1
|
Lin YY, Ho HC, Chou JY. Effects of lichen symbiotic bacteria-derived indole-3-acetic acid on the stress responses of an algal-fungal symbiont. Braz J Microbiol 2025:10.1007/s42770-025-01693-y. [PMID: 40397361 DOI: 10.1007/s42770-025-01693-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 05/05/2025] [Indexed: 05/22/2025] Open
Abstract
Lichens, comprising filamentous fungi and algae/cyanobacteria engaged in mutualistic symbiosis, exhibit remarkable adaptability to environmental challenges. While fungi safeguard algae from dry conditions, their ability to mitigate other stresses remains uncertain. Additionally, the functions of coexisting bacteria within lichen communities remain relatively unexplored. This study investigates the potential of indole-3-acetic acid (IAA) as a stress-response signaling molecule in lichen symbiosis. We subjected IAA-treated monocultures of algae and co-cultures of the fungal-algal complex to various stress conditions. IAA's role in bolstering resilience was evident, as demonstrated by the release of IAA (0-500 µM) by bacteria isolated from the lichen Parmelia tinctorum. This IAA was subsequently utilized by the lichen photobionts to alleviate oxidative stress. IAA acted as a communication signal, priming algal cells to defend against impending stressors. Further microscopic examinations unveiled that only the fibrous extensions were exposed in fungal cells that were in direct physical contact with viable algal cells. Co-cultivation and subsequent microscopic observations revealed that the algal cells were protected from diverse stressors by a barrier of fungal hyphae. Our findings underscore the significance of IAA in enhancing stress resistance within the context of lichen symbiosis, thereby advancing our understanding of the adaptability of these unique organisms. Further exploration of bacterial functions in lichen symbiosis holds promise for uncovering novel insights into their ecology and biology.
Collapse
Affiliation(s)
- Yan-Yu Lin
- Department of Biology, National Changhua University of Education, Changhua, 50007, Taiwan
| | - Han-Chen Ho
- Electron Microscopy Laboratory, Department of Anatomy, Tzu Chi University, Hualien, 97004, Taiwan
| | - Jui-Yu Chou
- Department of Biology, National Changhua University of Education, Changhua, 50007, Taiwan.
| |
Collapse
|
2
|
Song J, Kamal R, Chu Y, Liang S, Zhao ZK, Huang Q. Binary solvent extraction of intracellular lipids from Rhodotorula toruloides for cell recycling. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:53. [PMID: 40355961 PMCID: PMC12070525 DOI: 10.1186/s13068-025-02655-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Microbial lipid extraction is a critical process in the production of biofuels and other valuable chemicals from oleaginous microorganisms. The process involves the separation of lipids from microbial cells. Given the complexity of microbial cell walls and the demand for efficient and environmentally friendly extraction methods, further research is still needed in this area. This study aims to pursue the extraction of intracellular lipids from oleaginous yeasts using inexpensive solvents, without disrupting the cells and even maintaining a certain level of cell viability. RESULTS The study used fresh fermentation broth of Rhodotorula toruloides as the lipid extraction target and employed a binary solvent of methyl tert-butyl ether (MTBE) and n-hexane for lipid extraction. The effects of extraction time and solvent ratio on cell viability, lipid extraction efficiency, and fatty acid composition were analyzed. Conditions that balanced lipid yield and cell survival were selected for lipid extraction. Specifically, using a binary solvent (with 40% MTBE) to extract an equal volume of R. toruloides fermentation broth achieved a total lipid extraction rate of 60%, while maintaining a 5% cell survival rate (the surviving cells served as the seed for the second round of lipid production). After separating the solvent phase and supplementing the lipid-extracted cells with carbon sources and a small amount of nitrogen sources, the cells gradually regained biomass and produced lipids. Repeating this "gentle" extraction on surviving and regrown cells and adding carbon and nitrogen sources can enable a second round of growth and lipid production in these cells. CONCLUSIONS This is an interesting finding that may potentially encompass the extraction mechanisms of polar/nonpolar solvents and the phenomenon of yeast autophagy. This method does not require the destruction of the cell wall of oleaginous yeast. The separation after extraction is simple, and both the cells and solvents can be recycled. It provides a possible approach for simultaneous fermentation and lipid extraction.
Collapse
Affiliation(s)
- Jingyi Song
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Rasool Kamal
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Yadong Chu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
- Yantai Institute of Coastal Zone Research, CAS, Yantai, 264003, People's Republic of China
| | - Shiyu Liang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
- Dalian University of Technology, School of Bioengineering, Dalian, 116024, People's Republic of China
| | - Zongbao K Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
- Dalian University of Technology, School of Bioengineering, Dalian, 116024, People's Republic of China
| | - Qitian Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, CAS, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, People's Republic of China.
- Yantai Institute of Coastal Zone Research, CAS, Yantai, 264003, People's Republic of China.
| |
Collapse
|
3
|
Khalil A, Bramucci AR, Focardi A, Le Reun N, Willams NLR, Kuzhiumparambil U, Raina JB, Seymour JR. Widespread production of plant growth-promoting hormones among marine bacteria and their impacts on the growth of a marine diatom. MICROBIOME 2024; 12:205. [PMID: 39420440 PMCID: PMC11487934 DOI: 10.1186/s40168-024-01899-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/01/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Reciprocal exchanges of metabolites between phytoplankton and bacteria influence the fitness of these microorganisms which ultimately shapes the productivity of marine ecosystems. Recent evidence suggests that plant growth-promoting hormones may be key metabolites within mutualistic phytoplankton-bacteria partnerships, but very little is known about the diversity of plant growth-promoting hormones produced by marine bacteria and their specific effects on phytoplankton growth. Here, we aimed to investigate the capacity of marine bacteria to produce 7 plant growth-promoting hormones and the effects of these hormones on Actinocyclus sp. growth. RESULTS We examined the plant growth-promoting hormone synthesis capabilities of 14 bacterial strains that enhance the growth of the common diatom Actinocyclus. Plant growth-promoting hormone biosynthesis was ubiquitous among the bacteria tested. Indeed all 14 strains displayed the genomic potential to synthesise multiple hormones, and mass-spectrometry confirmed that each strain produced at least 6 out of the 7 tested plant growth-promoting hormones. Some of the plant growth-promoting hormones identified here, such as brassinolide and trans-zeatin, have never been reported in marine microorganisms. Importantly, all strains produced the hormone indole-3 acetic acid (IAA) in high concentrations and released it into their surroundings. Furthermore, indole-3 acetic acid extracellular concentrations were positively correlated with the ability of each strain to promote Actinocyclus growth. When inoculated with axenic Actinocyclus cultures, only indole-3 acetic acid and gibberellic acid enhanced the growth of the diatom, with cultures exposed to indole-3 acetic acid exhibiting a two-fold increase in cell numbers. CONCLUSION Our results reveal that marine bacteria produce a much broader range of plant growth-promoting hormones than previously suspected and that some of these compounds enhance the growth of a marine diatom. These findings suggest plant growth-promoting hormones play a large role in microbial communication and broaden our knowledge of their fuctions in the marine environment. Video Abstract.
Collapse
Affiliation(s)
- Abeeha Khalil
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Anna R Bramucci
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Amaranta Focardi
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Nine Le Reun
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | | | | | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
4
|
Mora-Godínez S, Senés-Guerrero C, Pacheco A. De novo transcriptome and lipidome analysis of Desmodesmus abundans under model flue gas reveals adaptive changes after ten years of acclimation to high CO2. PLoS One 2024; 19:e0299780. [PMID: 38758755 PMCID: PMC11101044 DOI: 10.1371/journal.pone.0299780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 02/14/2024] [Indexed: 05/19/2024] Open
Abstract
Microalgae's ability to mitigate flue gas is an attractive technology that can valorize gas components through biomass conversion. However, tolerance and growth must be ideal; therefore, acclimation strategies are suggested. Here, we compared the transcriptome and lipidome of Desmodesmus abundans strains acclimated to high CO2 (HCA) and low CO2 (LCA) under continuous supply of model flue gas (MFG) and incomplete culture medium (BG11-N-S). Initial growth and nitrogen consumption from MFG were superior in strain HCA, reaching maximum productivity a day before strain LCA. However, similar productivities were attained at the end of the run, probably because maximum photobioreactor capacity was reached. RNA-seq analysis during exponential growth resulted in 16,435 up-regulated and 4,219 down-regulated contigs in strain HCA compared to LCA. Most differentially expressed genes (DEGs) were related to nucleotides, amino acids, C fixation, central carbon metabolism, and proton pumps. In all pathways, a higher number of up-regulated contigs with a greater magnitude of change were observed in strain HCA. Also, cellular component GO terms of chloroplast and photosystems, N transporters, and secondary metabolic pathways of interest, such as starch and triacylglycerols (TG), exhibited this pattern. RT-qPCR confirmed N transporters expression. Lipidome analysis showed increased glycerophospholipids in strain HCA, while LCA exhibited glycerolipids. Cell structure and biomass composition also revealed strains differences. HCA possessed a thicker cell wall and presented a higher content of pigments, while LCA accumulated starch and lipids, validating transcriptome and lipidome data. Overall, results showed significant differences between strains, where characteristic features of adaptation and tolerance to high CO2 might be related to the capacity to maintain a higher flux of internal C, regulate intracellular acidification, active N transporters, and synthesis of essential macromolecules for photosynthetic growth.
Collapse
Affiliation(s)
- Shirley Mora-Godínez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Monterrey, Nuevo Leon, Mexico
| | | | - Adriana Pacheco
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Monterrey, Nuevo Leon, Mexico
| |
Collapse
|
5
|
Merino F, Mendoza S, Carhuapoma-Garay J, Campoverde-Vigo L, Huamancondor-Paz YP, Choque-Quispe Y, Buleje Campos D, Choque-Quispe D, Rodriguez-Cardenas L, Saldaña-Rojas GB, Loayza-Aguilar RE, Olivos-Ramirez GE. Potential use of sludge from El Ferrol Bay (Chimbote, Peru) for the production of lipids in the culture of Scenedesmus acutus (Meyen, 1829). Sci Rep 2024; 14:6968. [PMID: 38521782 PMCID: PMC10960819 DOI: 10.1038/s41598-024-52919-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/25/2024] [Indexed: 03/25/2024] Open
Abstract
Despite the extensive development of microalgae biotechnology, it still requires new methodologies to lower production costs, especially in the field of biofuel production. Therefore, innovative methods that facilitate operations and enable cost-effective production are important in driving this industry. In this study, we propose a new low-cost and easy-to-use procedure, addressed to the generation of a culture medium for Scenedesmus acutus. The medium was obtained by thermal reduction of a sludge sample from El Ferrol Bay (Chimbote, Peru), whereby we obtained an aqueous medium. Our results indicated that the aqueous medium incorporates all necessary nutrients for microalgae production; allowing a maximum biomass of 0.75 ± 0.07 g/L with 60% of the medium; while high lipids production (59.42 ± 6.16%) was achieved with 20%. Besides, we quantified, in the experimental medium and at the end of the cultures, the levels of inorganic nutrients such as ammonium, nitrites, nitrates, and phosphates; in addition to COD and TOC, which were significantly reduced ( p < 0.05) after 7 days of culture, mainly in the treatment with 20%. These results suggest tremendous potential for sludge reuse, which also entails a cost reduction in microalgae biomass production, with additional positive impacts on large-scale application over highly polluted environments.
Collapse
Affiliation(s)
- Fernando Merino
- Escuela de Biología en Acuicultura, Universidad Nacional del Santa, Av. Universitaria S/N, Nuevo Chimbote, 02712, Peru
| | - Sorayda Mendoza
- Escuela de Biología en Acuicultura, Universidad Nacional del Santa, Av. Universitaria S/N, Nuevo Chimbote, 02712, Peru
| | - Juan Carhuapoma-Garay
- Escuela de Biología en Acuicultura, Universidad Nacional del Santa, Av. Universitaria S/N, Nuevo Chimbote, 02712, Peru
| | - Luis Campoverde-Vigo
- Escuela de Biología en Acuicultura, Universidad Nacional del Santa, Av. Universitaria S/N, Nuevo Chimbote, 02712, Peru
| | - Yolanda P Huamancondor-Paz
- Escuela de Biología en Acuicultura, Universidad Nacional del Santa, Av. Universitaria S/N, Nuevo Chimbote, 02712, Peru
| | - Yudith Choque-Quispe
- Environmental Engineering Department, Research group for the development of advanced materials for water and food treatment, Advanced Materials Research Laboratory for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas, 03701, Peru
| | - Dianeth Buleje Campos
- Agroindustrial Engineering Department, Advanced Materials Research Laboratory for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas, 03701, Peru
| | - David Choque-Quispe
- Agroindustrial Engineering Department, Research group for the development of advanced materials for water and food treatment, Advanced Materials Research Laboratory for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas, 03701, Peru
| | - Liliana Rodriguez-Cardenas
- Advanced Materials Research Laboratory for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas, 03701, Peru
| | - Guillermo B Saldaña-Rojas
- Escuela de Biología en Acuicultura, Universidad Nacional del Santa, Av. Universitaria S/N, Nuevo Chimbote, 02712, Peru
| | - Rómulo E Loayza-Aguilar
- Escuela de Biología en Acuicultura, Universidad Nacional del Santa, Av. Universitaria S/N, Nuevo Chimbote, 02712, Peru
| | - Gustavo E Olivos-Ramirez
- Escuela de Biología en Acuicultura, Universidad Nacional del Santa, Av. Universitaria S/N, Nuevo Chimbote, 02712, Peru.
| |
Collapse
|
6
|
Baylous HR, Gladfelter MF, Gardner MI, Foley M, Wilson AE, Steffen MM. Indole-3-acetic acid promotes growth in bloom-forming Microcystis via an antioxidant response. HARMFUL ALGAE 2024; 133:102575. [PMID: 38485434 DOI: 10.1016/j.hal.2024.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 03/19/2024]
Abstract
Interactions between bacteria and phytoplankton in the phycosphere facilitate and constrain biogeochemical cycling in aquatic ecosystems. Indole-3-acetic acid (IAA) is a bacterially produced chemical signal that promotes growth of phytoplankton and plants. Here, we explored the impact of IAA on bloom-forming cyanobacteria and their associated bacteria. Exposure to IAA and its precursor, tryptophan, resulted in a strong growth response in a bloom of the freshwater cyanobacterium, Microcystis. Metatranscriptome analysis revealed the induction of an antioxidant response in Microcystis upon exposure to IAA, potentially allowing populations to increase photosynthetic rate and overcome internally generated reactive oxygen. Our data reveal that co-occurring bacteria within the phycosphere microbiome exhibit a division of labor for supportive functions, such as nutrient mineralization and transport, vitamin synthesis, and reactive oxygen neutralization. These complex dynamics within the Microcystis phycosphere microbiome are an example of interactions within a microenvironment that can have ecosystem-scale consequences.
Collapse
Affiliation(s)
- Hunter R Baylous
- Department of Biology, James Madison University, Harrisonburg, VA 22801, USA
| | - Matthew F Gladfelter
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Malia I Gardner
- Department of Biology, James Madison University, Harrisonburg, VA 22801, USA
| | - Madalynn Foley
- Department of Biology, James Madison University, Harrisonburg, VA 22801, USA
| | - Alan E Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Morgan M Steffen
- Department of Biology, James Madison University, Harrisonburg, VA 22801, USA.
| |
Collapse
|
7
|
Calatrava V, Hom EF, Guan Q, Llamas A, Fernández E, Galván A. Genetic evidence for algal auxin production in Chlamydomonas and its role in algal-bacterial mutualism. iScience 2024; 27:108762. [PMID: 38269098 PMCID: PMC10805672 DOI: 10.1016/j.isci.2023.108762] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/31/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024] Open
Abstract
Interactions between algae and bacteria are ubiquitous and play fundamental roles in nutrient cycling and biomass production. Recent studies have shown that the plant auxin indole acetic acid (IAA) can mediate chemical crosstalk between algae and bacteria, resembling its role in plant-bacterial associations. Here, we report a mechanism for algal extracellular IAA production from L-tryptophan mediated by the enzyme L-amino acid oxidase (LAO1) in the model Chlamydomonas reinhardtii. High levels of IAA inhibit algal cell multiplication and chlorophyll degradation, and these inhibitory effects can be relieved by the presence of the plant-growth-promoting bacterium (PGPB) Methylobacterium aquaticum, whose growth is mutualistically enhanced by the presence of the alga. These findings reveal a complex interplay of microbial auxin production and degradation by algal-bacterial consortia and draws attention to potential ecophysiological roles of terrestrial microalgae and PGPB in association with land plants.
Collapse
Affiliation(s)
- Victoria Calatrava
- Departamento de Bioquímica y Biología Molecular. Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Erik F.Y. Hom
- Department of Biology and Center for Biodiversity and Conservation Research, University of Mississippi, University, MS 38677-1848, USA
| | - Qijie Guan
- Department of Biology and Center for Biodiversity and Conservation Research, University of Mississippi, University, MS 38677-1848, USA
| | - Angel Llamas
- Departamento de Bioquímica y Biología Molecular. Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Emilio Fernández
- Departamento de Bioquímica y Biología Molecular. Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Aurora Galván
- Departamento de Bioquímica y Biología Molecular. Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
8
|
Quevedo-Ospina C, Arroyave C, Peñuela-Vásquez M, Villegas A. Effect of mercury in the influx and efflux of nutrients in the microalga Desmodesmus armatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106496. [PMID: 36941145 DOI: 10.1016/j.aquatox.2023.106496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/15/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic activities such as mining and the metallurgical industry are the main sources of mercury contamination. Mercury is one of the most serious environmental problems in the world. This study aimed to investigate, using experimental kinetic data, the effect of different inorganic mercury (Hg2+) concentrations on the response of microalga Desmodesmus armatus stress. Cell growth, nutrients uptake and mercury ions from the extracellular medium, and oxygen production were determined. A Compartment Structured Model allowed elucidating the phenomena of transmembrane transport, including influx and efflux of nutrients, metal ions and bioadsorption of metal ions on the cell wall, which are difficult to determine experimentally. This model was able to explain two tolerance mechanisms against mercury, the first one was the adsorption of Hg2+ions onto the cell wall and the second was the efflux of mercury ions. The model predicted a competition between internalization and adsorption with a maximum tolerable concentration of 5.29 mg/L of HgCl2. The kinetic data and the model showed that mercury causes physiological changes in the cell, which allow the microalga to adapt to these new conditions to counteract the toxic effects. For this reason, D. armatus can be considered as a Hg-tolerant microalga. This tolerance capacity is associated with the activation of the efflux as a detoxification mechanism that facilitates the maintenance of the osmotic balance for all the modeled chemical species. Furthermore, the accumulation of mercury in the cell membrane suggests the presence of thiol groups associated with its internalization, leading to the conclusion that metabolically active tolerance mechanisms are dominant over passive ones.
Collapse
Affiliation(s)
- Catalina Quevedo-Ospina
- Bioprocess Research Group, Department of Chemical Engineering, Faculty of Engineering, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia.
| | - Catalina Arroyave
- GRINBIO Research Group, Department of Environmental Engineering, Universidad de Medellín UdeM, Carrera 87 #30-65, Medellín 050026, Colombia
| | - Mariana Peñuela-Vásquez
- Bioprocess Research Group, Department of Chemical Engineering, Faculty of Engineering, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Adriana Villegas
- TERMOMEC Research Group, Faculty of Engineering, Universidad Cooperativa de Colombia UCC, Medellín 050012, Colombia
| |
Collapse
|
9
|
Quintas-Nunes F, Brandão PR, Barreto Crespo MT, Glick BR, Nascimento FX. Plant Growth Promotion, Phytohormone Production and Genomics of the Rhizosphere-Associated Microalga, Micractinium rhizosphaerae sp. nov. PLANTS (BASEL, SWITZERLAND) 2023; 12:651. [PMID: 36771735 PMCID: PMC9922002 DOI: 10.3390/plants12030651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Microalgae are important members of the soil and plant microbiomes, playing key roles in the maintenance of soil and plant health as well as in the promotion of plant growth. However, not much is understood regarding the potential of different microalgae strains in augmenting plant growth, or the mechanisms involved in such activities. In this work, the functional and genomic characterization of strain NFX-FRZ, a eukaryotic microalga belonging to the Micractinium genus that was isolated from the rhizosphere of a plant growing in a natural environment in Portugal, is presented and analyzed. The results obtained demonstrate that strain NFX-FRZ (i) belongs to a novel species, termed Micractinium rhizosphaerae sp. nov.; (ii) can effectively bind to tomato plant tissues and promote its growth; (iii) can synthesize a wide range of plant growth-promoting compounds, including phytohormones such as indole-3-acetic acid, salicylic acid, jasmonic acid and abscisic acid; and (iv) contains multiple genes involved in phytohormone biosynthesis and signaling. This study provides new insights regarding the relevance of eukaryotic microalgae as plant growth-promoting agents and helps to build a foundation for future studies regarding the origin and evolution of phytohormone biosynthesis and signaling, as well as other plant colonization and plant growth-promoting mechanisms in soil/plant-associated Micractinium.
Collapse
Affiliation(s)
- Francisco Quintas-Nunes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Pedro R. Brandão
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Maria T. Barreto Crespo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Francisco X. Nascimento
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
10
|
Thangaraj S, Liu H, Guo Y, Ding C, Kim IN, Sun J. Transitional traits determine the acclimation characteristics of the coccolithophore Chrysotila dentata to ocean warming and acidification. Environ Microbiol 2023. [PMID: 36721374 DOI: 10.1111/1462-2920.16343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/23/2023] [Indexed: 02/02/2023]
Abstract
Ocean warming and acidification interactively affect the coccolithophore physiology and drives major biogeochemical changes. While numerous studies investigated coccolithophore under short-term conditions, knowledge on how different transitional periods over long-exposure could influence the element, macromolecular and metabolic changes for its acclimation are largely unknown. We cultured the coccolithophore Chrysotila dentata, (culture generations of 1st, 10th, and 20th) under present (low-temperature low-carbon-dioxide [LTLC]) and projected (high-temperature high-carbon-dioxide [HTHC]) ocean conditions. We examined elemental and macromolecular component changes and sequenced a transcriptome. We found that with long-exposure, most physiological responses in HTHC cells decreased when compared with those in LTLC, however, HTHC cell physiology showed constant elevation between each generation. Specifically, compared to 1st generation, the 20th generation HTHC cells showed increases in quota carbon (Qc:29%), nitrogen (QN :101%), and subsequent changes in C:N-ratio (68%). We observed higher lipid accumulation than carbohydrates within HTHC cells under long-exposure, suggesting that lipids were used as an alternative energy source for cellular acclimation. Protein biosynthesis pathways increased their efficiency during long-term HTHC condition, indicating that cells produced more proteins than required to initiate acclimation. Our findings suggest that the coccolithophore resilience increased between the 1st-10th generation to initiate the acclimation process under ocean warming and acidifying conditions.
Collapse
Affiliation(s)
- Satheeswaran Thangaraj
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, China.,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.,Department of Marine Science, Incheon National University, Incheon, South Korea.,Department of Physiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India
| | - Haijiao Liu
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Yiyan Guo
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Changling Ding
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Il-Nam Kim
- Department of Marine Science, Incheon National University, Incheon, South Korea
| | - Jun Sun
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, China.,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.,Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
11
|
Singh RP, Yadav P, Kumar A, Hashem A, Al-Arjani ABF, Abd Allah EF, Rodríguez Dorantes A, Gupta RK. Physiological and Biochemical Responses of Bicarbonate Supplementation on Biomass and Lipid Content of Green Algae Scenedesmus sp. BHU1 Isolated From Wastewater for Renewable Biofuel Feedstock. Front Microbiol 2022; 13:839800. [PMID: 35444634 PMCID: PMC9015788 DOI: 10.3389/fmicb.2022.839800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/15/2022] [Indexed: 11/15/2022] Open
Abstract
In the present study, different microalgae were isolated from wastewater environment and evaluated for higher growth and lipid accumulation. The growth adaptability of all the isolated microalgae were tested for carbon source with supplementation of sodium bicarbonate in BG-11 N+ medium. Further based on the uptake rate of sodium bicarbonate and growth behavior, microalgal strains were selected for biofuel feedstock. During the study, growth parameters of all the isolates were screened after supplementation with various carbon sources, in which strain Scenedesmus sp. BHU1 was found highly effective among all. The efficacy of Scenedesmus sp. BHU1 strain under different sodium bicarbonate (4–20 mM) concentration, in which higher growth 1.4 times greater than control was observed at the concentration 12 mM sodium bicarbonate. In addition, total chlorophyll content (Chl-a + Chl-b), chlorophyll fluorescence (Fv/Fm, Y(II), ETR max, and NPQmax), and biomass productivity were found to be 11.514 μg/ml, 0.673, 0.675, and 31.167 μmol electrons m−2 s−1, 1.399, 59.167 mg/L/day, respectively, at the 12 mM sodium bicarbonate. However, under optimum sodium bicarbonate supplementation, 56.920% carbohydrate and 34.693% lipid content were accumulated, which showed potential of sodium bicarbonate supplementation in renewable biofuel feedstock by using Scenedesmus sp. BHU1 strain.
Collapse
Affiliation(s)
- Rahul Prasad Singh
- Laboratory of Algal Research, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Priya Yadav
- Laboratory of Algal Research, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ajay Kumar
- Laboratory of Algal Research, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Rajan Kumar Gupta
- Laboratory of Algal Research, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
12
|
Bogaert KA, Blomme J, Beeckman T, De Clerck O. Auxin's origin: do PILS hold the key? TRENDS IN PLANT SCIENCE 2022; 27:227-236. [PMID: 34716098 DOI: 10.1016/j.tplants.2021.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/23/2021] [Accepted: 09/28/2021] [Indexed: 05/12/2023]
Abstract
Auxin is a key regulator of many developmental processes in land plants and plays a strikingly similar role in the phylogenetically distant brown seaweeds. Emerging evidence shows that the PIN and PIN-like (PILS) auxin transporter families have preceded the evolution of the canonical auxin response pathway. A wide conservation of PILS-mediated auxin transport, together with reports of auxin function in unicellular algae, would suggest that auxin function preceded the advent of multicellularity. We find that PIN and PILS transporters form two eukaryotic subfamilies within a larger bacterial family. We argue that future functional characterisation of algal PIN and PILS transporters can shed light on a common origin of an auxin function followed by independent co-option in a multicellular context.
Collapse
Affiliation(s)
- Kenny Arthur Bogaert
- Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium.
| | - Jonas Blomme
- Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB-UGent, Technologiepark 72, B-9052 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB-UGent, Technologiepark 72, B-9052 Ghent, Belgium
| | - Olivier De Clerck
- Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium
| |
Collapse
|
13
|
Hsiung RT, Chiu MC, Chou JY. Exogenous Indole-3-Acetic Acid Induced Ethanol Tolerance in Phylogenetically Diverse Saccharomycetales Yeasts. Microbes Environ 2022; 37. [PMID: 35082178 PMCID: PMC8958292 DOI: 10.1264/jsme2.me21053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Indole-3-acetic acid (IAA) is an exogenous growth regulatory signal that is produced by plants and various microorganisms. Microorganisms have been suggested to cross-communicate with each other through IAA-mediated signaling mechanisms. The IAA-induced tolerance response has been reported in several microorganisms, but has not yet been described in Saccharomycetales yeasts. In the present study, three common stressors (heat, osmotic pressure, and ethanol) were examined in relation to the influence of a pretreatment with IAA on stress tolerance in 12 different lineages of Saccharomyces cerevisiae. The pretreatment with IAA had a significant effect on the induction of ethanol tolerance by reducing the doubling time of S. cerevisiae growth without the pretreatment. However, the pretreatment did not significantly affect the induction of thermo- or osmotolerance. The IAA pretreatment decreased the lethal effects of ethanol on S. cerevisiae cells. Although yeasts produce ethanol to outcompete sympatric microorganisms, IAA is not a byproduct of this process. Nevertheless, the accumulation of IAA indicates an increasing number of microorganisms, and, thus, greater competition for resources. Since the “wine trait” is shared by both phylogenetically related and distinct lineages in Saccharomycetales, we conclude that IAA-induced ethanol tolerance is not specific to S. cerevisiae; it may be widely detected in both pre-whole genome duplication (WGD) and post-WGD yeasts belonging to several genera of Saccharomycetales.
Collapse
Affiliation(s)
- Ruo-Ting Hsiung
- Department of Biology, National Changhua University of Education
| | - Ming-Chung Chiu
- Department of Biology, National Changhua University of Education
| | - Jui-Yu Chou
- Department of Biology, National Changhua University of Education
| |
Collapse
|
14
|
Abstract
Dissolved exometabolites mediate algal interactions in aquatic ecosystems, but microalgal exometabolomes remain understudied. We conducted an untargeted metabolomic analysis of nonpolar exometabolites exuded from four phylogenetically and ecologically diverse eukaryotic microalgal strains grown in the laboratory, freshwater Chlamydomonas reinhardtii, brackish Desmodesmus sp., marine Phaeodactylum tricornutum, and marine Microchloropsis salina, to identify released metabolites based on relative enrichment in the exometabolomes compared to cell pellet metabolomes. Exudates from the different taxa were distinct, but we did not observe clear phylogenetic patterns. We used feature-based molecular networking to explore the identities of these metabolites, revealing several distinct di- and tripeptides secreted by each of the algae, lumichrome, a compound that is known to be involved in plant growth and bacterial quorum sensing, and novel prostaglandin-like compounds. We further investigated the impacts of exogenous additions of eight compounds selected based on exometabolome enrichment on algal growth. Of these compounds, five (lumichrome, 5′-S-methyl-5′-thioadenosine, 17-phenyl trinor prostaglandin A2, dodecanedioic acid, and aleuritic acid) impacted growth in at least one of the algal cultures. Two of these compounds (dodecanedioic acid and aleuritic acid) produced contrasting results, increasing growth in some algae and decreasing growth in others. Together, our results reveal new groups of microalgal exometabolites, some of which could alter algal growth when provided exogenously, suggesting potential roles in allelopathy and algal interactions. IMPORTANCE Microalgae are responsible for nearly half of primary production on earth and play an important role in global biogeochemical cycling as well as in a range of industrial applications. Algal exometabolites are important mediators of algal-algal and algal-bacterial interactions that ultimately affect algal growth and physiology. In this study, we characterize exometabolomes across marine and freshwater algae to gain insights into the diverse metabolites they release into their environments (“exudates”). We observe that while phylogeny can play a role in exometabolome content, environmental conditions or habitat origin (freshwater versus marine) are also important. We also find that several of these compounds can influence algal growth (as measured by chlorophyll production) when provided exogenously, highlighting the importance of characterization of these novel compounds and their role in microalgal ecophysiology.
Collapse
|
15
|
Fu L, Li Q, Chen C, Zhang Y, Liu Y, Xu L, Zhou Y, Li C, Zhou D, Rittmann BE. Benzoic and salicylic acid are the signaling molecules of Chlorella cells for improving cell growth. CHEMOSPHERE 2021; 265:129084. [PMID: 33261837 DOI: 10.1016/j.chemosphere.2020.129084] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 05/28/2023]
Abstract
Cell-to-cell communication regulates microalgae production via signaling molecules (SMs), but few microalgal SM species are known. Here, we document two new microalgae SMs, benzoic acid (BA) and salicylic acid (SA). Initially, crude SMs were extracted from a microalgae culture in which microalgae grew on heterotrophic-enriched phosphorus nutrition. The extracted SMs enhanced Chlorella growth by ∼72%, promoted nutrient uptake, and up-regulated the mitogen-activated protein-kinase signaling cascade. Fourier transform infrared and nuclear magnetic resonance analyses identified the putative SMs was aromatic carboxylic acids. BA and SA were identified using high-resolution mass spectrometry. BA and SA addition increased cell growth by ∼75% and ∼25%; and improved ATP production by ∼35% and ∼20%. Transcriptomic analysis showed that BA and SA were biosynthesized via CoA-dependent, non-oxidative pathway. The SMs upregulated TCA-cycle enzymes, which promoted carbon assimilation and activated DNA-replicating enzyme, so that accelerated cell division. This study identified two new SMs for microalgae cell communication and provides means to identify other SMs.
Collapse
Affiliation(s)
- Liang Fu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Qingcheng Li
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Congli Chen
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China; National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yueju Zhang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yinglu Liu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Liang Xu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yihan Zhou
- National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Chengbin Li
- Changchun Water Group Co. Ltd, Changchun, 130021, China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
16
|
Milito A, Orefice I, Smerilli A, Castellano I, Napolitano A, Brunet C, Palumbo A. Insights into the Light Response of Skeletonema marinoi: Involvement of Ovothiol. Mar Drugs 2020; 18:md18090477. [PMID: 32962291 PMCID: PMC7551349 DOI: 10.3390/md18090477] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Diatoms are one of the most widespread groups of microalgae on Earth. They possess extraordinary metabolic capabilities, including a great ability to adapt to different light conditions. Recently, we have discovered that the diatom Skeletonema marinoi produces the natural antioxidant ovothiol B, until then identified only in clams. In this study, we investigated the light-dependent modulation of ovothiol biosynthesis in S. marinoi. Diatoms were exposed to different light conditions, ranging from prolonged darkness to low or high light, also differing in the velocity of intensity increase (sinusoidal versus square-wave distribution). The expression of the gene encoding the key ovothiol biosynthetic enzyme, ovoA, was upregulated by high sinusoidal light mimicking natural conditions. Under this situation higher levels of reactive oxygen species and nitric oxide as well as ovothiol and glutathione increase were detected. No ovoA modulation was observed under prolonged darkness nor low sinusoidal light. Unnatural conditions such as continuous square-wave light induced a very high oxidative stress leading to a drop in cell growth, without enhancing ovoA gene expression. Only one of the inducible forms of nitric oxide synthase, nos2, was upregulated by light with consequent production of NO under sinusoidal light and darkness conditions. Our data suggest that ovothiol biosynthesis is triggered by a combined light stress caused by natural distribution and increased photon flux density, with no influence from the daily light dose. These results open new perspectives for the biotechnological production of ovothiols, which are receiving a great interest for their biological activities in human model systems.
Collapse
Affiliation(s)
- Alfonsina Milito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics, Cerdanyola, 08193 Barcelona, Spain
- Correspondence: or (A.M.); (A.P.); Tel.: +39-081-5833 (ext. 293/276) (A.M.)
| | - Ida Orefice
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (I.O.); (A.S.); (C.B.)
| | - Arianna Smerilli
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (I.O.); (A.S.); (C.B.)
| | - Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy;
| | - Christophe Brunet
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (I.O.); (A.S.); (C.B.)
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
- Correspondence: or (A.M.); (A.P.); Tel.: +39-081-5833 (ext. 293/276) (A.M.)
| |
Collapse
|
17
|
Morffy N, Strader LC. Old Town Roads: routes of auxin biosynthesis across kingdoms. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:21-27. [PMID: 32199307 PMCID: PMC7540728 DOI: 10.1016/j.pbi.2020.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/28/2020] [Accepted: 02/09/2020] [Indexed: 05/04/2023]
Abstract
Auxin is an important signaling molecule synthesized in organisms from multiple kingdoms of life, including land plants, green algae, and bacteria. In this review, we highlight the similarities and differences in auxin biosynthesis among these organisms. Tryptophan-dependent routes to IAA are found in land plants, green algae and bacteria. Recent sequencing efforts show that the indole-3-pyruvic acid pathway, one of the primary biosynthetic pathways in land plants, is also found in the green algae. These similarities raise questions about the origin of auxin biosynthesis. Future studies comparing auxin biosynthesis across kingdoms will shed light on its origin and role outside of the plant lineage.
Collapse
Affiliation(s)
- Nicholas Morffy
- Department of Biology, Washington University, St. Louis, MO 63130, United States; Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO 63130, United States.
| | - Lucia C Strader
- Department of Biology, Washington University, St. Louis, MO 63130, United States; Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO 63130, United States; Center for Engineering MechanoBiology, Washington University, St. Louis, MO 63130, United States.
| |
Collapse
|
18
|
Peng H, de-Bashan LE, Bashan Y, Higgins BT. Indole-3-acetic acid from Azosprillum brasilense promotes growth in green algae at the expense of energy storage products. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101845] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Lin WJ, Ho HC, Chu SC, Chou JY. Effects of auxin derivatives on phenotypic plasticity and stress tolerance in five species of the green alga Desmodesmus (Chlorophyceae, Chlorophyta). PeerJ 2020; 8:e8623. [PMID: 32195045 PMCID: PMC7067201 DOI: 10.7717/peerj.8623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/22/2020] [Indexed: 01/03/2023] Open
Abstract
Green microalgae of the genus Desmodesmus are characterized by a high degree of phenotypic plasticity (i.e. colony morphology), allowing them to be truly cosmopolitan and withstand environmental fluctuations. This flexibility enables Desmodesmus to produce a phenotype–environment match across a range of environments broader compared to algae with more fixed phenotypes. Indoles and their derivatives are a well-known crucial class of heterocyclic compounds and are widespread in different species of plants, animals, and microorganisms. Indole-3-acetic acid (IAA) is the most common, naturally occurring plant hormone of the auxin class. IAA may behave as a signaling molecule in microorganisms, and the physiological cues of IAA may also trigger phenotypic plasticity responses in Desmodesmus. In this study, we demonstrated that the changes in colonial morphs (cells per coenobium) of five species of the green alga Desmodesmus were specific to IAA but not to the chemically more stable synthetic auxins, naphthalene-1-acetic acid and 2,4-dichlorophenoxyacetic acid. Moreover, inhibitors of auxin biosynthesis and polar auxin transport inhibited cell division. Notably, different algal species (even different intraspecific strains) exhibited phenotypic plasticity different to that correlated to IAA. Thus, the plasticity involving individual-level heterogeneity in morphological characteristics may be crucial for microalgae to adapt to changing or novel conditions, and IAA treatment potentially increases the tolerance of Desmodesmus algae to several stress conditions. In summary, our results provide circumstantial evidence for the hypothesized role of IAA as a diffusible signal in the communication between the microalga and microorganisms. This information is crucial for elucidation of the role of plant hormones in plankton ecology.
Collapse
Affiliation(s)
- Wei-Jiun Lin
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Han-Chen Ho
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan
| | - Sheng-Chang Chu
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Jui-Yu Chou
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| |
Collapse
|