collapse
Affiliation(s)
- Hannah M McMillan
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Sophia G Zebell
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jean B Ristaino
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Meta J Kuehn
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Department of Biochemistry, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
16
|
Cooke AC, Florez C, Dunshee EB, Lieber AD, Terry ML, Light CJ, Schertzer JW. Pseudomonas Quinolone Signal-Induced Outer Membrane Vesicles Enhance Biofilm Dispersion in Pseudomonas aeruginosa. mSphere 2020; 5:e01109-20. [PMID: 33239369 PMCID: PMC7690959 DOI: 10.1128/msphere.01109-20] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 01/15/2023] Open
Abstract
Bacterial biofilms are major contributors to chronic infections in humans. Because they are recalcitrant to conventional therapy, they present a particularly difficult treatment challenge. Identifying factors involved in biofilm development can help uncover novel targets and guide the development of antibiofilm strategies. Pseudomonas aeruginosa causes surgical site, burn wound, and hospital-acquired infections and is also associated with aggressive biofilm formation in the lungs of cystic fibrosis patients. A potent but poorly understood contributor to P. aeruginosa virulence is the ability to produce outer membrane vesicles (OMVs). OMV trafficking has been associated with cell-cell communication, virulence factor delivery, and transfer of antibiotic resistance genes. Because OMVs have almost exclusively been studied using planktonic cultures, little is known about their biogenesis and function in biofilms. Several groups have shown that Pseudomonas quinolone signal (PQS) induces OMV formation in P. aeruginosa Our group described a biophysical mechanism for this and recently showed it is operative in biofilms. Here, we demonstrate that PQS-induced OMV production is highly dynamic during biofilm development. Interestingly, PQS and OMV synthesis are significantly elevated during dispersion compared to attachment and maturation stages. PQS biosynthetic and receptor mutant biofilms were significantly impaired in their ability to disperse, but this phenotype was rescued by genetic complementation or exogenous addition of PQS. Finally, we show that purified OMVs can actively degrade extracellular protein, lipid, and DNA. We therefore propose that enhanced production of PQS-induced OMVs during biofilm dispersion facilitates cell escape by coordinating the controlled degradation of biofilm matrix components.IMPORTANCE Treatments that manipulate biofilm dispersion hold the potential to convert chronic drug-tolerant biofilm infections from protected sessile communities into released populations that are orders-of-magnitude more susceptible to antimicrobial treatment. However, dispersed cells often exhibit increased acute virulence and dissemination phenotypes. A thorough understanding of the dispersion process is therefore critical before this promising strategy can be effectively employed. Pseudomonas quinolone signal (PQS) has been implicated in early biofilm development, but we hypothesized that its function as an outer membrane vesicle (OMV) inducer may contribute at multiple stages. Here, we demonstrate that PQS and OMVs are differentially produced during Pseudomonas aeruginosa biofilm development and provide evidence that effective biofilm dispersion is dependent on the production of PQS-induced OMVs, which likely act as delivery vehicles for matrix-degrading enzymes. These findings lay the groundwork for understanding OMV contributions to biofilm development and suggest a model to explain the controlled matrix degradation that accompanies biofilm dispersion in many species.
Collapse
Affiliation(s)
- Adam C Cooke
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Catalina Florez
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Elise B Dunshee
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Avery D Lieber
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- First-year Research Immersion Program, Binghamton University, Binghamton, New York, USA
| | - Michelle L Terry
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- First-year Research Immersion Program, Binghamton University, Binghamton, New York, USA
| | - Caitlin J Light
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
- First-year Research Immersion Program, Binghamton University, Binghamton, New York, USA
- Summer Research Immersion Program, Binghamton University, Binghamton, New York, USA
| | - Jeffrey W Schertzer
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
17
|
Spatiotemporal Distribution of Pseudomonas aeruginosa Alkyl Quinolones under Metabolic and Competitive Stress. mSphere 2020; 5:5/4/e00426-20. [PMID: 32699119 PMCID: PMC7376503 DOI: 10.1128/msphere.00426-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Alkyl quinolones (AQs), including Pseudomonas quinolone signal (PQS), made by the opportunistic pathogen Pseudomonas aeruginosa have been associated with both population density and stress. The regulation of AQ production is known to be complex, and the stimuli that modulate AQ responses are not fully clear. Here, we have used hyperspectral Raman chemical imaging to examine the temporal and spatial profiles of AQs exhibited by P. aeruginosa under several potentially stressful conditions. We found that metabolic stress, effected by carbon limitation, or competition stress, effected by proximity to other species, resulted in accelerated PQS production. This competition effect did not require cell-to-cell interaction, as evidenced by the fact that the addition of supernatants from either Escherichia coli or Staphylococcus aureus led to early appearance of PQS. Lastly, the fact that these modulations were observed for PQS but not for all AQs suggests a high level of complexity in AQ regulation that remains to be discerned. Pseudomonas aeruginosa is an opportunistic human pathogen important to diseases such as cystic fibrosis. P. aeruginosa has multiple quorum-sensing (QS) systems, one of which utilizes the signaling molecule 2-heptyl-3-hydroxy-4-quinolone (Pseudomonas quinolone signal [PQS]). Here, we use hyperspectral Raman imaging to elucidate the spatiotemporal PQS distributions that determine how P. aeruginosa regulates surface colonization and its response to both metabolic stress and competition from other bacterial strains. These chemical imaging experiments illustrate the strong link between environmental challenges, such as metabolic stress caused by nutritional limitations or the presence of another bacterial species, and PQS signaling. Metabolic stress elicits a complex response in which limited nutrients induce the bacteria to produce PQS earlier, but the bacteria may also pause PQS production entirely if the nutrient concentration is too low. Separately, coculturing P. aeruginosa in the proximity of another bacterial species, or its culture supernatant, results in earlier production of PQS. However, these differences in PQS appearance are not observed for all alkyl quinolones (AQs) measured; the spatiotemporal response of 2-heptyl-4-hydroxyquinoline N-oxide (HQNO) is highly uniform for most conditions. These insights on the spatiotemporal distributions of quinolones provide additional perspective on the behavior of P. aeruginosa in response to different environmental cues. IMPORTANCE Alkyl quinolones (AQs), including Pseudomonas quinolone signal (PQS), made by the opportunistic pathogen Pseudomonas aeruginosa have been associated with both population density and stress. The regulation of AQ production is known to be complex, and the stimuli that modulate AQ responses are not fully clear. Here, we have used hyperspectral Raman chemical imaging to examine the temporal and spatial profiles of AQs exhibited by P. aeruginosa under several potentially stressful conditions. We found that metabolic stress, effected by carbon limitation, or competition stress, effected by proximity to other species, resulted in accelerated PQS production. This competition effect did not require cell-to-cell interaction, as evidenced by the fact that the addition of supernatants from either Escherichia coli or Staphylococcus aureus led to early appearance of PQS. Lastly, the fact that these modulations were observed for PQS but not for all AQs suggests a high level of complexity in AQ regulation that remains to be discerned.
Collapse
|
18
|
Batista JH, Leal FC, Fukuda TTH, Alcoforado Diniz J, Almeida F, Pupo MT, da Silva Neto JF. Interplay between two quorum sensing-regulated pathways, violacein biosynthesis and VacJ/Yrb, dictates outer membrane vesicle biogenesis in Chromobacterium violaceum. Environ Microbiol 2020; 22:2432-2442. [PMID: 32329144 DOI: 10.1111/1462-2920.15033] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Outer membrane vesicles (OMVs) are lipid nanoparticles released by Gram-negative bacteria, which play multiple roles in bacterial physiology and adaptation to diverse environments. In this work, we demonstrate that OMVs released by the environmental pathogen Chromobacterium violaceum deliver the antimicrobial compound violacein to competitor bacteria, mediating its toxicity in vivo at a long distance. OMVs purified by ultracentrifugation from the wild-type strain, but not from a violacein-abrogated mutant ΔvioABCDE, contained violacein and inhibited several Gram-positive bacteria. Competition tests using co-culture and transwell assays indicated that the C. violaceum wild-type strain killed Staphylococcus aureus better than the ΔvioABCDE mutant strain. We found that C. violaceum achieves growth phase-dependent OMV release by the concerted expression of two quorum sensing (QS)-regulated pathways, namely violacein biosynthesis and VacJ/Yrb system. Although both pathways were activated at high cell density in a QS-dependent manner, the effect on vesiculation was the opposite. While the ΔvioABCDE mutant produced twofold fewer vesicles than the wild-type strain, indicating that violacein induces OMV biogenesis for its own delivery, the ΔvacJ and ΔyrbE mutants were hypervesiculating strains. Our findings uncovered QS-regulated pathways involved in OMV biogenesis used by C. violaceum to package violacein into OMVs for interbacterial competition.
Collapse
Affiliation(s)
- Juliana H Batista
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernanda C Leal
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Taise T H Fukuda
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Juliana Alcoforado Diniz
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fausto Almeida
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mônica T Pupo
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José F da Silva Neto
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
19
|
Uddin MJ, Dawan J, Jeon G, Yu T, He X, Ahn J. The Role of Bacterial Membrane Vesicles in the Dissemination of Antibiotic Resistance and as Promising Carriers for Therapeutic Agent Delivery. Microorganisms 2020; 8:E670. [PMID: 32380740 PMCID: PMC7284617 DOI: 10.3390/microorganisms8050670] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/25/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022] Open
Abstract
The rapid emergence and spread of antibiotic-resistant bacteria continues to be an issue difficult to deal with, especially in the clinical, animal husbandry, and food fields. The occurrence of multidrug-resistant bacteria renders treatment with antibiotics ineffective. Therefore, the development of new therapeutic methods is a worthwhile research endeavor in treating infections caused by antibiotic-resistant bacteria. Recently, bacterial membrane vesicles (BMVs) have been investigated as a possible approach to drug delivery and vaccine development. The BMVs are released by both pathogenic and non-pathogenic Gram-positive and Gram-negative bacteria, containing various components originating from the cytoplasm and the cell envelope. The BMVs are able to transform bacteria with genes that encode enzymes such as proteases, glycosidases, and peptidases, resulting in the enhanced antibiotic resistance in bacteria. The BMVs can increase the resistance of bacteria to antibiotics. However, the biogenesis and functions of BMVs are not fully understood in association with the bacterial pathogenesis. Therefore, this review aims to discuss BMV-associated antibiotic resistance and BMV-based therapeutic interventions.
Collapse
Affiliation(s)
- Md Jalal Uddin
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (M.J.U.); (J.D.); (G.J.)
| | - Jirapat Dawan
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (M.J.U.); (J.D.); (G.J.)
| | - Gibeom Jeon
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (M.J.U.); (J.D.); (G.J.)
| | - Tao Yu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272033, China;
| | - Xinlong He
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Juhee Ahn
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (M.J.U.); (J.D.); (G.J.)
| |
Collapse
|
20
|
Vitse J, Devreese B. The Contribution of Membrane Vesicles to Bacterial Pathogenicity in Cystic Fibrosis Infections and Healthcare Associated Pneumonia. Front Microbiol 2020; 11:630. [PMID: 32328052 PMCID: PMC7160670 DOI: 10.3389/fmicb.2020.00630] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/20/2020] [Indexed: 01/23/2023] Open
Abstract
Almost all bacteria secrete spherical membranous nanoparticles, also referred to as membrane vesicles (MVs). A variety of MV types exist, ranging from 20 to 400 nm in diameter, each with their own formation routes. The most well-known vesicles are the outer membrane vesicles (OMVs) which are formed by budding from the outer membrane in Gram-negative bacteria. Recently, other types of MVs have been discovered and described, including outer-inner membrane vesicles (OIMVs) and cytoplasmic membrane vesicles (CMVs). The former are mainly formed by a process termed endolysin-triggered cell lysis in Gram-negative bacteria, the latter are formed by Gram-positive bacteria. MVs carry a wide range of cargo, such as nucleic acids, virulence factors and antibiotic resistance components. Moreover, they are involved in a multitude of biological processes that increase bacterial pathogenicity. In this review, we discuss the functional aspects of MVs secreted by bacteria associated with cystic fibrosis and nosocomial pneumonia. We mainly focus on how MVs are involved in virulence, antibiotic resistance, biofilm development and inflammation that consequently aid these bacterial infections.
Collapse
Affiliation(s)
- Jolien Vitse
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Bart Devreese
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
Pushing beyond the Envelope: the Potential Roles of OprF in Pseudomonas aeruginosa Biofilm Formation and Pathogenicity. J Bacteriol 2019; 201:JB.00050-19. [PMID: 31010902 DOI: 10.1128/jb.00050-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ability of Pseudomonas aeruginosa to form biofilms, which are communities of cells encased in a self-produced extracellular matrix, protects the cells from antibiotics and the host immune response. While some biofilm matrix components, such as exopolysaccharides and extracellular DNA, are relatively well characterized, the extracellular matrix proteins remain understudied. Multiple proteomic analyses of the P. aeruginosa soluble biofilm matrix and outer membrane vesicles, which are a component of the matrix, have identified OprF as an abundant matrix protein. To date, the few reports on the effects of oprF mutations on biofilm formation are conflicting, and little is known about the potential role of OprF in the biofilm matrix. The majority of OprF studies focus on the protein as a cell-associated porin. As a component of the outer membrane, OprF assumes dual conformations and is involved in solute transport, as well as cell envelope integrity. Here, we review the current literature on OprF in P. aeruginosa, discussing how the structure and function of the cell-associated and matrix-associated protein may affect biofilm formation and pathogenesis in order to inform future research on this understudied matrix protein.
Collapse
|
22
|
Cooke AC, Nello AV, Ernst RK, Schertzer JW. Analysis of Pseudomonas aeruginosa biofilm membrane vesicles supports multiple mechanisms of biogenesis. PLoS One 2019; 14:e0212275. [PMID: 30763382 PMCID: PMC6375607 DOI: 10.1371/journal.pone.0212275] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 01/30/2019] [Indexed: 01/07/2023] Open
Abstract
Outer Membrane Vesicles (OMVs) are ubiquitous in bacterial environments and enable interactions within and between species. OMVs are observed in lab-grown and environmental biofilms, but our understanding of their function comes primarily from planktonic studies. Planktonic OMVs assist in toxin delivery, cell-cell communication, horizontal gene transfer, small RNA trafficking, and immune system evasion. Previous studies reported differences in size and proteomic cargo between planktonic and agar plate biofilm OMVs, suggesting possible differences in function between OMV types. In Pseudomonas aeruginosa interstitial biofilms, extracellular vesicles were reported to arise through cell lysis, in contrast to planktonic OMV biogenesis that involves the Pseudomonas Quinolone Signal (PQS) without appreciable autolysis. Differences in biogenesis mechanism could provide a rationale for observed differences in OMV characteristics between systems. Using nanoparticle tracking, we found that P. aeruginosa PAO1 planktonic and biofilm OMVs had similar characteristics. However, P. aeruginosa PA14 OMVs were smaller, with planktonic OMVs also being smaller than their biofilm counterparts. Large differences in Staphylococcus killing ability were measured between OMVs from different strains, and a smaller within-strain difference was recorded between PA14 planktonic and biofilm OMVs. Across all conditions, the predatory ability of OMVs negatively correlated with their size. To address biogenesis mechanism, we analyzed vesicles from wild type and pqsA mutant biofilms. This showed that PQS is required for physiological-scale production of biofilm OMVs, and time-course analysis confirmed that PQS production precedes OMV production as it does in planktonic cultures. However, a small sub-population of vesicles was detected in pqsA mutant biofilms whose size distribution more resembled sonicated cell debris than wild type OMVs. These results support the idea that, while a small and unique population of vesicles in P. aeruginosa biofilms may result from cell lysis, the PQS-induced mechanism is required to generate the majority of OMVs produced by wild type communities.
Collapse
Affiliation(s)
- Adam C. Cooke
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, United States of America
| | - Alexander V. Nello
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, United States of America
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, United States of America
| | - Jeffrey W. Schertzer
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, United States of America
| |
Collapse
|
23
|
Genomic and Phenotypic Diversity among Ten Laboratory Isolates of Pseudomonas aeruginosa PAO1. J Bacteriol 2019; 201:JB.00595-18. [PMID: 30530517 DOI: 10.1128/jb.00595-18] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen found ubiquitously in the environment and commonly associated with airway infection in patients with cystic fibrosis. P. aeruginosa strain PAO1 is one of the most commonly used laboratory-adapted research strains and is a standard laboratory-adapted strain in multiple laboratories and strain banks worldwide. Due to potential isolate-to-isolate variability, we investigated the genomic and phenotypic diversity among 10 PAO1 strains (henceforth called sublines) obtained from multiple research laboratories and commercial sources. Genomic analysis predicted a total of 5,682 genes, with 5,434 (95.63%) being identical across all 10 strains. Phenotypic analyses revealed comparable growth phenotypes in rich media and biofilm formation profiles. Limited differences were observed in antibiotic susceptibility profiles and immunostimulatory potential, measured using heat-killed whole-cell preparations in four immortalized cell lines followed by quantification of interleukin-6 (IL-6) and IL-1β secretion. However, variability was observed in the profiles of secreted molecular products, most notably, in rhamnolipid, pyoverdine, pyocyanin, Pseudomonas quinolone signal (PQS), extracellular DNA, exopolysaccharide, and outer membrane vesicle production. Many of the observed phenotypic differences did not correlate with subline-specific genetic changes, suggesting alterations in transcriptional and translational regulation. Taken together, these results suggest that individually maintained sublines of PAO1, even when acquired from the same parent subline, are continuously undergoing microevolution during culture and storage that results in alterations in phenotype, potentially affecting the outcomes of in vitro phenotypic analyses and in vivo pathogenesis studies.IMPORTANCE Laboratory-adapted strains of bacteria are used throughout the world for microbiology research. These prototype strains help keep research data consistent and comparable between laboratories. However, we have observed phenotypic variability when using different strains of Pseudomonas aeruginosa PAO1, one of the major laboratory-adopted research strains. Here, we describe the genomic and phenotypic differences among 10 PAO1 strains acquired from independent sources over 15 years to understand how individual maintenance affects strain characteristics. We observed limited genomic changes but variable phenotypic changes, which may have consequences for cross-comparison of data generated using different PAO1 strains. Our research highlights the importance of limiting practices that may promote the microevolution of model strains and calls for researchers to specify the strain origin to ensure reproducibility.
Collapse
|
24
|
Li A, Schertzer JW, Yong X. Molecular conformation affects the interaction of the Pseudomonas quinolone signal with the bacterial outer membrane. J Biol Chem 2018; 294:1089-1094. [PMID: 30563840 DOI: 10.1074/jbc.ac118.006844] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/10/2018] [Indexed: 11/06/2022] Open
Abstract
Gram-negative bacteria produce outer-membrane vesicles (OMVs) that package genetic elements, virulence factors, and cell-to-cell communication signaling compounds. Despite their importance in many disease-related processes, how these versatile structures are formed is incompletely understood. A self-produced secreted small molecule, the Pseudomonas quinolone signal (PQS), has been shown to initiate OMV formation in Pseudomonas aeruginosa by interacting with the outer membrane (OM) and inducing its curvature. Other bacterial species have also been shown to respond to PQS, supporting a common biophysical mechanism. Here, we conducted molecular dynamics simulations to elucidate the specific interactions between PQS and a model P. aeruginosa OM at the atomistic scale. We discovered two characteristic states of PQS interacting with the biologically relevant membrane, namely attachment to the membrane surface and insertion into the lipid A leaflet. The hydrogen bonds between PQS and the lipid A phosphates drove the PQS-membrane association. An analysis of PQS trajectory and molecular conformation revealed sequential events critical for spontaneous insertion, including probing, docking, folding, and insertion. Remarkably, PQS bent its hydrophobic side chain into a closed conformation to lower the energy barrier for penetration through the hydrophilic headgroup zone of the lipid A leaflet, which was confirmed by the potential of mean force (PMF) measurements. Attachment and insertion were simultaneously observed in the simulation with multiple PQS molecules. Our findings uncover a sequence of molecular interactions that drive PQS insertion into the bacterial OM and provide important insight into the biophysical mechanism of small molecule-induced OMV biogenesis.
Collapse
Affiliation(s)
- Ao Li
- Departments of Mechanical Engineering, Binghamton, New York 13902
| | - Jeffrey W Schertzer
- Biological Sciences, Binghamton, New York 13902; Binghamton Biofilm Research Center, Binghamton University, The State University of New York, Binghamton, New York 13902
| | - Xin Yong
- Departments of Mechanical Engineering, Binghamton, New York 13902; Binghamton Biofilm Research Center, Binghamton University, The State University of New York, Binghamton, New York 13902.
| |
Collapse
|
25
|
Cai W, Kesavan DK, Wan J, Abdelaziz MH, Su Z, Xu H. Bacterial outer membrane vesicles, a potential vaccine candidate in interactions with host cells based. Diagn Pathol 2018; 13:95. [PMID: 30537996 PMCID: PMC6290530 DOI: 10.1186/s13000-018-0768-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Both Gram-Positive and Gram-Negative bacteria can secrete outer membrane vesicles (OMVs) in their growth and metabolism process. Originally, OMVs were considered as a by-product of bacterial merisis. However, many scientists have reported the important role of OMVs in many fields recently. In this review, we briefly introduce OMVs biological functions and then summarize the findings about the OMVs interactions with host cells. At last, we will make an expectation about the prospects of the application of OMVs as vaccines.
Collapse
Affiliation(s)
- Wei Cai
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | | | - Jie Wan
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | | | - Zhaoliang Su
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.,The Central Laboratory, the Fourth Affiliated of Jiangsu University, Zhenjiang, 212001, China
| | - Huaxi Xu
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|