1
|
Simon C, Silevitch D, Stamp P, Rosenbaum T. Quantum Barkhausen noise induced by domain wall cotunneling. Proc Natl Acad Sci U S A 2024; 121:e2315598121. [PMID: 38502694 PMCID: PMC10990130 DOI: 10.1073/pnas.2315598121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Most macroscopic magnetic phenomena (including magnetic hysteresis) are typically understood classically. Here, we examine the dynamics of a uniaxial rare-earth ferromagnet deep within the quantum regime, so that domain wall motion, and the associated hysteresis, is initiated by quantum nucleation, which then grows into large-scale domain wall motion, which is observable as an unusual form of Barkhausen noise. We observe noncritical behavior in the resulting avalanche dynamics that only can be explained by going beyond traditional renormalization group methods or classical domain wall models. We find that this "quantum Barkhausen noise" exhibits two distinct mechanisms for domain wall movement, each of which is quantum-mechanical, but with very different dependences on an external magnetic field applied transverse to the spin (Ising) axis. These observations can be understood in terms of the correlated motion of pairs of domain walls, nucleated by cotunneling of plaquettes (sections of domain wall), with plaquette pairs correlated by dipolar interactions; this correlation is suppressed by the transverse field. Similar macroscopic correlations may be expected to appear in the hysteresis of other systems with long-range interactions.
Collapse
Affiliation(s)
- C. Simon
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA91125
| | - D.M. Silevitch
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA91125
| | - P.C.E. Stamp
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA91125
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BCV6T 1Z1, Canada
- Pacific Institute of Theoretical Physics, University of British Columbia, Vancouver, BCV6T 1Z1, Canada
| | - T.F. Rosenbaum
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
2
|
Spasojević D, Marinković M, Jovković D, Janićević S, Laurson L, Djordjević A. Barkhausen noise in disordered striplike ferromagnets: Experiment versus simulations. Phys Rev E 2024; 109:024110. [PMID: 38491707 DOI: 10.1103/physreve.109.024110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/29/2024] [Indexed: 03/18/2024]
Abstract
In this work, we present a systematic comparison of the results obtained from the low-frequency Barkhausen noise recordings in nanocrystalline samples with those from the numerical simulations of the random-field Ising model systems. We performed measurements at room temperature on a field-driven metallic glass stripe made of VITROPERM 800 R, a nanocrystalline iron-based material with an excellent combination of soft and magnetic properties, making it a cutting-edge material for a wide range of applications. Given that the Barkhausen noise emissions emerging along a hysteresis curve are stochastic and depend in general on a variety of factors (such as distribution of disorder due to impurities or defects, varied size of crystal grains, type of domain structure, driving rate of the external magnetic field, sample shape and temperature, etc.), adequate theoretical modeling is essential for their interpretation and prediction. Here the Random field Ising model, specifically its athermal nonequilibrium version with the finite driving rate, stands out as an appropriate choice due to the material's nanocrystalline structure and high Curie temperature. We performed a systematic analysis of the signal properties and magnetization avalanches comparing the outcomes of the numerical model and experiments carried out in a two-decade-wide range of the external magnetic field driving rates. Our results reveal that with a suitable choice of parameters, a considerable match with the experimental results is achieved, indicating that this model can accurately describe the Barkhausen noise features in nanocrystalline samples.
Collapse
Affiliation(s)
- Djordje Spasojević
- Faculty of Physics, University of Belgrade, P. O. Box 44, 11001 Belgrade, Republic of Serbia
| | - Miloš Marinković
- Faculty of Physics, University of Belgrade, P. O. Box 44, 11001 Belgrade, Republic of Serbia
| | - Dragutin Jovković
- Faculty of Mining and Geology, University of Belgrade, P. O. Box 162, 11000 Belgrade, Republic of Serbia
| | - Sanja Janićević
- Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Republic of Serbia
| | - Lasse Laurson
- Computational Physics Laboratory, Tampere University, P. O. Box 692, FI-33014 Tampere, Finland
| | - Antonije Djordjević
- School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Republic of Serbia and Serbian Academy of Sciences and Arts, 11000 Belgrade, Republic of Serbia
| |
Collapse
|
3
|
Neslušan M, Pitoňák M, Minárik P, Kollár P, Životský O. Influence of domain walls thickness, density and alignment on Barkhausen noise emission in low alloyed steels. Sci Rep 2023; 13:5687. [PMID: 37029152 PMCID: PMC10082025 DOI: 10.1038/s41598-023-32792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023] Open
Abstract
This study deals with the characterization of low alloyed steels of different yield strengths (varying in the range of 235-1100 MPa) via Barkhausen noise emission. The study investigates the potential of this technique to distinguish among the low alloyed steels and all significant aspects contributing to Barkhausen noise, such as the residual stress state, microstructure expressed in terms of dislocation density, grain size, prevailing phase, as well as associated aspects of the domain wall substructure (domain wall thickness, energy, their spacing and density in the matrix). Barkhausen noise in the rolling as well as transversal direction grows along with the yield strength (up to 500 MPa) and the corresponding grain refinement of ferrite. As soon as the martensite transformation occurs in a high strength matrix, this evolution saturates, and remarkable magnetic anisotropy is developed when Barkhausen noise in the transversal direction grows at the expense of the rolling direction. The contribution of residual stresses as well as the domain wall thickness is only minor, and the evolution of Barkhausen noise is driven by the density of the domain walls and their realignment.
Collapse
Affiliation(s)
- M Neslušan
- University of Žilina, Univerzitná 1, 010 26, Žilina, Slovakia.
| | - M Pitoňák
- University of Žilina, Univerzitná 1, 010 26, Žilina, Slovakia
| | - P Minárik
- University of Žilina, Univerzitná 1, 010 26, Žilina, Slovakia
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16, Praha 2, Czech Republic
| | - P Kollár
- Institute of Physics, Faculty of Science, P. J. Šafárik University in Košice, Park Angelium 9, 040 01, Kosice, Slovakia
| | - O Životský
- Faculty of Electrical Engineering and Computer Science, VŠB - Technical University of Ostrava, 17. Listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| |
Collapse
|
4
|
Ter Burg C, Bohn F, Durin G, Sommer RL, Wiese KJ. Force Correlations in Disordered Magnets. PHYSICAL REVIEW LETTERS 2022; 129:107205. [PMID: 36112461 DOI: 10.1103/physrevlett.129.107205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
We present a proof of principle for the validity of the functional renormalization group, by measuring the force correlations in Barkhausen-noise experiments. Our samples are soft ferromagnets in two distinct universality classes, differing in the range of spin interactions, and the effects of eddy currents. We show that the force correlations have a universal form predicted by the functional renormalization group, distinct for short-range and long-range elasticity, and mostly independent of eddy currents. In all cases correlations grow linearly at small distances, as in mean-field models, but in contrast to the latter are bounded at large distances. As a consequence, avalanches are anti-correlated. We derive bounds for these anticorrelations, which are saturated in the experiments, showing that the multiple domain walls in our samples effectively behave as a single wall.
Collapse
Affiliation(s)
- Cathelijne Ter Burg
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, 24 rue Lhomond, 75005 Paris, France
| | - Felipe Bohn
- Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN, Brazil
| | - Gianfranco Durin
- Istituto Nazionale di Ricerca Metrologica, strada delle Cacce 91, 10135 Torino, Italy
| | - Rubem Luis Sommer
- Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Urca, 22290-180 Rio de Janeiro, RJ, Brazil
| | - Kay Jörg Wiese
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
5
|
Courcoubetis G, Xu C, Nuzhdin SV, Haas S. Avalanches during epithelial tissue growth; Uniform Growth and a drosophila eye disc model. PLoS Comput Biol 2022; 18:e1009952. [PMID: 35303738 PMCID: PMC8932575 DOI: 10.1371/journal.pcbi.1009952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 02/22/2022] [Indexed: 12/17/2022] Open
Abstract
Epithelial tissues constitute an exotic type of active matter with non-linear properties reminiscent of amorphous materials. In the context of a proliferating epithelium, modeled by the quasistatic vertex model, we identify novel discrete tissue scale rearrangements, i.e. cellular rearrangement avalanches, which are a form of collective cell movement. During the avalanches, the vast majority of cells retain their neighbors, and the resulting cellular trajectories are radial in the periphery, a vortex in the core. After the onset of these avalanches, the epithelial area grows discontinuously. The avalanches are found to be stochastic, and their strength is correlated with the density of cells in the tissue. Overall, avalanches redistribute accumulated local spatial pressure along the tissue. Furthermore, the distribution of avalanche magnitudes is found to obey a power law, with an exponent consistent with sheer induced avalanches in amorphous materials. To understand the role of avalanches in organ development, we simulate epithelial growth of the Drosophila eye disc during the third instar using a computational model, which includes both chemical and mechanistic signaling. During the third instar, the morphogenetic furrow (MF), a ~10 cell wide wave of apical area constriction propagates through the epithelium. These simulations are used to understand the details of the growth process, the effect of the MF on the growth dynamics on the tissue scale, and to make predictions for experimental observations. The avalanches are found to depend on the strength of the apical constriction of cells in the MF, with a stronger apical constriction leading to less frequent and more pronounced avalanches. The results herein highlight the dependence of simulated tissue growth dynamics on relaxation timescales, and serve as a guide for in vitro experiments.
Collapse
Affiliation(s)
- George Courcoubetis
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, United States of America
| | - Chi Xu
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, United States of America
| | - Sergey V. Nuzhdin
- Department of Biology, University of Southern California, Los Angeles, California, United States of America
| | - Stephan Haas
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
6
|
Chandra S. Effect of a uniform random external magnetic field with spatiotemporal variation on compensation in Ising spin-1/2 trilayered square ferrimagnets. Phys Rev E 2021; 104:064126. [PMID: 35030880 DOI: 10.1103/physreve.104.064126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/03/2021] [Indexed: 11/07/2022]
Abstract
Trilayered spin-1/2 Ising ferrimagnets are interesting thin systems for compensation phenomenon. In this work, a Metropolis Monte Carlo study is performed on the magnetic and thermodynamic response of such a system on square Bravais lattice, driven by uniform random external magnetic field with spatiotemporal variations. In two distinct configurations, the surface layers are made up of A and the middle layer is made up of B atoms in an ABA-type stacking while in AAB-type stacking, the top layer and the middle layer is made up of A atoms while the bottom layer is made up of B atoms. The magnetic coupling between the like atoms (A-A and B-B) is ferromagnetic while between the unlike atoms (A-B), it is antiferromagnetic. For the time-dependent external uniform random field, the mean is always set to zero and the standard deviation is varied until spin-field energy is comparable to the dominant cooperative energy of the system. The findings show that the observed compensation and critical points shift and steady-state magnetic behaviors shift among N, L, P, and Q, etc., type of ferrimagnetic behaviors, depending on the strength of external uniform random field. The compensation phenomenon even vanishes after crossing a finite threshold of standard deviation of the magnetic field for particular choices of the other controlling parameters. Thus islands of ferrimagnetic phase without compensation appear within the phase area with compensation of field-free case, in the two-dimensional Hamiltonian parameter space. For both the configurations, the areas of such islands even grow with increasing standard deviation of the external field, σ, obeying a scaling relation of the form: f(σ,A(σ))=σ^{-b}A(σ) with b_{ABA}=1.958±0.122 and b_{AAB}=1.783±0.118.
Collapse
Affiliation(s)
- Soham Chandra
- Department of Physics, Presidency University, Kolkata 700 073, India
| |
Collapse
|
7
|
Yao Y, Zhan X, Sendeku MG, Yu P, Dajan FT, Zhu C, Li N, Wang J, Wang F, Wang Z, He J. Recent progress on emergent two-dimensional magnets and heterostructures. NANOTECHNOLOGY 2021; 32:472001. [PMID: 34315143 DOI: 10.1088/1361-6528/ac17fd] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Intrinsic two-dimensional (2D) magnetic materials own strong long-range magnetism while their characteristics of the ultrathin thickness and smooth surface provide an ideal platform for manipulating the magnetic properties at 2D limit. This makes them to be potential candidates in various spintronic applications compared to their corresponding bulk counterparts. The discovery of magnetic ordering in 2D CrI3and Gr2Ge2Te6nanostructures stimulated tremendous research interest in both experimental and theoretical studies on various intrinsic magnets at 2D limit. This review gives a comprehensive overview of the recent progress on the emergent 2D magnets and heterostructures. Firstly, several kinds of typical 2D magnetic materials discovered in the last few years and their fabrication methods are summarized in detail. Secondly, the current strategies for manipulating magnetic properties in 2D materials are further discussed. Then, the recent advances on the construction of representative van der Waals magnetic heterostructures and their respective performance are provided. With the hope of motivating the researchers in this area, we finally offered the challenges and outlook on 2D magnetism.
Collapse
Affiliation(s)
- Yuyu Yao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Sino-Danish Center for Education, Beijing 100049, People's Republic of China
| | - Xueying Zhan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Marshet Getaye Sendeku
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Peng Yu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Fekadu Tsegaye Dajan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Chuanchao Zhu
- Institute for Quantum Information & State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073, People's Republic of China
| | - Ningning Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Sino-Danish Center for Education, Beijing 100049, People's Republic of China
| | - Junjun Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Feng Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Zhenxing Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jun He
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
8
|
Jovković D, Janićević S, Mijatović S, Laurson L, Spasojević D. Effects of external noise on threshold-induced correlations in ferromagnetic systems. Phys Rev E 2021; 103:062114. [PMID: 34271613 DOI: 10.1103/physreve.103.062114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/17/2021] [Indexed: 11/07/2022]
Abstract
In the present paper we investigate the impact of the external noise and detection threshold level on the simulation data for the systems that evolve through metastable states. As a representative model of such systems we chose the nonequilibrium athermal random-field Ising model with two types of the external noise, uniform white noise and Gaussian white noise with various different standard deviations, imposed on the original response signal obtained in model simulations. We applied a wide range of detection threshold levels in analysis of the signal and show how these quantities affect the values of exponent γ_{S/T} (describing the scaling of the average avalanche size with duration), the shift of waiting time between the avalanches, and finally the collapses of the waiting time distributions. The results are obtained via extensive numerical simulations on the equilateral three-dimensional cubic lattices of various sizes and disorders.
Collapse
Affiliation(s)
- Dragutin Jovković
- Faculty of Mining and Geology, University of Belgrade, P.O. Box 162, 11000 Belgrade, Serbia
| | - Sanja Janićević
- Faculty of Science, University of Kragujevac, P.O. Box 60, 34000 Kragujevac, Serbia
| | - Svetislav Mijatović
- Faculty of Physics, University of Belgrade, P.O. Box 44, 11001 Belgrade, Serbia
| | - Lasse Laurson
- Computational Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Djordje Spasojević
- Faculty of Physics, University of Belgrade, P.O. Box 44, 11001 Belgrade, Serbia
| |
Collapse
|
9
|
Abstract
Many complex systems, from earthquakes and financial markets to Barkhausen effect in ferromagnetic materials, respond with a noise consisting of discrete avalanche-like events with broad range of sizes and durations, separated by waiting times. Here we focus on the waiting-time statistics in magnetic systems. By investigating the Barkhausen noise in amorphous and polycrystalline ferromagnetic films having different thicknesses, we uncover the form of the waiting-time distribution in time series recorded from the irregular and irreversible motion of magnetic domain walls. Further, we address the question of if the waiting-time distribution evolves with the threshold level, as well as with the film thickness and structural character of the materials. Our results, besides informing on the temporal avalanche correlations, disclose the waiting-time statistics in magnetic systems also bring fingerprints of the universality classes of Barkhausen avalanches and a dimensional crossover in the domain wall dynamics.
Collapse
|
10
|
Mijatović S, Branković M, Graovac S, Spasojević D. Avalanche properties in striplike ferromagnetic systems. Phys Rev E 2020; 102:022124. [PMID: 32942372 DOI: 10.1103/physreve.102.022124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/24/2020] [Indexed: 11/07/2022]
Abstract
We present numerical findings on the behavior of the athermal nonequilibrium random-field Ising model of spins at the thin striplike L_{1}×L_{2}×L_{3} cubic lattices with L_{1}<L_{2}<L_{3}. Changing of system sizes highly influences the evolution and shape of avalanches. The smallest avalanches [classified as three-dimension- (3D) like] are unaffected by the system boundaries, the larger are sandwiched between the top and bottom system faces so are 2D-like, while the largest are extended over the system lateral cross section and propagate along the length L_{3} like in 1D systems. Such a structure of avalanches causes double power-law distributions of their size, duration, and energy with larger effective critical exponent corresponding to 3D-like and smaller to 2D-like avalanches. The distributions scale with thickness L_{1} and are collapsible following the proposed scaling predictions which, together with the distributions' shape, might be important for analysis of the Barkhausen noise experimental data for striplike samples. Finally, the impact of system size on external field that triggers the largest avalanche for a given disorder is presented and discussed.
Collapse
Affiliation(s)
- Svetislav Mijatović
- Faculty of Physics, University of Belgrade, P. O. Box 44, 11001 Belgrade, Serbia
| | - Milica Branković
- Faculty of Physics, University of Belgrade, P. O. Box 44, 11001 Belgrade, Serbia
| | - Stefan Graovac
- Faculty of Physics, University of Belgrade, P. O. Box 44, 11001 Belgrade, Serbia
| | - Djordje Spasojević
- Faculty of Physics, University of Belgrade, P. O. Box 44, 11001 Belgrade, Serbia
| |
Collapse
|
11
|
A Review of the Serrated-Flow Phenomenon and Its Role in the Deformation Behavior of High-Entropy Alloys. METALS 2020. [DOI: 10.3390/met10081101] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High-entropy alloys (HEAs) are a novel class of alloys that have many desirable properties. The serrated flow that occurs in high-entropy alloys during mechanical deformation is an important phenomenon since it can lead to significant changes in the microstructure of the alloy. In this article, we review the recent findings on the serration behavior in a variety of high-entropy alloys. Relationships among the serrated flow behavior, composition, microstructure, and testing condition are explored. Importantly, the mechanical-testing type (compression/tension), testing temperature, applied strain rate, and serration type for certain high-entropy alloys are summarized. The literature reveals that the serrated flow can be affected by experimental conditions such as the strain rate and test temperature. Furthermore, this type of phenomenon has been successfully modeled and analyzed, using several different types of analytical methods, including the mean-field theory formalism and the complexity-analysis technique. Importantly, the results of the analyses show that the serrated flow in HEAs consists of complex dynamical behavior. It is anticipated that this review will provide some useful and clarifying information regarding the serrated-flow mechanisms in this material system. Finally, suggestions for future research directions in this field are proposed, such as the effects of irradiation, additives (such as C and Al), the presence of nanoparticles, and twinning on the serrated flow behavior in HEAs.
Collapse
|
12
|
Bray SR, Wang B. Forecasting unprecedented ecological fluctuations. PLoS Comput Biol 2020; 16:e1008021. [PMID: 32598364 PMCID: PMC7375592 DOI: 10.1371/journal.pcbi.1008021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/22/2020] [Accepted: 06/05/2020] [Indexed: 11/18/2022] Open
Abstract
Forecasting 'Black Swan' events in ecosystems is an important but challenging task. Many ecosystems display aperiodic fluctuations in species abundance spanning orders of magnitude in scale, which have vast environmental and economic impact. Empirical evidence and theoretical analyses suggest that these dynamics are in a regime where system nonlinearities limit accurate forecasting of unprecedented events due to poor extrapolation of historical data to unsampled states. Leveraging increasingly available long-term high-frequency ecological tracking data, we analyze multiple natural and experimental ecosystems (marine plankton, intertidal mollusks, and deciduous forest), and recover hidden linearity embedded in universal 'scaling laws' of species dynamics. We then develop a method using these scaling laws to reduce data dependence in ecological forecasting and accurately predict extreme events beyond the span of historical observations in diverse ecosystems.
Collapse
Affiliation(s)
- Samuel R. Bray
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Baldassarri A, Annunziata MA, Gnoli A, Pontuale G, Petri A. Breakdown of Scaling and Friction Weakening in Intermittent Granular Flow. Sci Rep 2019; 9:16962. [PMID: 31740801 PMCID: PMC6861274 DOI: 10.1038/s41598-019-53178-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/11/2019] [Indexed: 12/02/2022] Open
Abstract
Many materials are produced, processed and stored as grains, while granularity of matter can be crucial in triggering potentially catastrophic geological events like landslides, avalanches and earthquakes. The response of grain assemblies to shear stress is therefore of utmost relevance to both human and natural environment. At low shear rate a granular system flows intermittently by distinct avalanches. In such state the avalanche velocity in time is expected to follow a symmetrical and universal average behavior, whose dependence on the slip size reduces to a scale factor. Analyzing data from long lasting experiments, we observe a breakdown of this scaling: While in short slips velocity shows indeed a self-similar and symmetric profile, it does not in long slips. The investigation of frictional response in these different regimes evidences that this breakdown can be traced back to the onset of a friction weakening, which is of dynamical origin and can amplify instabilities exactly in this critical state, the most frequent state for natural hazards.
Collapse
Affiliation(s)
- A Baldassarri
- CNR - Istituto dei Sistemi Complessi, Dipartimento di Fisica, Università di Roma Sapienza, P.le A. Moro 2, I-00185, Roma, Italy
| | - M A Annunziata
- CNR - Istituto dei Sistemi Complessi, Dipartimento di Fisica, Università di Roma Sapienza, P.le A. Moro 2, I-00185, Roma, Italy
| | - A Gnoli
- CNR - Istituto dei Sistemi Complessi, Dipartimento di Fisica, Università di Roma Sapienza, P.le A. Moro 2, I-00185, Roma, Italy
| | - G Pontuale
- CNR - Istituto dei Sistemi Complessi, Dipartimento di Fisica, Università di Roma Sapienza, P.le A. Moro 2, I-00185, Roma, Italy
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA) - Research Centre for Forestry and Woods, Via Santa Margherita 80, I-52100, Arezzo, Italy
| | - A Petri
- CNR - Istituto dei Sistemi Complessi, Dipartimento di Fisica, Università di Roma Sapienza, P.le A. Moro 2, I-00185, Roma, Italy.
| |
Collapse
|
14
|
Mijatović S, Jovković D, Janićević S, Spasojević D. Critical disorder and critical magnetic field of the nonequilibrium athermal random-field Ising model in thin systems. Phys Rev E 2019; 100:032113. [PMID: 31639960 DOI: 10.1103/physreve.100.032113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Indexed: 11/07/2022]
Abstract
In the present study of the nonequilibrium athermal random-field Ising model we focus on the behavior of the critical disorder R_{c}(l) and the critical magnetic field H_{c}(l) under different boundary conditions when the system thickness l varies. We propose expressions for R_{c}(l) and H_{c}(l) as well as for the effective critical disorder R_{c}^{eff}(l,L) and effective critical magnetic field H_{c}^{eff}(l,L) playing the role of the effective critical parameters for the L×L×l lattices of finite lateral size L. We support these expressions by the scaling collapses of the magnetization and susceptibility curves obtained in extensive simulations. The collapses are achieved with the two-dimensional (2D) exponents for l below some characteristic value, providing thus a numerical evidence that the thin systems exhibit a 2D-like criticality which should be relevant for the experimental analyses of thin ferromagnetic samples.
Collapse
Affiliation(s)
| | - Dragutin Jovković
- Faculty of Mining and Geology, University of Belgrade, POB 162, 11000 Belgrade, Serbia
| | - Sanja Janićević
- Faculty of Science, University of Kragujevac, POB 60, 34000 Kragujevac, Serbia
| | - Djordje Spasojević
- Faculty of Physics, University of Belgrade, POB 44, 11001 Belgrade, Serbia
| |
Collapse
|
15
|
Tadić B, Mijatović S, Janićević S, Spasojević D, Rodgers GJ. The critical Barkhausen avalanches in thin random-field ferromagnets with an open boundary. Sci Rep 2019; 9:6340. [PMID: 31004121 PMCID: PMC6474887 DOI: 10.1038/s41598-019-42802-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 04/04/2019] [Indexed: 11/10/2022] Open
Abstract
The interplay between the critical fluctuations and the sample geometry is investigated numerically using thin random-field ferromagnets exhibiting the field-driven magnetisation reversal on the hysteresis loop. The system is studied along the theoretical critical line in the plane of random-field disorder and thickness. The thickness is varied to consider samples of various geometry between a two-dimensional plane and a complete three-dimensional lattice with an open boundary in the direction of the growing thickness. We perform a multi-fractal analysis of the Barkhausen noise signals and scaling of the critical avalanches of the domain wall motion. Our results reveal that, for sufficiently small thickness, the sample geometry profoundly affects the dynamics by modifying the spectral segments that represent small fluctuations and promoting the time-scale dependent multi-fractality. Meanwhile, the avalanche distributions display two distinct power-law regions, in contrast to those in the two-dimensional limit, and the average avalanche shapes are asymmetric. With increasing thickness, the scaling characteristics and the multi-fractal spectrum in thicker samples gradually approach the hysteresis loop criticality in three-dimensional systems. Thin ferromagnetic films are growing in importance technologically, and our results illustrate some new features of the domain wall dynamics induced by magnetisation reversal in these systems.
Collapse
Affiliation(s)
- Bosiljka Tadić
- Department for Theoretical Physics, Jožef Stefan Institute, P.O. Box 3000, SI-1001, Ljubljana, Slovenia. .,Complexity Science Hub, Vienna, Austria.
| | - Svetislav Mijatović
- Faculty of Physics, University of Belgrade, POB 368, 11001, Belgrade, Serbia
| | - Sanja Janićević
- Faculty of Physics, University of Belgrade, POB 368, 11001, Belgrade, Serbia
| | - Djordje Spasojević
- Faculty of Physics, University of Belgrade, POB 368, 11001, Belgrade, Serbia
| | | |
Collapse
|