1
|
El Fessikh M, Skhoun H, Ouzzif Z, El Baghdadi J. Deciphering deleterious missense variants in the MC4R gene in the pathogenesis of obesity. ENDOCRINOL DIAB NUTR 2025; 72:501559. [PMID: 40221191 DOI: 10.1016/j.endien.2025.501559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/09/2024] [Indexed: 04/14/2025]
Abstract
The MC4R gene plays a critical role in regulating food intake, making it an important model for studying genetic mutations that impact the protein function. This study aimed to identify the most deleterious functional and structural variants in individuals with obesity by analyzing SNPs from the NCBI dbSNP database and selecting pathogenic variants from ClinVar. Bioinformatics tools were employed to predict deleterious SNPs, and conservation analysis was performed using ConSurf. Stability predictions were made with MUpro, I-Mutant2.0, and iStable. The 3D structure of the MC4R protein was examined using YASARA view. A total of 20 out of 348 missense mutations were associated with obesity. Fifteen of these variants were predicted to be the most deleterious. Eight variants located in conserved regions were found to significantly reduce protein stability and cause structural changes (S58C, E61K, N62S, I69R, D90N, R165Q, P299H, and I316S), indicating their potential as obesity biomarkers and therapeutic targets.
Collapse
Affiliation(s)
| | - Hanaa Skhoun
- Genetics Unit, Military Hospital Mohammed V, Rabat, Morocco
| | - Zohra Ouzzif
- Laboratories Pole, Military Hospital Mohammed V, Rabat, Morocco
| | - Jamila El Baghdadi
- Genetics Unit, Military Hospital Mohammed V, Rabat, Morocco; Laboratories Pole, Military Hospital Mohammed V, Rabat, Morocco.
| |
Collapse
|
2
|
Sridhar GR, Gumpeny L. Melanocortin 4 receptor mutation in obesity. World J Exp Med 2024; 14:99239. [PMID: 39713072 PMCID: PMC11551707 DOI: 10.5493/wjem.v14.i4.99239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 10/31/2024] Open
Abstract
Obesity is increasingly prevalent worldwide, with genetic factors contributing to its development. The hypothalamic leptin-melanocortin pathway is central to the regulation of appetite and weight; leptin activates the proopiomelanocortin neurons, leading to the production of melanocortin peptides; these in turn act on melanocortin 4 receptors (MC4R) which suppress appetite and increase energy expenditure. MC4R mutations are responsible for syndromic and non-syndromic obesity. These mutations are classified based on their impact on the receptor's life cycle: i.e. null mutations, intracellular retention, binding defects, signaling defects, and variants of unknown function. Clinical manifestations of MC4R mutations include early-onset obesity, hyperphagia, and metabolic abnormalities such as hyperinsulinemia and dyslipidemia. Management strategies for obesity due to MC4R mutations have evolved with the development of targeted therapies such as Setmelanotide, an MC4R agonist which can reduce weight and manage symptoms without adverse cardiovascular effects. Future research directions must include expansion of population studies to better understand the epidemiology of MC4R mutations, exploration of the molecular mechanisms underlying MC4R signaling, and development of new therapeutic agents. Understanding the interaction between MC4R and other genetic and environmental factors will be key to advancing both the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Gumpeny R Sridhar
- Department of Endocrinology and Diabetes, Endocrine and Diabetes Centre, Visakhapatnam 530002, Andhra Pradesh, India
| | - Lakshmi Gumpeny
- Department of Internal Medicine, Gayatri Vidya Parishad Institute of Healthcare and Medical Technology, Visakhapatnam 530048, Andhra Pradesh, India
| |
Collapse
|
3
|
Rodríguez Rondón AV, Welling MS, van den Akker ELT, van Rossum EFC, Boon EMJ, van Haelst MM, Delhanty PJD, Visser JA. MC4R Variants Modulate α-MSH and Setmelanotide Induced Cellular Signaling at Multiple Levels. J Clin Endocrinol Metab 2024; 109:2452-2466. [PMID: 38567654 PMCID: PMC11403317 DOI: 10.1210/clinem/dgae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/10/2024] [Indexed: 04/04/2024]
Abstract
CONTEXT The melanocortin-4 receptor (MC4R) plays an important role in body weight regulation. Pathogenic MC4R variants are the most common cause of monogenic obesity. OBJECTIVE We have identified 17 MC4R variants in adult and pediatric patients with obesity. Here we aimed to functionally characterize these variants by analyzing 4 different aspects of MC4R signaling. In addition, we aimed to analyze the effect of setmelanotide, a potent MC4R agonist, on these MC4R variants. MATERIALS AND METHODS Cell surface expression and α-melanocyte stimulating hormone (α-MSH)- or setmelanotide-induced cAMP response, β-arrestin-2 recruitment, and ERK activation were measured in cells expressing either wild type or variant MC4R. RESULTS We found a large heterogeneity in the function of these variants. We identified variants with a loss of response for all studied MC4R signaling, variants with no cAMP accumulation or ERK activation but normal β-arrestin-2 recruitment, and variants with normal cAMP accumulation and ERK activation but decreased β-arrestin-2 recruitment, indicating disrupted desensitization and signaling mechanisms. Setmelanotide displayed a greater potency and similar efficacy as α-MSH and induced significantly increased maximal cAMP responses of several variants compared to α-MSH. Despite the heterogeneity in functional response, there was no apparent difference in the obesity phenotype in our patients. CONCLUSION We show that these obesity-associated MC4R variants affect MC4R signaling differently yet lead to a comparable clinical phenotype. Our results demonstrate the clinical importance of assessing the effect of MC4R variants on a range of molecular signaling mechanisms to determine their association with obesity, which may aid in improving personalized treatment.
Collapse
Affiliation(s)
- Alejandra V Rodríguez Rondón
- Obesity Center CGG and Expertise Center Genetic Obesity, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Mila S Welling
- Obesity Center CGG and Expertise Center Genetic Obesity, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Pediatrics, Division of Endocrinology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Erica L T van den Akker
- Obesity Center CGG and Expertise Center Genetic Obesity, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Pediatrics, Division of Endocrinology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Elisabeth F C van Rossum
- Obesity Center CGG and Expertise Center Genetic Obesity, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Elles M J Boon
- Department of Human Genetics, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Mieke M van Haelst
- Department of Human Genetics, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Patric J D Delhanty
- Obesity Center CGG and Expertise Center Genetic Obesity, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Jenny A Visser
- Obesity Center CGG and Expertise Center Genetic Obesity, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
4
|
Evaluation of Pharmacological Rescue of Melanocortin-4 Receptor Nonsense Mutations by Aminoglycoside. Life (Basel) 2022; 12:life12111793. [PMID: 36362948 PMCID: PMC9697516 DOI: 10.3390/life12111793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The melanocortin-4 receptor (MC4R) is critical for central satiety regulation, therefore presenting a potent target for pharmacological obesity treatment. Melanocortin-4 receptor mutations prevalently cause monogenetic obesity. A possibility of overcoming stop mutations is aminoglycoside-mediated translational readthrough. Promising results were achieved in COS-7 cells, but data for human cell systems are still missing, so uncertainty surrounds this potential treatment. In transfected HEK-293 cells, we tested whether translational readthrough by aminoglycoside Geneticin combined with high-affinity ligand setmelanotide, which is effective in proopiomelanocortin or leptin receptor deficiency patients, is a treatment option for affected patients. Five MC4R nonsense mutants (W16X, Y35X_D37V, E61X, W258X, Q307X) were investigated. Confocal microscopy and cell surface expression assays revealed the importance of the mutations’ position within the MC4R. N-terminal mutants were marginally expressed independent of Geneticin treatment, whereas mutants with nonsense mutations in transmembrane helix 6 or helix 8 showed wild-type-like expression. For functional analysis, Gs and Gq/11 signaling were measured. N-terminal mutants (W16X, Y35X_D37V) showed no cAMP formation after challenge with alpha-MSH or setmelanotide, irrespective of Geneticin treatment. Similarly, Gs activation was almost impossible in W258X and Q307X with wild-type-like cell surface expression. Results for Gq/11 signaling were comparable. Based on our data, this approach improbably represents a therapeutic option.
Collapse
|
5
|
Abstract
The 5 known melanocortin receptors (MCs) have established physiological roles. With the exception of MC2, these receptors can behave unpredictably, and since they are more widely expressed than their established roles would suggest, it is likely that they have other poorly characterized functions. The aim of this review is to discuss some of the less well-explored aspects of the 4 enigmatic members of this receptor family (MC1,3-5) and describe how these are multifaceted G protein-coupled receptors (GPCRs). These receptors appear to be promiscuous in that they bind several endogenous agonists (products of the proopiomelanocortin [POMC] gene) and antagonists but with inconsistent relative affinities and effects. We propose that this is a result of posttranslational modifications that determine receptor localization within nanodomains. Within each nanodomain there will be a variety of proteins, including ion channels, modifying proteins, and other GPCRs, that can interact with the MCs to alter the availability of receptor at the cell surface as well as the intracellular signaling resulting from receptor activation. Different combinations of interacting proteins and MCs may therefore give rise to the complex and inconsistent functional profiles reported for the MCs. For further progress in understanding this family, improved characterization of tissue-specific functions is required. Current evidence for interactions of these receptors with a range of partners, resulting in modulation of cell signaling, suggests that each should be studied within the full context of their interacting partners. The role of physiological status in determining this context also remains to be characterized.
Collapse
Affiliation(s)
- Linda Laiho
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Joanne Fiona Murray
- Correspondence: J. F. Murray, PhD, Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh EH8 9DX, UK.
| |
Collapse
|
6
|
Trevellin E, Granzotto M, Host C, Grisan F, De Stefani D, Grinzato A, Lefkimmiatis K, Pagano C, Rizzuto R, Vettor R. A Novel Loss of Function Melanocortin-4-Receptor Mutation (MC4R-F313Sfs*29) in Morbid Obesity. J Clin Endocrinol Metab 2021; 106:736-749. [PMID: 33247923 DOI: 10.1210/clinem/dgaa885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Melanocortin receptor-4 (MC4R) gene mutations are associated with early-onset severe obesity, and the identification of potential pathological variants is crucial for the clinical management of patients with obesity. OBJECTIVE To explore whether and how a novel heterozygous MC4R variant (MC4R-F313Sfs*29), identified in a young boy (body mass index [BMI] 38.8 kg/m2) during a mutation analysis conducted in a cohort of patients with obesity, plays a determinant pathophysiological role in the obesity development. DESIGN SETTING AND PATIENTS The genetic screening was carried out in a total of 209 unrelated patients with obesity (BMI ≥ 35 kg/m2). Structural and functional characterization of the F313Sfs*29-mutated MC4R was performed using computational approaches and in vitro, using HEK293 cells transfected with genetically encoded biosensors for cAMP and Ca2+. RESULTS The F313Sfs*29 was the only variant identified. In vitro experiments showed that HEK293 cells transfected with the mutated form of MC4R did not increase intracellular cAMP or Ca2+ levels after stimulation with a specific agonist in comparison with HEK293 cells transfected with the wild type form of MC4R (∆R/R0 = -90% ± 8%; P < 0.001). In silico modeling showed that the F313Sfs*29 mutation causes a major reorganization in the cytosolic domain of MC4R, thus reducing the affinity of the putative GalphaS binding site. CONCLUSIONS The newly discovered F313Sfs*29 variant of MC4R may be involved in the impairment of α-MSH-induced cAMP and Ca2+ signaling, blunting intracellular G protein-mediated signal transduction. This alteration might have led to the dysregulation of satiety signaling, resulting in hyperphagia and early onset of obesity.
Collapse
Affiliation(s)
| | - Marnie Granzotto
- Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Cristina Host
- Department of Reproduction and Growth, University Hospital of Ferrara, Ferrara, Italy
| | - Francesca Grisan
- Foundation for Advanced Biomedical Research, Venetian Institute of Molecular Medicine, Padua, Italy
- Department of Biology, University of Padua, Padua, Italy
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Konstantinos Lefkimmiatis
- Foundation for Advanced Biomedical Research, Venetian Institute of Molecular Medicine, Padua, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Claudio Pagano
- Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Roberto Vettor
- Department of Medicine - DIMED, University of Padua, Padua, Italy
| |
Collapse
|
7
|
Namjou B, Stanaway IB, Lingren T, Mentch FD, Benoit B, Dikilitas O, Niu X, Shang N, Shoemaker AH, Carey DJ, Mirshahi T, Singh R, Nestor JG, Hakonarson H, Denny JC, Crosslin DR, Jarvik GP, Kullo IJ, Williams MS, Harley JB. Evaluation of the MC4R gene across eMERGE network identifies many unreported obesity-associated variants. Int J Obes (Lond) 2021; 45:155-169. [PMID: 32952152 PMCID: PMC7752751 DOI: 10.1038/s41366-020-00675-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/07/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND/OBJECTIVES Melanocortin-4 receptor (MC4R) plays an essential role in food intake and energy homeostasis. More than 170 MC4R variants have been described over the past two decades, with conflicting reports regarding the prevalence and phenotypic effects of these variants in diverse cohorts. To determine the frequency of MC4R variants in large cohort of different ancestries, we evaluated the MC4R coding region for 20,537 eMERGE participants with sequencing data plus additional 77,454 independent individuals with genome-wide genotyping data at this locus. SUBJECTS/METHODS The sequencing data were obtained from the eMERGE phase III study, in which multisample variant call format calls have been generated, curated, and annotated. In addition to penetrance estimation using body mass index (BMI) as a binary outcome, GWAS and PheWAS were performed using median BMI in linear regression analyses. All results were adjusted for principal components, age, sex, and sites of genotyping. RESULTS Targeted sequencing data of MC4R revealed 125 coding variants in 1839 eMERGE participants including 30 unreported coding variants that were predicted to be functionally damaging. Highly penetrant unreported variants included (L325I, E308K, D298N, S270F, F261L, T248A, D111V, and Y80F) in which seven participants had obesity class III defined as BMI ≥ 40 kg/m2. In GWAS analysis, in addition to known risk haplotype upstream of MC4R (best variant rs6567160 (P = 5.36 × 10-25, Beta = 0.37), a novel rare haplotype was detected which was protective against obesity and encompassed the V103I variant with known gain-of-function properties (P = 6.23 × 10-08, Beta = -0.62). PheWAS analyses extended this protective effect of V103I to type 2 diabetes, diabetic nephropathy, and chronic renal failure independent of BMI. CONCLUSIONS MC4R screening in a large eMERGE cohort confirmed many previous findings, extend the MC4R pleotropic effects, and discovered additional MC4R rare alleles that probably contribute to obesity.
Collapse
Affiliation(s)
- Bahram Namjou
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA.
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - Ian B Stanaway
- Department of Biomedical Informatics Medical Education, School of Medicine, University of Washington, Seattle, WA, USA
| | - Todd Lingren
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Frank D Mentch
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Barbara Benoit
- Research Information Science and Computing, Partners HealthCare, Somerville, MA, USA
| | - Ozan Dikilitas
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Xinnan Niu
- Departments of Biomedical Informatics and Medicine, Vanderbilt University, Nashville, TN, USA
| | - Ning Shang
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Ashley H Shoemaker
- Department of Pediatrics, Division of Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David J Carey
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA, USA
| | - Tooraj Mirshahi
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA, USA
| | | | - Jordan G Nestor
- Department of Medicine, Division of Nephrology, Columbia University, New York, NY, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua C Denny
- Departments of Biomedical Informatics and Medicine, Vanderbilt University, Nashville, TN, USA
| | - David R Crosslin
- Department of Biomedical Informatics Medical Education, School of Medicine, University of Washington, Seattle, WA, USA
| | - Gail P Jarvik
- Department of Medicine (Medical Genetics), University of Washington Medical Center, Seattle, WA, USA
- Department Genome Sciences, University of Washington Medical Center, Seattle, WA, USA
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Marc S Williams
- Genomic Medicine Institute (M.S.W.), Geisinger, Danville, PA, USA
| | - John B Harley
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
- U.S. Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| |
Collapse
|
8
|
Oetjens MT, Kelly MA, Sturm AC, Martin CL, Ledbetter DH. Quantifying the polygenic contribution to variable expressivity in eleven rare genetic disorders. Nat Commun 2019; 10:4897. [PMID: 31653860 PMCID: PMC6814771 DOI: 10.1038/s41467-019-12869-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 10/03/2019] [Indexed: 12/02/2022] Open
Abstract
Rare genetic disorders (RGDs) often exhibit significant clinical variability among affected individuals, a disease characteristic termed variable expressivity. Recently, the aggregate effect of common variation, quantified as polygenic scores (PGSs), has emerged as an effective tool for predictions of disease risk and trait variation in the general population. Here, we measure the effect of PGSs on 11 RGDs including four sex-chromosome aneuploidies (47,XXX; 47,XXY; 47,XYY; 45,X) that affect height; two copy-number variant (CNV) disorders (16p11.2 deletions and duplications) and a Mendelian disease (melanocortin 4 receptor deficiency (MC4R)) that affect BMI; and two Mendelian diseases affecting cholesterol: familial hypercholesterolemia (FH; LDLR and APOB) and familial hypobetalipoproteinemia (FHBL; PCSK9 and APOB). Our results demonstrate that common, polygenic factors of relevant complex traits frequently contribute to variable expressivity of RGDs and that PGSs may be a useful metric for predicting clinical severity in affected individuals and for risk stratification.
Collapse
MESH Headings
- Apolipoproteins B/genetics
- Autistic Disorder/genetics
- Body Height/genetics
- Body Mass Index
- Cholesterol, LDL/blood
- Cholesterol, LDL/genetics
- Chromosome Deletion
- Chromosome Disorders/genetics
- Chromosome Duplication/genetics
- Chromosomes, Human, Pair 16/genetics
- Chromosomes, Human, X/genetics
- Female
- Humans
- Hyperlipoproteinemia Type II/genetics
- Hypobetalipoproteinemias/genetics
- Intellectual Disability/genetics
- Klinefelter Syndrome/genetics
- Male
- Middle Aged
- Multifactorial Inheritance
- Obesity/genetics
- Proprotein Convertase 9/genetics
- Rare Diseases/genetics
- Receptor, Melanocortin, Type 4/deficiency
- Receptor, Melanocortin, Type 4/genetics
- Receptors, LDL/genetics
- Sex Chromosome Aberrations
- Sex Chromosome Disorders of Sex Development/genetics
- Trisomy/genetics
- Turner Syndrome/genetics
- XYY Karyotype/genetics
Collapse
Affiliation(s)
| | - M A Kelly
- Geisinger Health System, Danville, PA, USA
| | - A C Sturm
- Geisinger Health System, Danville, PA, USA
| | - C L Martin
- Geisinger Health System, Danville, PA, USA
| | | |
Collapse
|
9
|
Serra-Juhé C, Martos-Moreno GÁ, Bou de Pieri F, Flores R, Chowen JA, Pérez-Jurado LA, Argente J. Heterozygous rare genetic variants in non-syndromic early-onset obesity. Int J Obes (Lond) 2019; 44:830-841. [PMID: 30926952 PMCID: PMC7101277 DOI: 10.1038/s41366-019-0357-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/07/2019] [Accepted: 02/07/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Obesity is a very heterogeneous disorder at both the clinical and molecular levels and with high heritability. Several monogenic forms and genes with strong effects have been identified for non-syndromic severe obesity. Novel therapeutic interventions are in development for some genetic forms, emphasizing the importance of determining genetic contributions. OBJECTIVE We aimed to define the contribution of rare single-nucleotide genetic variants (RSVs) in candidate genes to non-syndromic severe early-onset obesity (EOO; body mass index (BMI) >+3 standard deviation score, <3 years). METHODS Using a pooled DNA-sequencing approach, we screened for RSVs in 15 obesity candidate genes in a series of 463 EOO patients and 480 controls. We also analysed exome data from 293 EOO patients from the "Viva la Familia" (VLF) study as a replication dataset. RESULTS Likely or known pathogenic RSVs were identified in 23 patients (5.0%), with 7 of the 15 genes (BDNF, FTO, MC3R, MC4R, NEGR1, PPARG and SIM1) harbouring RSVs only in cases (3.67%) and none in controls. All were heterozygous changes, either de novo (one in BDNF) or inherited from obese parents (seven maternal, three paternal), and no individual carried more than one variant. Results were replicated in the VLF study, where 4.10% of probands carried RSVs in the overrepresented genes. RSVs in five genes were either absent (LEP) or more common in controls than in cases (ADRB3, LEPR, PCSK1 and PCSK2) in both obese datasets. CONCLUSIONS Heterozygous RSVs in several candidate genes of the melanocortin pathway are found in ~5.0% patients with EOO. These results support the clinical utility of genetic testing to identify patients who might benefit from targeted therapeutic intervention.
Collapse
Affiliation(s)
- Clara Serra-Juhé
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader, 8, 08003, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, C/Sinesio Delgado, 4, 28029, Madrid, Spain
| | - Gabriel Á Martos-Moreno
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology, Instituto de Investigación La Princesa, Universidad Autónoma de Madrid, Department of Pediatrics, Avenida Menéndez Pelayo, 65, 28009, Madrid, Spain.,CIBER de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, C/Sinesio Delgado, 4, 28029, Madrid, Spain
| | - Francesc Bou de Pieri
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader, 8, 08003, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, C/Sinesio Delgado, 4, 28029, Madrid, Spain
| | - Raquel Flores
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader, 8, 08003, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, C/Sinesio Delgado, 4, 28029, Madrid, Spain
| | - Julie A Chowen
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology, Instituto de Investigación La Princesa, Universidad Autónoma de Madrid, Department of Pediatrics, Avenida Menéndez Pelayo, 65, 28009, Madrid, Spain.,CIBER de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, C/Sinesio Delgado, 4, 28029, Madrid, Spain
| | - Luis A Pérez-Jurado
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader, 8, 08003, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, C/Sinesio Delgado, 4, 28029, Madrid, Spain.,Women's and Children's Hospital, South Australia Medical and Health Research Institute (SAMHRI) and University of Adelaide, 72 King William Road, North Adelaide, SA, 5006, Australia
| | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology, Instituto de Investigación La Princesa, Universidad Autónoma de Madrid, Department of Pediatrics, Avenida Menéndez Pelayo, 65, 28009, Madrid, Spain. .,CIBER de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, C/Sinesio Delgado, 4, 28029, Madrid, Spain. .,IMDEA Food Institute, CEIUAM + CSI, Crta. de Cantoblanco, 8, 28049, Madrid, Spain.
| |
Collapse
|