1
|
Payamani M, Abdollahi-Keyvani ST, Sajjadi M, Akhondzadeh S, Javid R, Nakhaei-Zadeh R, Jalalian-Javadpour M, Vaseghi S. Different protocols of REM sleep deprivation led to controversial effects on OCD- and anxiety-like behaviors and locomotor activity in fear conditioning male and female rats with respect to BDNF expression level. Pharmacol Biochem Behav 2025; 252:174027. [PMID: 40316145 DOI: 10.1016/j.pbb.2025.174027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/17/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
Specific protocols of rapid-eye movement (REM) sleep deprivation (SD) may lead to behavioral phenotypes considered as obsessive-compulsive disorder (OCD)-like behavior and hyperactivity (mania-like behavior). The present study aimed to assess the effects of REM SD on both sexes of control and fear conditioning (FC) rats. REM SD was induced for 1 or 2 or 3 weeks (6 h/d). Freezing, locomotor activity, anxiety-like behavior, grooming and burying marbles (OCD-like behaviors), and brain-derived neurotrophic factor (BDNF) in the hippocampus were evaluated. The results showed 1w REM SD decreased freezing in females, while 2w and 3w REM SD decreased freezing in both sexes. Locomotor activity in 2w REM SD males was increased, while was decreased in 3w group. In females, both 2w and 3w REM SD increased locomotion. REM SD in both sexes increased locomotion in FC rats. All REM SD protocols decreased anxiety in both sexes of FC rats. REM SD in control and FC rats led to OCD-like behaviors. All REM SD protocols decreased BDNF in both sexes, while 3w slightly increased it, suggesting a compensatory mechanism over time. 2w and 3w REM SD increased BDNF in FC rats in both sexes. Pearson correlation test also showed that changes in BDNF levels may be related to some behavioral changes only in females. In conclusion, for the first time, the present study showed sex differences in the effects of REM SD on behavioral functions in control and FC rats, and in the relationship between BDNF levels and behavioral changes.
Collapse
Affiliation(s)
- Masoumeh Payamani
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | | | - Mandana Sajjadi
- Department of Global Studies, Faculty of World Studies, University of Tehran, Tehran, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Reihane Javid
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Reihaneh Nakhaei-Zadeh
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Marzieh Jalalian-Javadpour
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
2
|
Cerquetella C, Gontier C, Forro T, Pfister JP, Ciocchi S. Scaling of Ventral Hippocampal Activity during Anxiety. J Neurosci 2025; 45:e1128242025. [PMID: 39870526 PMCID: PMC11924894 DOI: 10.1523/jneurosci.1128-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 01/07/2025] [Accepted: 01/19/2025] [Indexed: 01/29/2025] Open
Abstract
The hippocampus supports a multiplicity of functions, with the dorsal region contributing to spatial representations and memory and the ventral hippocampus (vH) being primarily involved in emotional processing. While spatial encoding has been extensively investigated, how the vH activity is tuned to emotional states, e.g., to different anxiety levels, is not well understood. We developed an adjustable linear track maze for male mice with which we could induce a scaling of behavioral anxiety levels within the same spatial environment. Using in vivo single-unit recordings, optogenetic manipulations, and population-level analysis, we examined the changes and causal effects of vH activity at different anxiety levels. We found that anxiogenic experiences activated the vH and that this activity scaled with increasing anxiety levels. We identified two processes that contributed to this scaling of anxiety-related activity: increased tuning and successive remapping of neurons to the anxiogenic compartment. Moreover, optogenetic inhibition of the vH reduced anxiety across different levels, while anxiety-related activity scaling could be decoded using a linear classifier. Collectively, our findings position the vH as a critical limbic region that functions as an "anxiometer" by scaling its activity based on perceived anxiety levels. Our discoveries go beyond the traditional theory of cognitive maps in the hippocampus underlying spatial navigation and memory, by identifying hippocampal mechanisms selectively regulating anxiety.
Collapse
Affiliation(s)
- Carlo Cerquetella
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern 3012, Switzerland
| | - Camille Gontier
- Theoretical Neuroscience Group, Department of Physiology, University of Bern, Bern 3012, Switzerland
- Rehab Neural Engineering Labs, Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Thomas Forro
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern 3012, Switzerland
| | - Jean-Pascal Pfister
- Theoretical Neuroscience Group, Department of Physiology, University of Bern, Bern 3012, Switzerland
| | - Stéphane Ciocchi
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern 3012, Switzerland
| |
Collapse
|
3
|
Brakatselos C, Polissidis A, Ntoulas G, Asprogerakas MZ, Tsarna O, Vamvaka-Iakovou A, Nakas G, Delis A, Tzimas P, Skaltsounis L, Silva J, Delis F, Oliveira JF, Sotiropoulos I, Antoniou K. Multi-level therapeutic actions of cannabidiol in ketamine-induced schizophrenia psychopathology in male rats. Neuropsychopharmacology 2024; 50:388-400. [PMID: 39242923 PMCID: PMC11631973 DOI: 10.1038/s41386-024-01977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
Repeated administration of ketamine (KET) has been used to model schizophrenia-like symptomatology in rodents, but the psychotomimetic neurobiological and neuroanatomical underpinnings remain elusive. In parallel, the unmet need for a better treatment of schizophrenia requires the development of novel therapeutic strategies. Cannabidiol (CBD), a major non-addictive phytocannabinoid has been linked to antipsychotic effects with unclear mechanistic basis. Therefore, this study aims to clarify the neurobiological substrate of repeated KET administration model and to evaluate CBD's antipsychotic potential and neurobiological basis. CBD-treated male rats with and without prior repeated KET administration underwent behavioral analyses, followed by multilevel analysis of different brain areas including dopaminergic and glutamatergic activity, synaptic signaling, as well as electrophysiological recordings for the assessment of corticohippocampal and corticostriatal network activity. Repeated KET model is characterized by schizophrenia-like symptomatology and alterations in glutamatergic and dopaminergic activity mainly in the PFC and the dorsomedial striatum (DMS), through a bi-directional pattern. These observations are accompanied by glutamatergic/GABAergic deviations paralleled to impaired function of parvalbumin- and cholecystokinin-positive interneurons, indicative of excitation/inhibition (E/I) imbalance. Moreover, CBD counteracted the schizophrenia-like behavioral phenotype as well as reverted prefrontal abnormalities and ventral hippocampal E/I deficits, while partially modulated dorsostriatal dysregulations. This study adds novel insights to our understanding of the KET-induced schizophrenia-related brain pathology, as well as the CBD antipsychotic action through a region-specific set of modulations in the corticohippocampal and costicostrtiatal circuitry of KET-induced profile contributing to the development of novel therapeutic strategies focused on the ECS and E/I imbalance restoration.
Collapse
Affiliation(s)
- Charalampos Brakatselos
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Alexia Polissidis
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
- Department of Science and Mathematics, ACG-Research Center, Deree - American College of Greece, 15342, Athens, Greece
| | - George Ntoulas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Michail-Zois Asprogerakas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Olga Tsarna
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Anastasia Vamvaka-Iakovou
- Institute of Biosciences & Applications, NCSR Demokritos, Athens, Greece
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Gerasimos Nakas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Anastasios Delis
- Center of Basic Research, Biological Imaging Unit, Biomedical Research Foundation Academy of Athens, 11527, Athens, Greece
| | - Petros Tzimas
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Leandros Skaltsounis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Joana Silva
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Foteini Delis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Joao Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- IPCA-EST-2Ai, Polytechnic Institute of Cávado and Ave, Applied Artificial Intelligence Laboratory, Campus of IPCA, Barcelos, Portugal
| | - Ioannis Sotiropoulos
- Institute of Biosciences & Applications, NCSR Demokritos, Athens, Greece
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Katerina Antoniou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
4
|
Kapanaiah SKT, Grimm C, Kätzel D. Acute optogenetic induction of the prodromal endophenotype of CA1 hyperactivity causes schizophrenia-related deficits in cognition and salience attribution. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:90. [PMID: 39379378 PMCID: PMC11461789 DOI: 10.1038/s41537-024-00513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Hyperactivity of the human anterior hippocampus has been reported to spread from its CA1 subfield to the subiculum around the onset of first-episode psychosis and could be a cellular target for early therapeutic intervention in the schizophrenia prodrome. However, to what extent CA1 hyperactivity actually causes schizophrenia-related symptoms remains unknown. Here, we mimic this endophenotype by direct optogenetic activation of excitatory cells in the homologous mouse region, ventral CA1 (vCA1) and assess its consequence in multiple schizophrenia-related behavioural tests. We find that hyperactivity of vCA1 causes hyperlocomotion and impairments of spatial and object-related short-term habituation (spatial novelty-preference and novel-object recognition memory) and spatial working memory, whereas social interaction, spatial exploration, and anxiety remain unaltered. Stimulation of the ventral subiculum, in contrast, only increased locomotion and exploration. In conclusion, CA1 hyperactivity may be a direct driver of prodromal cognitive symptoms and of aberrant salience assignment leading to psychosis.
Collapse
Affiliation(s)
| | - Christina Grimm
- Institute of Applied Physiology, Ulm University, Ulm, Germany
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
- School of Engineering, Neuro-X Institute, EPFL, Lausanne, Switzerland
| | - Dennis Kätzel
- Institute of Applied Physiology, Ulm University, Ulm, Germany.
| |
Collapse
|
5
|
Volitaki E, Forro T, Li K, Nevian T, Ciocchi S. Activity of ventral hippocampal parvalbumin interneurons during anxiety. Cell Rep 2024; 43:114295. [PMID: 38796850 DOI: 10.1016/j.celrep.2024.114295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 01/29/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Anxiety plays a key role in guiding behavior in response to potential threats. Anxiety is mediated by the activation of pyramidal neurons in the ventral hippocampus (vH), whose activity is controlled by GABAergic inhibitory interneurons. However, how different vH interneurons might contribute to anxiety-related processes is unclear. Here, we investigate the role of vH parvalbumin (PV)-expressing interneurons while mice transition from safe to more anxiogenic compartments of the elevated plus maze (EPM). We find that vH PV interneurons increase their activity in anxiogenic EPM compartments concomitant with dynamic changes in inhibitory interactions between PV interneurons and pyramidal neurons. By optogenetically inhibiting PV interneurons, we induce an increase in the activity of vH pyramidal neurons and persistent anxiety. Collectively, our results suggest that vH inhibitory microcircuits may act as a trigger for enduring anxiety states.
Collapse
Affiliation(s)
- Emmanouela Volitaki
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Thomas Forro
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Kaizhen Li
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Thomas Nevian
- Neuronal Plasticity Group, Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Stéphane Ciocchi
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland.
| |
Collapse
|
6
|
Altahini S, Arnoux I, Stroh A. Optogenetics 2.0: challenges and solutions towards a quantitative probing of neural circuits. Biol Chem 2024; 405:43-54. [PMID: 37650383 DOI: 10.1515/hsz-2023-0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
To exploit the full potential of optogenetics, we need to titrate and tailor optogenetic methods to emulate naturalistic circuit function. For that, the following prerequisites need to be met: first, we need to target opsin expression not only to genetically defined neurons per se, but to specifically target a functional node. Second, we need to assess the scope of optogenetic modulation, i.e. the fraction of optogenetically modulated neurons. Third, we need to integrate optogenetic control in a closed loop setting. Fourth, we need to further safe and stable gene expression and light delivery to bring optogenetics to the clinics. Here, we review these concepts for the human and rodent brain.
Collapse
Affiliation(s)
- Saleh Altahini
- Leibniz Institute for Resilience Research, D-55122 Mainz, Germany
| | - Isabelle Arnoux
- Cerebral Physiopathology Laboratory, Center for Interdisciplinary Research in Biology, College de France, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Université PSL, F-75005 Paris, France
| | - Albrecht Stroh
- Leibniz Institute for Resilience Research, D-55122 Mainz, Germany
- Institute of Pathophysiology, University Medical Center Mainz, D-55128 Mainz, Germany
| |
Collapse
|
7
|
Rivi V, Benatti C, Blom JMC, Pani L, Brunello N, Drago F, Papaleo F, Caraci F, Geraci F, Torrisi SA, Leggio GM, Tascedda F. The Role of Dopamine D3 Receptors, Dysbindin, and Their Functional Interaction in the Expression of Key Genes for Neuroplasticity and Neuroinflammation in the Mouse Brain. Int J Mol Sci 2023; 24:8699. [PMID: 37240042 PMCID: PMC10218262 DOI: 10.3390/ijms24108699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Cognitive impairment in schizophrenia remains a clinically and pharmacologically unsolved challenge. Clinical and preclinical studies have revealed that the concomitant reduction in dysbindin (DYS) and dopamine receptor D3 functionality improves cognitive functions. However, the molecular machinery underlying this epistatic interaction has not yet been fully elucidated. The glutamate NMDA receptors and the neurotrophin BDNF, with their established role in promoting neuroplasticity, may be involved in the complex network regulated by the D3/DYS interaction. Furthermore, as inflammation is involved in the etiopathogenesis of several psychiatric diseases, including schizophrenia, the D3/DYS interaction may affect the expression levels of pro-inflammatory cytokines. Thus, by employing mutant mice bearing selective heterozygosis for D3 and/or DYS, we provide new insights into the functional interactions (single and synergic) between these schizophrenia susceptibility genes and the expression levels of key genes for neuroplasticity and neuroinflammation in three key brain areas for schizophrenia: the prefrontal cortex, striatum, and hippocampus. In the hippocampus, the epistatic interaction between D3 and DYS reversed to the wild-type level the downregulated mRNA levels of GRIN1 and GRIN2A were observed in DYS +/- and D3 +/- mice. In all the areas investigated, double mutant mice had higher BDNF levels compared to their single heterozygote counterparts, whereas D3 hypofunction resulted in higher pro-inflammatory cytokines. These results may help to clarify the genetic mechanisms and functional interactions involved in the etiology and development of schizophrenia.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (V.R.); (C.B.); (J.M.C.B.); (L.P.)
| | - Cristina Benatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (V.R.); (C.B.); (J.M.C.B.); (L.P.)
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Joan M. C. Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (V.R.); (C.B.); (J.M.C.B.); (L.P.)
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Luca Pani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (V.R.); (C.B.); (J.M.C.B.); (L.P.)
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136, USA
| | - Nicoletta Brunello
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (F.D.); (F.C.); (F.G.); (S.A.T.)
| | - Francesco Papaleo
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, 16132 Genova, Italy;
| | - Filippo Caraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (F.D.); (F.C.); (F.G.); (S.A.T.)
| | - Federica Geraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (F.D.); (F.C.); (F.G.); (S.A.T.)
| | - Sebastiano Alfio Torrisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (F.D.); (F.C.); (F.G.); (S.A.T.)
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (F.D.); (F.C.); (F.G.); (S.A.T.)
| | - Fabio Tascedda
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| |
Collapse
|
8
|
Chen YT, Arano R, Guo J, Saleem U, Li Y, Xu W. Inhibitory hippocampus-medial septum projection controls locomotion and exploratory behavior. Front Synaptic Neurosci 2023; 15:1042858. [PMID: 37091878 PMCID: PMC10116069 DOI: 10.3389/fnsyn.2023.1042858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Although the hippocampus is generally considered a cognitive center for spatial representation, learning, and memory, increasing evidence supports its roles in regulating locomotion. However, the neuronal mechanisms of the hippocampal regulation of locomotion and exploratory behavior remain unclear. In this study, we found that the inhibitory hippocampal synaptic projection to the medial septum (MS) bi-directionally controls the locomotor speed of mice. The activation of the MS-projecting interneurons in the hippocampus or the activation of the hippocampus-originated inhibitory synaptic terminals in the MS decreased locomotion and exploratory behavior. On the other hand, the inhibition of the hippocampus-originated inhibitory synaptic terminals in the MS increased locomotion. Unlike the septal projecting interneurons, the activation of the hippocampal interneurons projecting to the retrosplenial cortex did not change animal locomotion. Therefore, this study reveals a specific long-range inhibitory synaptic output from the hippocampus to the medial septum in the regulation of animal locomotion.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Xu
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
9
|
Ibrahim WW, Sayed RH, Kandil EA, Wadie W. Niacin mitigates blood-brain barrier tight junctional proteins dysregulation and cerebral inflammation in ketamine rat model of psychosis: Role of GPR109A receptor. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110583. [PMID: 35690118 DOI: 10.1016/j.pnpbp.2022.110583] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/05/2022] [Accepted: 06/05/2022] [Indexed: 01/25/2023]
Abstract
Dysregulated inflammatory responses and blood-brain barrier (BBB) dysfunction are recognized as central factors in the development of psychiatric disorders. The present study was designed to evaluate the effect of niacin on BBB integrity in ketamine-induced model of psychosis. Meanwhile, mepenzolate bromide (MPN), a GPR109A receptor blocker, was used to investigate the role of this receptor on the observed niacin's effect. Male Wistar rats received ketamine (30 mg/kg/day, i.p) for 5 consecutive days and then niacin (40 mg/kg/day, p.o), with or without MPN (5 mg/kg/day, i.p), was given for the subsequent 15 days. Three days before the end of experiment, rats were behaviorally tested using open field, novel object recognition, social interaction, and forced swimming tests. Niacin significantly ameliorated ketamine-induced behavioral deficits, amended gamma aminobutyric acid and glutamate concentration, decreased tumor necrosis factor-α and matrix metallopeptidase 9 levels, and increased netrin-1 contents in the hippocampus of rats. Niacin also augmented the hippocampal expression of ZO-1, occludin, and claudin-5 proteins, indicating the ability of niacin to restore the BBB integrity. Moreover, the histopathologic changes in hippocampal neurons were alleviated. Since all the beneficial effects of niacin in the present investigation were partially abolished by the co-administration of MPN; GPR109A receptor was proven to partially mediate the observed antipsychotic effects of niacin. These data revealed that GPR109A-mediated signaling pathways might represent potential targets for therapeutic interventions to prevent or slow the progression of psychosis.
Collapse
Affiliation(s)
- Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| | - Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Walaa Wadie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
10
|
Forro T, Volitaki E, Malagon-Vina H, Klausberger T, Nevian T, Ciocchi S. Anxiety-related activity of ventral hippocampal interneurons. Prog Neurobiol 2022; 219:102368. [PMID: 36273721 DOI: 10.1016/j.pneurobio.2022.102368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 12/04/2022]
Abstract
Anxiety is an aversive mood reflecting the anticipation of potential threats. The ventral hippocampus (vH) is a key brain region involved in the genesis of anxiety responses. Recent studies have shown that anxiety is mediated by the activation of vH pyramidal neurons targeting various limbic structures. Throughout the cortex, the activity of pyramidal neurons is controlled by GABA-releasing inhibitory interneurons and the GABAergic system represents an important target of anxiolytic drugs. However, how the activity of vH inhibitory interneurons is related to different anxiety behaviours has not been investigated so far. Here, we integrated in vivo electrophysiology with behavioural phenotyping of distinct anxiety exploration behaviours in rats. We showed that pyramidal neurons and interneurons of the vH are selectively active when animals explore specific compartments of the elevated-plus-maze (EPM), an anxiety task for rodents. Moreover, rats with prior goal-related experience exhibited low-anxiety exploratory behaviour and showed a larger trajectory-related activity of vH interneurons during EPM exploration compared to high anxiety rats. Finally, in low anxiety rats, trajectory-related vH interneurons exhibited opposite activity to pyramidal neurons specifically in the open arms (i.e. more anxiogenic) of the EPM. Our results suggest that vH inhibitory micro-circuits could act as critical elements underlying different anxiety states.
Collapse
|
11
|
Buck SA, Quincy Erickson-Oberg M, Logan RW, Freyberg Z. Relevance of interactions between dopamine and glutamate neurotransmission in schizophrenia. Mol Psychiatry 2022; 27:3583-3591. [PMID: 35681081 PMCID: PMC9712151 DOI: 10.1038/s41380-022-01649-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 02/08/2023]
Abstract
Dopamine (DA) and glutamate neurotransmission are strongly implicated in schizophrenia pathophysiology. While most studies focus on contributions of neurons that release only DA or glutamate, neither DA nor glutamate models alone recapitulate the full spectrum of schizophrenia pathophysiology. Similarly, therapeutic strategies limited to either system cannot effectively treat all three major symptom domains of schizophrenia: positive, negative, and cognitive symptoms. Increasing evidence suggests extensive interactions between the DA and glutamate systems and more effective treatments may therefore require the targeting of both DA and glutamate signaling. This offers the possibility that disrupting DA-glutamate circuitry between these two systems, particularly in the striatum and forebrain, culminate in schizophrenia pathophysiology. Yet, the mechanisms behind these interactions and their contributions to schizophrenia remain unclear. In addition to circuit- or system-level interactions between neurons that solely release either DA or glutamate, here we posit that functional alterations involving a subpopulation of neurons that co-release both DA and glutamate provide a novel point of integration between DA and glutamate systems, offering a key missing link in our understanding of schizophrenia pathophysiology. Better understanding of mechanisms underlying DA/glutamate co-release from these neurons may therefore shed new light on schizophrenia pathophysiology and lead to more effective therapeutics.
Collapse
Affiliation(s)
- Silas A Buck
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - M Quincy Erickson-Oberg
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ryan W Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02118, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
12
|
Brondi M, Bruzzone M, Lodovichi C, dal Maschio M. Optogenetic Methods to Investigate Brain Alterations in Preclinical Models. Cells 2022; 11:1848. [PMID: 35681542 PMCID: PMC9180859 DOI: 10.3390/cells11111848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 02/05/2023] Open
Abstract
Investigating the neuronal dynamics supporting brain functions and understanding how the alterations in these mechanisms result in pathological conditions represents a fundamental challenge. Preclinical research on model organisms allows for a multiscale and multiparametric analysis in vivo of the neuronal mechanisms and holds the potential for better linking the symptoms of a neurological disorder to the underlying cellular and circuit alterations, eventually leading to the identification of therapeutic/rescue strategies. In recent years, brain research in model organisms has taken advantage, along with other techniques, of the development and continuous refinement of methods that use light and optical approaches to reconstruct the activity of brain circuits at the cellular and system levels, and to probe the impact of the different neuronal components in the observed dynamics. These tools, combining low-invasiveness of optical approaches with the power of genetic engineering, are currently revolutionizing the way, the scale and the perspective of investigating brain diseases. The aim of this review is to describe how brain functions can be investigated with optical approaches currently available and to illustrate how these techniques have been adopted to study pathological alterations of brain physiology.
Collapse
Affiliation(s)
- Marco Brondi
- Institute of Neuroscience, National Research Council-CNR, Viale G. Colombo 3, 35121 Padova, Italy; (M.B.); (C.L.)
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
| | - Matteo Bruzzone
- Department of Biomedical Sciences, Università degli Studi di Padova, Via U. Bassi 58B, 35121 Padova, Italy;
- Padova Neuroscience Center (PNC), Università degli Studi di Padova, Via Orus 2, 35129 Padova, Italy
| | - Claudia Lodovichi
- Institute of Neuroscience, National Research Council-CNR, Viale G. Colombo 3, 35121 Padova, Italy; (M.B.); (C.L.)
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
- Department of Biomedical Sciences, Università degli Studi di Padova, Via U. Bassi 58B, 35121 Padova, Italy;
- Padova Neuroscience Center (PNC), Università degli Studi di Padova, Via Orus 2, 35129 Padova, Italy
| | - Marco dal Maschio
- Department of Biomedical Sciences, Università degli Studi di Padova, Via U. Bassi 58B, 35121 Padova, Italy;
- Padova Neuroscience Center (PNC), Università degli Studi di Padova, Via Orus 2, 35129 Padova, Italy
| |
Collapse
|
13
|
Structural and Functional Deviations of the Hippocampus in Schizophrenia and Schizophrenia Animal Models. Int J Mol Sci 2022; 23:ijms23105482. [PMID: 35628292 PMCID: PMC9143100 DOI: 10.3390/ijms23105482] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 01/04/2023] Open
Abstract
Schizophrenia is a grave neuropsychiatric disease which frequently onsets between the end of adolescence and the beginning of adulthood. It is characterized by a variety of neuropsychiatric abnormalities which are categorized into positive, negative and cognitive symptoms. Most therapeutical strategies address the positive symptoms by antagonizing D2-dopamine-receptors (DR). However, negative and cognitive symptoms persist and highly impair the life quality of patients due to their disabling effects. Interestingly, hippocampal deviations are a hallmark of schizophrenia and can be observed in early as well as advanced phases of the disease progression. These alterations are commonly accompanied by a rise in neuronal activity. Therefore, hippocampal formation plays an important role in the manifestation of schizophrenia. Furthermore, studies with animal models revealed a link between environmental risk factors and morphological as well as electrophysiological abnormalities in the hippocampus. Here, we review recent findings on structural and functional hippocampal abnormalities in schizophrenic patients and in schizophrenia animal models, and we give an overview on current experimental approaches that especially target the hippocampus. A better understanding of hippocampal aberrations in schizophrenia might clarify their impact on the manifestation and on the outcome of this severe disease.
Collapse
|
14
|
Sedky AA, Raafat MH, Hamam GG, Sedky KA, Magdy Y. Effects of tamoxifen alone and in combination with risperidone on hyperlocomotion, hippocampal structure and bone in ketamine-induced model of psychosis in rats. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00470-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background and aim of the work
Protein kinase C activation with subsequent increase in oxidative stress (OXS) and reduction in brain derived neurotrophic factor (BDNF) are implicated in the pathophysiology of psychotic disorders and in osteoporosis. Accordingly PKC inhibitors such as tamoxifen could be a novel approach to psychotic illness and may reduce progression of osteoporosis. Since current antipsychotics such as risperidone have inconsistent effects on OXS and BDNF, combination with tamoxifen could be beneficial. Accordingly in this work, tamoxifen was used to investigate the impact of changes in OXS and BDNF on behavioral, hippocampus structural changes in a ketamine induced model of psychosis in rats. The impact of tamoxifen on the antipsychotic effects of risperidone and on its bone damaging effects was also determined.
Ketamine was chosen, because it is a valid model of psychosis. Hippocampus was chosen, since hippocampal overactivity is known to correlate with the severity of symptoms in psychosis. Hippocampal overactivity contributes to hyperdopaminergic state in ventral tegmental area and increase in DA release in nucleus accumbens, these are responsible for positive symptoms of schizophrenia and hyperlocomotion in rodents. Hyperlocomotion is considered a corelate of positive symptoms of psychotic illness in rodents and is considered primary outcome to assess manic-like behavior.
Methods
Rats were divided into seven groups (ten rats each (1) non-ketamine control and (2) ketamine treated groups (a ketamine control, b risperidone/ketamine, c tamoxifen/ketamine, d Risp/Tamox/ketamine risperidone, tamoxifen/risperidone) to test if TAM exhibited behavioral changes or potentiated those of risperidone); (e clomiphene/ketamine and f clomiphene/risperidone/ketamine) to verify that estrogen receptor modulators do not exhibit behavioral changes or potentiates those of risperidone. In addition, thus, the effects of tamoxifen are not due to estrogen effects but rather due to protein kinase c inhibition. Drugs were given for 4 weeks and ketamine was given daily in the last week. Effects of drugs on ketamine-induced hyperlocomotion (open field test) and hippocampus and bone biochemical (MDA, GSH, BDNF) and histological changes (Nissel granules, GFAP positive astrocytes in hippocampus were determined).
Electron microscopy scanning of the femur bone was done. Histomorphometric parameters measuring the: 1. Trabecular bone thickness and 2. The trabecular bone volume percentage.
Results
Tamoxifen reduced hyperlocomotion, and improved hippocampus structure in ketamine-treated rats, by reducing OXS (reduced malondialdehyde and increased glutathione) and increasing BDNF. These effects might be related to (PKC) inhibition, rather than estrogen modulation, since the anti-estrogenic drug clomiphene had no effect on hyperlocomotion. Tamoxifen enhanced the beneficial effects of risperidone on hippocampal OXS and BDNF, augmenting its effectiveness on hyperlocomotion and hippocampal structure. It also reduced risperidone-induced OXS and the associated bone damage.
Conclusions
PKC inhibitors, particularly tamoxifen, might be potential adjuncts to antipsychotics, by reducing OXS and increasing BDNF increasing their effectiveness while reducing their bone damaging effects.
Collapse
|
15
|
Zhang J, Navarrete M, Wu Y, Zhou Y. 14-3-3 Dysfunction in Dorsal Hippocampus CA1 (dCA1) Induces Psychomotor Behavior via a dCA1-Lateral Septum-Ventral Tegmental Area Pathway. Front Mol Neurosci 2022; 15:817227. [PMID: 35237127 PMCID: PMC8882652 DOI: 10.3389/fnmol.2022.817227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/14/2022] [Indexed: 11/22/2022] Open
Abstract
While hippocampal hyperactivity is implicated in psychosis by both human and animal studies, whether it induces a hyperdopaminergic state and the underlying neural circuitry remains elusive. Previous studies established that region-specific inhibition of 14-3-3 proteins in the dorsal hippocampus CA1 (dCA1) induces schizophrenia-like behaviors in mice, including a novelty-induced locomotor hyperactivity. In this study, we showed that 14-3-3 dysfunction in the dCA1 over-activates ventral tegmental area (VTA) dopaminergic neurons, and such over-activation is necessary for eliciting psychomotor behavior in mice. We demonstrated that such hippocampal dysregulation of the VTA during psychomotor behavior is dependent on an over-activation of the lateral septum (LS), given that inhibition of the LS attenuates over-activation of dopaminergic neurons and psychomotor behavior induced by 14-3-3 inhibition in the dCA1. Moreover, 14-3-3 inhibition-induced neuronal activations within the dCA1-LS-VTA pathway and psychomotor behavior can be reproduced by direct chemogenetic activation of LS-projecting dCA1 neurons. Collectively, these results suggest that 14-3-3 dysfunction in the dCA1 results in hippocampal hyperactivation which leads to psychomotor behavior via a dCA1-LS-VTA pathway.
Collapse
Affiliation(s)
| | | | | | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
16
|
Millard SJ, Bearden CE, Karlsgodt KH, Sharpe MJ. The prediction-error hypothesis of schizophrenia: new data point to circuit-specific changes in dopamine activity. Neuropsychopharmacology 2022; 47:628-640. [PMID: 34588607 PMCID: PMC8782867 DOI: 10.1038/s41386-021-01188-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a severe psychiatric disorder affecting 21 million people worldwide. People with schizophrenia suffer from symptoms including psychosis and delusions, apathy, anhedonia, and cognitive deficits. Strikingly, schizophrenia is characterised by a learning paradox involving difficulties learning from rewarding events, whilst simultaneously 'overlearning' about irrelevant or neutral information. While dysfunction in dopaminergic signalling has long been linked to the pathophysiology of schizophrenia, a cohesive framework that accounts for this learning paradox remains elusive. Recently, there has been an explosion of new research investigating how dopamine contributes to reinforcement learning, which illustrates that midbrain dopamine contributes in complex ways to reinforcement learning, not previously envisioned. This new data brings new possibilities for how dopamine signalling contributes to the symptomatology of schizophrenia. Building on recent work, we present a new neural framework for how we might envision specific dopamine circuits contributing to this learning paradox in schizophrenia in the context of models of reinforcement learning. Further, we discuss avenues of preclinical research with the use of cutting-edge neuroscience techniques where aspects of this model may be tested. Ultimately, it is hoped that this review will spur to action more research utilising specific reinforcement learning paradigms in preclinical models of schizophrenia, to reconcile seemingly disparate symptomatology and develop more efficient therapeutics.
Collapse
Affiliation(s)
- Samuel J Millard
- Department of Psychology, University of California, Los Angeles, CA, 90095, USA.
| | - Carrie E Bearden
- Department of Psychology, University of California, Los Angeles, CA, 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Katherine H Karlsgodt
- Department of Psychology, University of California, Los Angeles, CA, 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Melissa J Sharpe
- Department of Psychology, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
17
|
Modeling intrahippocampal effects of anterior hippocampal hyperactivity relevant to schizophrenia using chemogenetic excitation of long axis-projecting mossy cells in the mouse dentate gyrus. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:101-111. [PMID: 34414387 PMCID: PMC8372626 DOI: 10.1016/j.bpsgos.2021.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background The anterior hippocampus of individuals with early psychosis or schizophrenia is hyperactive, as is the ventral hippocampus in many rodent models for schizophrenia risk. Mossy cells (MCs) of the ventral dentate gyrus (DG) densely project in the hippocampal long axis, targeting both dorsal DG granule cells and inhibitory interneurons. MCs are responsive to stimulation throughout hippocampal subfields and thus may be suited to detect hyperactivity in areas where it originates such as CA1. Here, we tested the hypothesis that hyperactivation of ventral MCs activates dorsal DG granule cells to influence dorsal hippocampal function. Methods In CD-1 mice, we targeted dorsal DG-projecting ventral MCs using an adeno-associated virus intersectional strategy. In vivo fiber photometry recording of ventral MCs was performed during exploratory behaviors. We used excitatory chemogenetic constructs to test the effects of ventral MC hyperactivation on long-term spatial memory during an object location memory task. Results Photometry revealed that ventral MCs were activated during exploratory rearing. Ventral MCs made functional monosynaptic inputs to dorsal DG granule cells, and chemogenetic activation of ventral MCs modestly increased activity of dorsal DG granule cells measured by c-Fos. Finally, chemogenetic activation of ventral MCs during the training phase of an object location memory task impaired test performance 24 hours later, without effects on locomotion or object exploration. Conclusions These data suggest that ventral MC activation can directly excite dorsal granule cells and interfere with dorsal DG function, supporting future study of their in vivo activity in animal models for schizophrenia featuring ventral hyperactivity.
Collapse
|
18
|
Patrono E, Svoboda J, Stuchlík A. Schizophrenia, the gut microbiota, and new opportunities from optogenetic manipulations of the gut-brain axis. Behav Brain Funct 2021; 17:7. [PMID: 34158061 PMCID: PMC8218443 DOI: 10.1186/s12993-021-00180-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022] Open
Abstract
Schizophrenia research arose in the twentieth century and is currently rapidly developing, focusing on many parallel research pathways and evaluating various concepts of disease etiology. Today, we have relatively good knowledge about the generation of positive and negative symptoms in patients with schizophrenia. However, the neural basis and pathophysiology of schizophrenia, especially cognitive symptoms, are still poorly understood. Finding new methods to uncover the physiological basis of the mental inabilities related to schizophrenia is an urgent task for modern neuroscience because of the lack of specific therapies for cognitive deficits in the disease. Researchers have begun investigating functional crosstalk between NMDARs and GABAergic neurons associated with schizophrenia at different resolutions. In another direction, the gut microbiota is getting increasing interest from neuroscientists. Recent findings have highlighted the role of a gut-brain axis, with the gut microbiota playing a crucial role in several psychopathologies, including schizophrenia and autism. There have also been investigations into potential therapies aimed at normalizing altered microbiota signaling to the enteric nervous system (ENS) and the central nervous system (CNS). Probiotics diets and fecal microbiota transplantation (FMT) are currently the most common therapies. Interestingly, in rodent models of binge feeding, optogenetic applications have been shown to affect gut colony sensitivity, thus increasing colonic transit. Here, we review recent findings on the gut microbiota–schizophrenia relationship using in vivo optogenetics. Moreover, we evaluate if manipulating actors in either the brain or the gut might improve potential treatment research. Such research and techniques will increase our knowledge of how the gut microbiota can manipulate GABA production, and therefore accompany changes in CNS GABAergic activity.
Collapse
Affiliation(s)
- Enrico Patrono
- Institute of Physiology of the Czech Academy of Sciences, Videnska, 1830, Prague, 142 20, Czech Republic.
| | - Jan Svoboda
- Institute of Physiology of the Czech Academy of Sciences, Videnska, 1830, Prague, 142 20, Czech Republic
| | - Aleš Stuchlík
- Institute of Physiology of the Czech Academy of Sciences, Videnska, 1830, Prague, 142 20, Czech Republic.
| |
Collapse
|
19
|
Sedky AA, Magdy Y. Reduction in TNF alpha and oxidative stress by liraglutide: Impact on ketamine-induced cognitive dysfunction and hyperlocomotion in rats. Life Sci 2021; 278:119523. [PMID: 33891942 DOI: 10.1016/j.lfs.2021.119523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/04/2021] [Accepted: 04/10/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Diabetes and psychotic disorders are occasionally comorbid. Possible pathophysiologies linking these disorders include inflammation and oxidative stress. Glucagon like peptide-1 (GLP-1) agonists modulate glucose metabolism and may exert neuroprotective effects via central GLP-1 receptors. AIM OF THE WORK To explore the effects of GLP-1 agonist, liraglutide, on ketamine-induced hyper-locomotion and cognitive dysfunction and the associated inflammation and oxidative stress in normoglycemic and diabetic rats. METHODS Rats were divided into: Chow fed (non-diabetic) and high fat diet fed/STZ (diabetic) groups: I. non-diabetic/control, non-diabetic/liraglutide, non-diabetic/ketamine, non-diabetic/ketamine/liraglutide groups. II. diabetic/control, diabetic/liraglutide, diabetic/ketamine and diabetic/ketamine/liraglutide groups. Hyperlocomotion and cognitive dysfunction were assessed using open field and water maze tests. Biochemical parameters were measured in serum and hippocampus. RESULTS Ketamine induced hyperlocomotion and cognitive dysfunction, with hippocampal histopathological changes. Increase in tumour necrosis factor (TNF)-alpha and oxidative stress and reduction in brain-derived neurotrophic factor (BDNF) were noted. These changes were augmented in diabetic compared to non-diabetic rats. Liraglutide significantly improved hyperlocomotion, and cognitive dysfunction and hippocampal histopathological changes in non-diabetic and diabetic rats. Improvement in glucose homeostasis, reduction in TNF alpha and malondialdehyde, and increase in glutathione and BDNF were observed in serum and hippocampus. CONCLUSION Beneficial effects of liraglutide on ketamine-induced hyperlocomotion and cognitive dysfunction are associated with reduction in TNF alpha and oxidative stress. Since effects of liraglutide occurred in diabetic and non-diabetic rats, glycemic and non-glycemic effects (via central GLP-1 receptors) might be involved. Targeting oxidative stress and inflammation by GLP-1 agonists, may be a promising approach in psychotic patients with diabetes.
Collapse
Affiliation(s)
| | - Yosra Magdy
- Department of Pharmacology, Ain Shams University, Cairo, Egypt
| |
Collapse
|
20
|
Kahn JB, Port RG, Anderson SA, Coulter DA. Modular, Circuit-Based Interventions Rescue Hippocampal-Dependent Social and Spatial Memory in a 22q11.2 Deletion Syndrome Mouse Model. Biol Psychiatry 2020; 88:710-718. [PMID: 32682567 PMCID: PMC7554065 DOI: 10.1016/j.biopsych.2020.04.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/09/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND 22q11.2 deletion syndrome (22qDS) manifests with myriad symptoms, including multiple neuropsychiatric disorders. Complications associated with the polygenic haploinsufficiency make 22qDS symptoms particularly difficult to manage with traditional therapeutic approaches. However, the varying mechanistic consequences often culminate to generate inappropriate regulation of neuronal circuit activity. We explored whether managing this aberrant activity in adults could be a therapeutically beneficial strategy. METHODS To assess and dissect hippocampal circuit function, we performed functional imaging in acute slices and targeted eloquent circuits (specific subcircuits tied to specific behavioral tasks) to provide relevant behavioral outputs. For example, the ventral and dorsal CA1 regions critically support social and spatial discrimination, respectively. We focally introduced chemogenetic constructs in 34 control and 24 22qDS model mice via adeno-associated viral vectors, driven by excitatory neuron-specific promoter elements, to manipulate circuit recruitment in an on-demand fashion. RESULTS 22qDS model mice exhibited CA1 excitatory ensemble hyperexcitability and concomitant behavioral deficits in both social and spatial memory. Remarkably, acute chemogenetic inhibition of pyramidal cells successfully corrected memory deficits and did so in a regionally specific manner: ventrally targeted constructs rescued only social behavior, while those expressed dorsally selectively affected spatial memory. Additionally, manipulating activity in control mice could recapitulate the memory deficits in a regionally specific manner. CONCLUSIONS These data suggest that retuning activity dysregulation can rescue function in disease-altered circuits, even in the face of a polygenetic haploinsufficiency with a strong developmental component. Targeting circuit excitability in a focal, modular manner may prove to be an effective therapeutic for treatment-resistant symptoms of mental illness.
Collapse
Affiliation(s)
- Julia B. Kahn
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russell G. Port
- Departments of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,The Research Institute of the Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Stewart A. Anderson
- Departments of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,The Research Institute of the Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Douglas A. Coulter
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Departments of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,The Research Institute of the Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| |
Collapse
|
21
|
Kätzel D, Wolff AR, Bygrave AM, Bannerman DM. Hippocampal Hyperactivity as a Druggable Circuit-Level Origin of Aberrant Salience in Schizophrenia. Front Pharmacol 2020; 11:486811. [PMID: 33178010 PMCID: PMC7596262 DOI: 10.3389/fphar.2020.486811] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/18/2020] [Indexed: 01/21/2023] Open
Abstract
The development of current neuroleptics was largely aiming to decrease excessive dopaminergic signaling in the striatum. However, the notion that abnormal dopamine creates psychotic symptoms by causing an aberrant assignment of salience that drives maladaptive learning chronically during disease development suggests a therapeutic value of early interventions that correct salience-related neural processing. The mesolimbic dopaminergic output is modulated by several interconnected brain-wide circuits centrally involving the hippocampus and key relays like the ventral and associative striatum, ventral pallidum, amygdala, bed nucleus of the stria terminalis, nucleus reuniens, lateral and medial septum, prefrontal and cingulate cortex, among others. Unraveling the causal relationships between these circuits using modern neuroscience techniques holds promise for identifying novel cellular-and ultimately molecular-treatment targets for reducing transition to psychosis and symptoms of schizophrenia. Imaging studies in humans have implicated a hyperactivity of the hippocampus as a robust and early endophenotype in schizophrenia. Experiments in rodents, in turn, suggested that the activity of its output region-the ventral subiculum-may modulate dopamine release from ventral tegmental area (VTA) neurons in the ventral striatum. Even though these observations suggested a novel circuit-level target for anti-psychotic action, no therapy has yet been developed along this rationale. Recently evaluated treatment strategies-at least in part-target excess glutamatergic activity, e.g. N-acetyl-cysteine (NAC), levetiracetam, and mGluR2/3 modulators. We here review the evidence for the central implication of the hippocampus-VTA axis in schizophrenia-related pathology, discuss its symptom-related implications with a particular focus on aberrant assignment of salience, and evaluate some of its short-comings and prospects for drug discovery.
Collapse
Affiliation(s)
- Dennis Kätzel
- Institute for Applied Physiology, Ulm University, Ulm, Germany
| | - Amy R. Wolff
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Alexei M. Bygrave
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, United States
| | - David M. Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Dolleman-van der Weel MJ, Witter MP. The thalamic midline nucleus reuniens: potential relevance for schizophrenia and epilepsy. Neurosci Biobehav Rev 2020; 119:422-439. [PMID: 33031816 DOI: 10.1016/j.neubiorev.2020.09.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/03/2020] [Accepted: 09/28/2020] [Indexed: 01/08/2023]
Abstract
Anatomical, electrophysiological and behavioral studies in rodents have shown that the thalamic midline nucleus reuniens (RE) is a crucial link in the communication between hippocampal formation (HIP, i.e., CA1, subiculum) and medial prefrontal cortex (mPFC), important structures for cognitive and executive functions. A common feature in neurodevelopmental and neurodegenerative brain diseases is a dysfunctional connectivity/communication between HIP and mPFC, and disturbances in the cognitive domain. Therefore, it is assumed that aberrant functioning of RE may contribute to behavioral/cognitive impairments in brain diseases characterized by cortico-thalamo-hippocampal circuit dysfunctions. In the human brain the connections of RE are largely unknown. Yet, recent studies have found important similarities in the functional connectivity of HIP-mPFC-RE in humans and rodents, making cautious extrapolating experimental findings from animal models to humans justifiable. The focus of this review is on a potential involvement of RE in schizophrenia and epilepsy.
Collapse
Affiliation(s)
- M J Dolleman-van der Weel
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU Norwegian University of Science and Technology, Trondheim NO-7491, Norway.
| | - M P Witter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU Norwegian University of Science and Technology, Trondheim NO-7491, Norway.
| |
Collapse
|
23
|
Molina JL, Voytek B, Thomas ML, Joshi YB, Bhakta SG, Talledo JA, Swerdlow NR, Light GA. Memantine Effects on Electroencephalographic Measures of Putative Excitatory/Inhibitory Balance in Schizophrenia. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:562-568. [PMID: 32340927 PMCID: PMC7286803 DOI: 10.1016/j.bpsc.2020.02.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Abnormalities in cortical excitation and inhibition (E/I) balance are thought to underlie sensory and information processing deficits in schizophrenia. Deficits in early auditory information processing mediate both neurocognitive and functional impairment and appear to be normalized by acute pharmacologic challenge with the NMDA antagonist memantine (MEM). METHODS Thirty-six subjects with a diagnosis of schizophrenia and 31 healthy control subjects underwent electroencephalographic recordings. Subjects ingested either placebo or MEM (10 or 20 mg) in a double-blind, within-subject, crossover, randomized design. The aperiodic, 1/f-like scaling property of the neural power spectra, which is thought to index relative E/I balance, was estimated using a robust linear regression algorithm. RESULTS Patients with schizophrenia had greater aperiodic components compared with healthy control subjects (p < .01, d = 0.64), which was normalized after 20 mg MEM. Analysis revealed a significant dose × diagnosis interaction (p < .0001, d = 0.82). Furthermore, the MEM effect (change in aperiodic component in MEM vs. placebo conditions) was associated with baseline attention and vigilance (r = .54, p < .05) and MEM-induced enhancements in gamma power (r = -.60, p < .01). CONCLUSIONS Findings confirmed E/I balance abnormalities in schizophrenia that were normalized with acute MEM administration and suggest that neurocognitive profiles may predict treatment response based on E/I sensitivity. These data provide proof-of-concept evidence for the utility of E/I balance indices as metrics of acute pharmacologic sensitivity for central nervous system therapeutics.
Collapse
Affiliation(s)
- Juan L Molina
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Bradley Voytek
- Department of Cognitive Sciences, Halicioğlu Data Science Institute, and Neurosciences Graduate Program, University of California, San Diego, La Jolla, California
| | - Michael L Thomas
- Department of Psychiatry, University of California, San Diego, La Jolla, California; Department of Psychology, Colorado State University, Fort Collins, Colorado
| | - Yash B Joshi
- Department of Psychiatry, University of California, San Diego, La Jolla, California; VA Desert Pacific Mental Illness Research, Education and Clinical Center, VA San Diego Healthcare System, San Diego, California
| | - Savita G Bhakta
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Jo A Talledo
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Neal R Swerdlow
- Department of Psychiatry, University of California, San Diego, La Jolla, California.
| | - Gregory A Light
- Department of Psychiatry, University of California, San Diego, La Jolla, California; VA Desert Pacific Mental Illness Research, Education and Clinical Center, VA San Diego Healthcare System, San Diego, California
| |
Collapse
|
24
|
Light GA, Joshi YB, Molina JL, Bhakta SG, Nungaray JA, Cardoso L, Kotz JE, Thomas ML, Swerdlow NR. Neurophysiological biomarkers for schizophrenia therapeutics. Biomark Neuropsychiatry 2020. [DOI: 10.1016/j.bionps.2020.100012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
25
|
Gigg J, McEwan F, Smausz R, Neill J, Harte MK. Synaptic biomarker reduction and impaired cognition in the sub-chronic PCP mouse model for schizophrenia. J Psychopharmacol 2020; 34:115-124. [PMID: 31580184 DOI: 10.1177/0269881119874446] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Sub-chronic phencyclidine treatment (scPCP) provides a translational rat model for cognitive impairments associated with schizophrenia (CIAS). CIAS genetic risk factors may be more easily studied in mice; however, CIAS associated biomarker changes are relatively unstudied in the scPCP mouse. AIM To characterize deficits in object recognition memory and synaptic markers in frontal cortex and hippocampus of the scPCP mouse. METHODS Female c57/bl6 mice received 10 daily injections of PCP (scPCP; 10 mg/kg, s.c.) or vehicle (n = 8/group). Mice were tested for novel object recognition memory after either remaining in the arena ('no distraction') or being removed to a holding cage ('distraction') during the inter-trial interval. Expression changes for parvalbumin (PV), glutamic acid decarboxylase (GAD67), synaptosomal-associated protein 25 (SNAP-25) and postsynaptic density 95 (PDS95) were measured in frontal cortex, dorsal and ventral hippocampus. RESULTS scPCP mice showed object memory deficits when distracted by removal from the arena, where they treated previously experienced objects as novel at test. scPCP significantly reduced PV expression in all regions and lower PSD95 levels in frontal cortex and ventral hippocampus. Levels of GAD67 and SNAP-25 were unchanged. CONCLUSIONS We show for the first time that scPCP mice: (a) can encode and retain object information, but that this memory is susceptible to distraction; (b) display amnesia after distraction; and (c) express reduced PV and PSD95 in frontal cortex and hippocampus. These data further support reductions in PV-dependent synaptic inhibition and NMDAR-dependent glutamatergic plasticity in CIAS and highlight the translational significance of the scPCP mouse.
Collapse
Affiliation(s)
- John Gigg
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Francesca McEwan
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Rebecca Smausz
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Joanna Neill
- Division of Pharmacy and Optometry, University of Manchester, Manchester, UK
| | - Michael K Harte
- Division of Pharmacy and Optometry, University of Manchester, Manchester, UK
| |
Collapse
|