1
|
Chen S, Jin Y, Yang N, Wei L, Xu D, Xu X. Improving microbial production of value-added products through the intervention of magnetic fields. BIORESOURCE TECHNOLOGY 2024; 393:130087. [PMID: 38042431 DOI: 10.1016/j.biortech.2023.130087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/17/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
The magnetic field application is emerging as an auxiliary physical strategy to facilitate rapid biomass accumulation and intracellular production of compounds. However, the underlying mechanisms and principles governing the application of magnetic fields for microbial growth and biotransformation are not yet fully understood. Therefore, a better understanding of interdisciplinary technologies integration, expanded magnetic field application, and scaled-up industrial implementation is crucial. In this review, the magnetic field characteristics, magnetic field-assisted fermentation devices, and the working mechanism of magnetic field have been reviewed comprehensively from both physical and microbiological perspectives. The review suggests that magnetic fields affect the biochemical processes in microorganisms by mediating nutrient transport across membranes, electron transfer during photosynthesis and respiration, enzyme activity and gene expression. Moreover, the recent advances in magnetic field application for microbial fermentation and conversion in biochemical, food and agricultural fields have been summarized.
Collapse
Affiliation(s)
- Sirui Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Yamei Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China.
| | - Na Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Liwen Wei
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Dan Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Xueming Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| |
Collapse
|
2
|
Sarimov RM, Serov DA, Gudkov SV. Hypomagnetic Conditions and Their Biological Action (Review). BIOLOGY 2023; 12:1513. [PMID: 38132339 PMCID: PMC10740674 DOI: 10.3390/biology12121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
The geomagnetic field plays an important role in the existence of life on Earth. The study of the biological effects of (hypomagnetic conditions) HMC is an important task in magnetobiology. The fundamental importance is expanding and clarifying knowledge about the mechanisms of magnetic field interaction with living systems. The applied significance is improving the training of astronauts for long-term space expeditions. This review describes the effects of HMC on animals and plants, manifested at the cellular and organismal levels. General information is given about the probable mechanisms of HMC and geomagnetic field action on living systems. The main experimental approaches are described. We attempted to systematize quantitative data from various studies and identify general dependencies of the magnetobiology effects' value on HMC characteristics (induction, exposure duration) and the biological parameter under study. The most pronounced effects were found at the cellular level compared to the organismal level. Gene expression and protein activity appeared to be the most sensitive to HMC among the molecular cellular processes. The nervous system was found to be the most sensitive in the case of the organism level. The review may be of interest to biologists, physicians, physicists, and specialists in interdisciplinary fields.
Collapse
Affiliation(s)
| | | | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (R.M.S.); (D.A.S.)
| |
Collapse
|
3
|
Sarimov RM, Serov DA, Gudkov SV. Biological Effects of Magnetic Storms and ELF Magnetic Fields. BIOLOGY 2023; 12:1506. [PMID: 38132332 PMCID: PMC10740910 DOI: 10.3390/biology12121506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Magnetic fields are a constant and essential part of our environment. The main components of ambient magnetic fields are the constant part of the geomagnetic field, its fluctuations caused by magnetic storms, and man-made magnetic fields. These fields refer to extremely-low-frequency (<1 kHz) magnetic fields (ELF-MFs). Since the 1980s, a huge amount of data has been accumulated on the biological effects of magnetic fields, in particular ELF-MFs. However, a unified picture of the patterns of action of magnetic fields has not been formed. Even though a unified mechanism has not yet been generally accepted, several theories have been proposed. In this review, we attempted to take a new approach to analyzing the quantitative data on the effects of ELF-MFs to identify new potential areas for research. This review provides general descriptions of the main effects of magnetic storms and anthropogenic fields on living organisms (molecular-cellular level and whole organism) and a brief description of the main mechanisms of magnetic field effects on living organisms. This review may be of interest to specialists in the fields of biology, physics, medicine, and other interdisciplinary areas.
Collapse
Affiliation(s)
| | | | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova Street, 119991 Moscow, Russia; (R.M.S.); (D.A.S.)
| |
Collapse
|
4
|
Fiorillo A, Parmagnani AS, Visconti S, Mannino G, Camoni L, Maffei ME. 14-3-3 Proteins and the Plasma Membrane H +-ATPase Are Involved in Maize ( Zea mays) Magnetic Induction. PLANTS (BASEL, SWITZERLAND) 2023; 12:2887. [PMID: 37571041 PMCID: PMC10421175 DOI: 10.3390/plants12152887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
The geomagnetic field (GMF) is a natural component of the biosphere, and, during evolution, all organisms experienced its presence while some evolved the ability to perceive magnetic fields (MF). We studied the response of 14-3-3 proteins and the plasma membrane (PM) proton pump H+-ATPase to reduced GMF values by lowering the GMF intensity to a near-null magnetic field (NNMF). Seedling morphology, H+-ATPase activity and content, 14-3-3 protein content, binding to PM and phosphorylation, gene expression, and ROS quantification were assessed in maize (Zea mays) dark-grown seedlings. Phytohormone and melatonin quantification were also assessed by LG-MS/MS. Our results suggest that the GMF regulates the PM H+-ATPase, and that NNMF conditions alter the proton pump activity by reducing the binding of 14-3-3 proteins. This effect was associated with both a reduction in H2O2 and downregulation of genes coding for enzymes involved in ROS production and scavenging, as well as calcium homeostasis. These early events were followed by the downregulation of IAA synthesis and gene expression and the increase in both cytokinin and ABA, which were associated with a reduction in root growth. The expression of the homolog of the MagR gene, ZmISCA2, paralleled that of CRY1, suggesting a possible role of ISCA in maize magnetic induction. Interestingly, melatonin, a widespread molecule present in many kingdoms, was increased by the GMF reduction, suggesting a still unknown role of this molecule in magnetoreception.
Collapse
Affiliation(s)
- Anna Fiorillo
- Department of Biology, Tor Vergata University of Rome, Via della Ricerca Scientifica, 00133 Rome, Italy; (A.F.); (S.V.)
| | - Ambra S. Parmagnani
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy; (A.S.P.); (G.M.)
| | - Sabina Visconti
- Department of Biology, Tor Vergata University of Rome, Via della Ricerca Scientifica, 00133 Rome, Italy; (A.F.); (S.V.)
| | - Giuseppe Mannino
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy; (A.S.P.); (G.M.)
| | - Lorenzo Camoni
- Department of Biology, Tor Vergata University of Rome, Via della Ricerca Scientifica, 00133 Rome, Italy; (A.F.); (S.V.)
| | - Massimo E. Maffei
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy; (A.S.P.); (G.M.)
| |
Collapse
|
5
|
Navarro EA, Navarro-Modesto E. A mathematical model and experimental procedure to analyze the cognitive effects of audio frequency magnetic fields. Front Hum Neurosci 2023; 17:1135511. [PMID: 37250701 PMCID: PMC10218710 DOI: 10.3389/fnhum.2023.1135511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Audio frequency magnetic fields (20 Hz-20 kHz) are magnetic fields in extremely low frequency-very low frequency (ELF-VLF) bands that are present near audio equipment and acoustic transducers. These devices transform and operate the electrical signal from the recordings or other devices into acoustic and audio signals. The cognitive influence of sound and noise has been widely studied and recognized since the times of ancient Rome; however, the cognitive effects of the magnetic fields of these frequencies have not been studied. Due to the extensive use of audio devices that use this type of transducer near the temporal-parietal area, we believe that it is of interest to study their impact on short-term memory or working memory (WM) and to analyze their potential as they operate as a transcranial magnetic stimulation. In this study, a mathematical model and an experimental tool are introduced to analyze memory performance. The model dissociates the reaction time of a cognitive task. We analyze the model in data from a group of 65 young, healthy subjects. WM is assessed in our experimental setup by means of the Sternberg test (ST), whereby during the ST, one subgroup was exposed to an audio frequency magnetic stimulus, and the other subgroup received a sham stimulus. The magnetic stimulus was ~0.1 μT and was applied to both sides of the head at the frontal cortex near the temporal-parietal area, which is where WM is expected to be located. The ST records reaction times when determining whether an object displayed on the computer screen is one of the objects to be remembered. The results are analyzed within the mathematical model and changes are observed, including the deterioration of WM, which could affect 32% of its operability.
Collapse
Affiliation(s)
- Enrique A. Navarro
- Departament de Informàtica, ETSE, Universitat de València, València, Spain
| | | |
Collapse
|
6
|
Davies E. The decrease in diurnal oxygen production in Elodea under the influence of high geomagnetic variability: the role of light, temperature and atmospheric pressure. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:821-834. [PMID: 36973472 PMCID: PMC10167113 DOI: 10.1007/s00484-023-02457-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 02/24/2023] [Accepted: 03/15/2023] [Indexed: 05/09/2023]
Abstract
Epidemiological studies have indicated adverse effects of geomagnetic disturbance on human health, including increased mortality. There is evidence from plant and animal studies that help to elucidate this interaction. This study tests the hypothesis that geomagnetic disturbance affects living systems, by modifying the metabolic process of photosynthesis, in the natural environment.Continuous 24-h measurements of dissolved oxygen in flasks containing Holtfreiter's solution and strands of healthy Elodea were recorded from May 1996, until September 1998, in an electromagnetically quiet, purpose built, garden shed environment, without mains electricity. Sensormeter recordings of oxygen, light, temperature and air pressure were uploaded weekly to a PC. The hourly total geomagnetic field measurements were obtained from the nearest observatory.Significant decrease in oxygen (diurnal volume of oxygen divided by plant mass and diurnal light), (O/WL), was found on days of high geomagnetic field variability throughout 11 recorded months of the year 1997. This result was independent of temperature and atmospheric pressure. No significant decrease in O/WL during high geomagnetic variability was found for the 7 months recorded in 1996. The 1996 and 1997 data both showed a significant decrease in the diurnal time lag between peak light and peak oxygen for diurnal high geomagnetic variability compared with low geomagnetic variability. Cross correlation analysis for 1997 and 1998 data showed a decrease in positive correlation of oxygen with light in high geomagnetic variability, compared with low geomagnetic variability, and increased positive correlation with the geomagnetic field instead. These experiments support a hypothesis of high geomagnetic field variability as a weak zeitgeber, and a metabolic depressant for photosynthetic oxygen production in plants.
Collapse
|
7
|
Dhiman SK, Wu F, Galland P. Effects of weak static magnetic fields on the development of seedlings of Arabidopsis thaliana. PROTOPLASMA 2023; 260:767-786. [PMID: 36129584 DOI: 10.1007/s00709-022-01811-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
To study magnetoreception of Arabidopsis thaliana, we analysed several developmental responses including cryptochrome-independent seed germination and the phytochrome- and cryptochrome-dependent hypocotyl elongation and photo-accumulation of anthocyanins and chlorophylls in weak static magnetic fields ranging from near null to 122 μT. A field of 50 μT accelerated seed germination by about 20 h relative to samples maintained in a near-null field. The double mutant, cry1cry2, lacking cryptochromes 1 and 2 displayed the same magnetic field-induced germination acceleration under blue light as the wild-type strain. Magnetic field-induced germination acceleration was masked in the presence of exogenous sucrose. Stimulus-response curves for hypocotyl elongation in a range between near-null to 122 μT indicated maxima near 9 and 60 μT for the wild-type strain as well as mutant cry1cry2. The photo-accumulation of anthocyanins and chlorophylls could be effectively modulated by magnetic fields in the presence of low-irradiance red and blue light, respectively. The findings indicate that Arabidopsis thaliana possesses light-independent mechanisms of magnetic field reception, which remain presently unidentified. Our results are in better agreement with predictions of the level crossing mechanism (LCM) of magnetoreception rather than those of the cryptochrome-associated radical-pair mechanism (RPM).
Collapse
Affiliation(s)
- Sunil Kumar Dhiman
- Kirori Mal College, Delhi University (North Campus), Delhi, 110007, India.
| | - Fan Wu
- Faculty of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - Paul Galland
- Faculty of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| |
Collapse
|
8
|
Binhi VN. Statistical Amplification of the Effects of Weak Magnetic Fields in Cellular Translation. Cells 2023; 12:724. [PMID: 36899858 PMCID: PMC10000676 DOI: 10.3390/cells12050724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
We assume that the enzymatic processes of recognition of amino acids and their addition to the synthesized molecule in cellular translation include the formation of intermediate pairs of radicals with spin-correlated electrons. The mathematical model presented describes the changes in the probability of incorrectly synthesized molecules in response to a change in the external weak magnetic field. A relatively high chance of errors has been shown to arise from the statistical enhancement of the low probability of local incorporation errors. This statistical mechanism does not require a long thermal relaxation time of electron spins of about 1 μs-a conjecture often used to match theoretical models of magnetoreception with experiments. The statistical mechanism allows for experimental verification by testing the usual Radical Pair Mechanism properties. In addition, this mechanism localizes the site where magnetic effects originate, the ribosome, which makes it possible to verify it by biochemical methods. This mechanism predicts a random nature of the nonspecific effects caused by weak and hypomagnetic fields and agrees with the diversity of biological responses to a weak magnetic field.
Collapse
Affiliation(s)
- Vladimir N Binhi
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| |
Collapse
|
9
|
Makinistian L, Zastko L, Tvarožná A, Días LE, Belyaev I. Static magnetic fields from earphones: Detailed measurements plus some open questions. ENVIRONMENTAL RESEARCH 2022; 214:113907. [PMID: 35870506 DOI: 10.1016/j.envres.2022.113907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/09/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Earphones (EP) are a worldwide, massively adopted product, assumed to be innocuous provided the recommendations on sound doses limits are followed. Nevertheless, sound is not the only physical stimulus that derives from EP use, since they include a built-in permanent magnet from which a static magnetic field (SMF) originates. We performed 2D maps of the SMF at several distances from 6 models of in-ear EP, showing that they produce an exposure that spans from ca. 20 mT on their surface down to tens of μT in the inner ear. The numerous reports of bioeffects elicited by SMF in that range of intensities (applied both acutely and chronically), together with the fact that there is no scientific consensus over the possible mechanisms of interaction with living tissues, suggest that caution could be recommendable. In addition, more research is warranted on the possible effects of the combination of SMF with extremely low frequency and radiofrequency fields, which has so far been scarcely studied. Overall, while several open questions about bioeffects of SMF remain to be addressed by the scientific community, we find sensible to suggest that the use of air-tube earphones is probably the more conservative, cautious choice.
Collapse
Affiliation(s)
- L Makinistian
- Department of Physics, Universidad Nacional de San Luis (UNSL), San Luis, Argentina; Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis (UNSL)-CONICET, San Luis, Argentina.
| | - L Zastko
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia; Department of Laboratory Medicine, Faculty of Health Care, Catholic University in Ružomberok, Ružomberok, Slovakia
| | - A Tvarožná
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - L E Días
- Department of Physics, Universidad Nacional de San Luis (UNSL), San Luis, Argentina
| | - I Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
10
|
Saletnik B, Saletnik A, Słysz E, Zaguła G, Bajcar M, Puchalska-Sarna A, Puchalski C. The Static Magnetic Field Regulates the Structure, Biochemical Activity, and Gene Expression of Plants. Molecules 2022; 27:molecules27185823. [PMID: 36144557 PMCID: PMC9506020 DOI: 10.3390/molecules27185823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 01/09/2023] Open
Abstract
The purpose of this paper is to review the scientific results and summarise the emerging topic of the effects of statistic magnetic field on the structure, biochemical activity, and gene expression of plants. The literature on the subject reports a wide range of possibilities regarding the use of the magnetic field to modify the properties of plant cells. MFs have a significant impact on the photosynthesis efficiency of the biomass and vigour accumulation indexes. Treating plants with SMFs accelerates the formation and accumulation of reactive oxygen species. At the same time, the influence of MFs causes the high activity of antioxidant enzymes, which reduces oxidative stress. SMFs have a strong influence on the shape of the cell and the structure of the cell membrane, thus increasing their permeability and influencing the various activities of the metabolic pathways. The use of magnetic treatments on plants causes a higher content of proteins, carbohydrates, soluble and reducing sugars, and in some cases, lipids and fatty acid composition and influences the uptake of macro- and microelements and different levels of gene expression. In this study, the effect of MFs was considered as a combination of MF intensity and time exposure, for different varieties and plant species. The following article shows the wide-ranging possibilities of applying magnetic fields to the dynamics of changes in the life processes and structures of plants. Thus far, the magnetic field is not widely used in agricultural practice. The current knowledge about the influence of MFs on plant cells is still insufficient. It is, therefore, necessary to carry out detailed research for a more in-depth understanding of the possibilities of modifying the properties of plant cells and achieving the desired effects by means of a magnetic field.
Collapse
Affiliation(s)
- Bogdan Saletnik
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
- Correspondence:
| | - Aneta Saletnik
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| | - Ewelina Słysz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| | - Grzegorz Zaguła
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| | - Marcin Bajcar
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| | - Anna Puchalska-Sarna
- Laboratory of Physiotherapy in Developmental Disorders, Institute of Health Sciences, College of Medical Sciences, Rzeszow University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszow, Poland
| | - Czesław Puchalski
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| |
Collapse
|
11
|
Zhang Y, Zeng L, Wei Y, Zhang M, Pan W, Sword GA, Yang F, Chen F, Wan G. Reliable reference genes for gene expression analyses under the hypomagnetic field in a migratory insect. Front Physiol 2022; 13:954228. [PMID: 36003646 PMCID: PMC9393789 DOI: 10.3389/fphys.2022.954228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Manipulating the hypomagnetic field (HMF), which is the absence or significant weakening (<5 μT) of the geomagnetic field (GMF), offers a unique tool to investigate magnetic field effects on organismal physiology, development, behavior and life history. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) has been utilized to study changes in gene expression associated with exposure to the HMF. However, selecting appropriate reference genes (RGs) with confirmed stable expression across environments for RT-qPCR is often underappreciated. Using three algorithms (BestKeeper, NormFinder, and GeNorm), we investigated the expression stability of eight candidate RGs when exposed to the HMF condition versus local GMF during developmental from juveniles to adults in the migratory insect pest, the brown planthopper Nilaparvata lugens. During the nymphal stage, RPL5 & α-TUB1, EF1-α & ARF1, RPL5 & AK, EF1-α & RPL5, and ARF1 & AK were suggested as the most stable RG sets in the 1st to 5th instars, respectively. For 1- to 3-day-old adults, AK & ARF1, AK & α-TUB1, AK & ARF1 and EF1-α & RPL5, AK & α-TUB1, AK & EF1-α were the optimal RG sets for macropterous and brachypterous females, respectively. ACT1 & RPL5, RPL5 & EF1-α, α-TUB1 & ACT1 and EF1-α & RPL5, ARF1 & ACT1, ACT1 & ARF1 were the optimal RG sets for macropterous and brachypterous males, respectively. These results will facilitate accurate gene expression analyses under the HMF in N. lugens. The verification approach illustrated in this study highlights the importance of identifying reliable RGs for future empirical studies of magnetobiology (including magnetoreception) that involve magnetic field intensity as a factor.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Plant Health & Crop Safety, Nanjing Agricultural University, Nanjing, China
| | - Luying Zeng
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Plant Health & Crop Safety, Nanjing Agricultural University, Nanjing, China
| | - Yongji Wei
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Plant Health & Crop Safety, Nanjing Agricultural University, Nanjing, China
| | - Ming Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Plant Health & Crop Safety, Nanjing Agricultural University, Nanjing, China
| | - Weidong Pan
- Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Gregory A. Sword
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Plant Health & Crop Safety, Nanjing Agricultural University, Nanjing, China
| | - Guijun Wan
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Plant Health & Crop Safety, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Guijun Wan,
| |
Collapse
|
12
|
Binhi VN, Rubin AB. Theoretical Concepts in Magnetobiology after 40 Years of Research. Cells 2022; 11:274. [PMID: 35053390 PMCID: PMC8773520 DOI: 10.3390/cells11020274] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/23/2022] Open
Abstract
This review contains information on the development of magnetic biology, one of the multidisciplinary areas of biophysics. The main historical facts are presented and the general observed properties of magnetobiological phenomena are listed. The unavoidable presence of nonspecific magnetobiological effects in the everyday life of a person and society is shown. Particular attention is paid to the formation of theoretical concepts in magnetobiology and the state of the art in this area of research. Some details are provided on the molecular mechanisms of the nonspecific action of a magnetic field on organisms. The prospects of magnetobiology for the near and distant future are discussed.
Collapse
Affiliation(s)
- Vladimir N. Binhi
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Andrei B. Rubin
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia;
| |
Collapse
|
13
|
Zhang Z, Xue Y, Yang J, Shang P, Yuan X. Biological Effects of Hypomagnetic Field: Ground-Based Data for Space Exploration. Bioelectromagnetics 2021; 42:516-531. [PMID: 34245597 DOI: 10.1002/bem.22360] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022]
Abstract
The future of mankind is tied to the exploration and eventual colonization of space. Currently, people have resided in orbit at a space station. In the future, we will have opportunities to stay on the moon, Mars, or in deeper space, where astronauts are exposed to the hypomagnetic field (HMF), which refers to an extremely weak magnetic field environment compared with the geomagnetic field. However, the potential risks of HMF exposure to human health are often overlooked. Here, we summarize the literature related to the biological effects of HMF and calculate the magnitude of the effect. Briefly, HMF impairs multiple animal systems, especially in the central nervous system. Additionally, HMF is a stress factor in plant growth and reproduction. Finally, HMF combined with other space environments, such as radiation and microgravity, can affect organisms. Further studies are required to explore (i) countermeasures to the adverse effects of HMF, (ii) combined effects of HMF with other factors, and (iii) the intensity-effect relationship. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Zheyuan Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Yanru Xue
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Jiancheng Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical University, Xi'an, China.,Department of Spine Surgery, The People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China
| | - Peng Shang
- Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical University, Xi'an, China.,Research & Development, Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| | - Xichen Yuan
- Key Laboratory for Space Biosciences and Biotechnology, Northwestern Polytechnical University, Xi'an, China.,Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
14
|
Binhi VN. Random Effects in Magnetobiology and a Way to Summarize Them. Bioelectromagnetics 2021; 42:501-515. [PMID: 34233018 DOI: 10.1002/bem.22359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 11/06/2022]
Abstract
In magnetobiology, it is difficult to reproduce the nonspecific (not associated with specialized receptors) biological effects of weak magnetic fields. This means that some important characteristic of the data may be missed in standard statistical processing, where the set of measurements to be averaged belongs to the same population so that the contribution of fluctuations decreases according to the Central Limit Theorem. It has been shown that a series of measurements of a nonspecific magnetic effect contains not only the usual scatter of data around the mean but also a significant random component in the mean itself. This random component indicates that measurements belong to different statistical populations, which requires special processing. This component, otherwise called heterogeneity, is an additional characteristic that is typically overlooked, and which reduces reproducibility. The current method for studying and summarizing highly heterogeneous data is the random-effect meta-analysis of absolute values, i.e., of magnitudes, rather than the values themselves. However, this estimator-the average of absolute values-has a significant positive bias when it comes to the small effects that are characteristic of magnetobiology. To solve this problem, an improved estimator based on the folded normal distribution that gives several times less bias is proposed. We used this improved estimator to analyze the nonspecific effect of the hypomagnetic field in the Stroop test in 40 subjects and found a statistically significant meta-effect with a standardized average of magnitudes of about 0.1. It has been shown that the proposed approach can also be applied to a single study. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Vladimir N Binhi
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
15
|
The Possible Effect of Space Weather Factors on Various Physiological Systems of the Human Organism. ATMOSPHERE 2021. [DOI: 10.3390/atmos12030346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A systematic review of heliobiological studies of the last 25 years devoted to the study of the potential influence of space weather factors on human health and well-being was carried out. We proposed three criteria (coordinates), according to which the work on solar–biospheric relations was systematized: the time scale of data sampling (years, days, hours, minutes); the level of organization of the biological system under study (population, group, individual, body system); and the degree of system response (norm, adaptation, failure of adaptation (illness), disaster (death)). This systematic review demonstrates that three parameters mentioned above are closely related in the existing heliobiological studies: the larger the selected time scale, the higher the level of estimated biological system organization and the stronger the potential response degree is. The long-term studies are devoted to the possible influence of solar activity on population disasters, i.e., significant increases in morbidity and mortality. On a daily scale, a probable effect of geomagnetic storms and other space weather events on short-term local outbreaks of morbidity is shown as well as on cases of deterioration in people functional state. On an intraday scale, in the regular functioning mode, the heart and brain rhythms of healthy people turn to be synchronized with geomagnetic field variations in some frequency ranges, which apparently is the necessary organism’s existence element. The applicability of different space weather indices at different data sampling rates, the need to take into account the contribution of meteorological factors, and the prospects for an individual approach in heliobiology are discussed. The modern important results of experiments on modeling the action of magnetic storms in laboratory conditions and the substantiation of possible theoreical mechanisms are described. These results provide an experimental and theoretical basis for studies of possible connections of space weather and human health.
Collapse
|
16
|
Obhođaš J, Valković V, Kollar R, Hrenović J, Nađ K, Vinković A, Orlić Ž. The Growth and Sporulation of Bacillus subtilis in Nanotesla Magnetic Fields. ASTROBIOLOGY 2021; 21:323-331. [PMID: 33370540 DOI: 10.1089/ast.2020.2288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The order of magnitude of increased growth, multiplication rate, and decreased sporulation of Bacillus subtilis after exposure to nanotesla magnetic fields (MFs) relative to control samples were observed experimentally. Earth's total magnetic field intensity was reduced from 47.9 ± 0.4 μT to cover the range from 97.5 ± 1.7 nT to 1115 ± 158 nT in eight subsequent experiments by using three pairs of Helmholtz coils combined with Mu-metal shielding. The growth, multiplication rate, sporulation, and potassium content were measured in the probe and control containing B. subtilis cultures after 24 h of exposure to nanotesla and Earth's magnetic fields, respectively. The observed effect is discussed with regard to its possible repercussions on Earth's living species during geomagnetic reversals that occurred when the magnetic field was much weaker than the field that exists today. In addition, effects on future manned voyages into deep space, an environment with reduced magnetic field intensity, are considered.
Collapse
Affiliation(s)
- Jasmina Obhođaš
- Laboratory for Nuclear Analytical Techniques, Institute Ruđer Bošković, Zagreb, Croatia
| | | | | | - Jasna Hrenović
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Karlo Nađ
- Laboratory for Nuclear Analytical Techniques, Institute Ruđer Bošković, Zagreb, Croatia
| | - Andrija Vinković
- Laboratory for Nuclear Analytical Techniques, Institute Ruđer Bošković, Zagreb, Croatia
| | - Željko Orlić
- Laboratory for Nuclear Analytical Techniques, Institute Ruđer Bošković, Zagreb, Croatia
| |
Collapse
|
17
|
Wan GJ, Jiang SL, Zhang M, Zhao JY, Zhang YC, Pan WD, Sword GA, Chen FJ. Geomagnetic field absence reduces adult body weight of a migratory insect by disrupting feeding behavior and appetite regulation. INSECT SCIENCE 2021; 28:251-260. [PMID: 32065478 DOI: 10.1111/1744-7917.12765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
The geomagnetic field (GMF) is well documented for its essential role as a cue used in animal orientation or navigation. Recent evidence indicates that the absence of GMF (mimicked by the near-zero magnetic field, NZMF) can trigger stress-like responses such as reduced body weight, as we have previously shown in the brown planthopper, Nilaparvata lugens. In this study, we found that consistent with the significantly decreased body weight of newly emerged female (-14.67%) and male (-13.17%) adult N. lugens, the duration of the phloem ingestion feeding waveform was significantly reduced by 32.02% in 5th instar nymphs reared under the NZMF versus GMF. Interestingly, 5th instar nymphs that exhibited reduced feeding had significantly higher glucose levels (+16.98% and +20.05%; 24 h and 48 h after molting), which are associated with food aversion, and expression patterns of their appetite-related neuropeptide genes (neuropeptide F, down-regulated overall; short neuropeptide F, down-regulated overall; adipokinetic hormone, up-regulated overall; and adipokinetic hormone receptor, down-regulated overall) were also altered under the absence of GMF in a manner consistent with diminishing appetite. Moreover, the expressions of the potential magnetosensor cryptochromes (Crys) were found significantly altered under the absence of GMF, indicating the likely upstream signaling of the Cry-mediated magnetoreception mechanisms. These findings support the hypothesis that strong changes in GMF intensity can reduce adult body weight through affecting insect feeding behavior and underlying regulatory processes including appetite regulation. Our results highlight that GMF could be necessary for the maintenance of energy homeostasis in insects.
Collapse
Affiliation(s)
- Gui-Jun Wan
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Shou-Lin Jiang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Ming Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jing-Yu Zhao
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Ying-Chao Zhang
- Beijing Key Laboratory of Bioelectromagetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Wei-Dong Pan
- Beijing Key Laboratory of Bioelectromagetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX, U.S.A
| | - Fa-Jun Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Konowalczyk M, Foster Vander Elst O, Storey JG. Development of lock-in based overtone modulated MARY spectroscopy for detection of weak magnetic field effects. Phys Chem Chem Phys 2021; 23:1273-1284. [PMID: 33355552 DOI: 10.1039/d0cp04814c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modulated magnetically altered reaction yield (ModMARY) spectroscopy is a derivative variant of fluorescence detected magnetic field effect measurement, where the applied magnetic field has both a constant and a modulated component. As in many derivative spectroscopy techniques, the signal to noise ratio scales with the magnitude of the modulation. High modulation amplitudes, however, distort the signal and can obscure small features of the measured spectrum. In order to detect weak magnetic field effects (including the low field effect) a balance of the two has to be found. In this work we look in depth at the origin of the distortion of the MARY signal by field modulation. We then present an overtone detection scheme, as well as a data analysis method which allows for correct fitting of both harmonic and overtone signals of the modulation broadened MARY data. This allows us to robustly reconstruct the underlying MARY curve at different modulation depths. To illustrate the usefulness of the technique, we show measurements and analysis of a well known magnetosensitive system of pyrene/1,3-dicyanobenzene (Py/DCB). The measurements of first (h1) and second (h2) harmonic spectra are performed at different modulation depths for both natural isotopic abundance (PyH10), and perdeuterated (PyD10) pyrene samples.
Collapse
Affiliation(s)
- Marcin Konowalczyk
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, Oxford OX1 3QZ, UK. and Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, Oxford OX1 3QR, UK
| | | | - Jonathan G Storey
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, Oxford OX1 3QR, UK
| |
Collapse
|
19
|
Calderón-Garcidueñas L, González-Maciel A, Reynoso-Robles R, Hammond J, Kulesza R, Lachmann I, Torres-Jardón R, Mukherjee PS, Maher BA. Quadruple abnormal protein aggregates in brainstem pathology and exogenous metal-rich magnetic nanoparticles (and engineered Ti-rich nanorods). The substantia nigrae is a very early target in young urbanites and the gastrointestinal tract a key brainstem portal. ENVIRONMENTAL RESEARCH 2020; 191:110139. [PMID: 32888951 DOI: 10.1016/j.envres.2020.110139] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Fine particulate air pollution (PM2.5) exposures are linked with Alzheimer's and Parkinson's diseases (AD,PD). AD and PD neuropathological hallmarks are documented in children and young adults exposed lifelong to Metropolitan Mexico City air pollution; together with high frontal metal concentrations (especially iron)-rich nanoparticles (NP), matching air pollution combustion- and friction-derived particles. Here, we identify aberrant hyperphosphorylated tau, ɑ synuclein and TDP-43 in the brainstem of 186 Mexico City 27.29 ± 11.8y old residents. Critically, substantia nigrae (SN) pathology seen in mitochondria, endoplasmic reticulum and neuromelanin (NM) is co-associated with the abundant presence of exogenous, Fe-, Al- and Ti-rich NPs.The SN exhibits early and progressive neurovascular unit damage and mitochondria and NM are associated with metal-rich NPs including exogenous engineered Ti-rich nanorods, also identified in neuroenteric neurons. Such reactive, cytotoxic and magnetic NPs may act as catalysts for reactive oxygen species formation, altered cell signaling, and protein misfolding, aggregation and fibril formation. Hence, pervasive, airborne and environmental, metal-rich and magnetic nanoparticles may be a common denominator for quadruple misfolded protein neurodegenerative pathologies affecting urbanites from earliest childhood. The substantia nigrae is a very early target and the gastrointestinal tract (and the neuroenteric system) key brainstem portals. The ultimate neural damage and neuropathology (Alzheimer's, Parkinson's and TDP-43 pathology included) could depend on NP characteristics and the differential access and targets achieved via their portals of entry. Thus where you live, what air pollutants you are exposed to, what you are inhaling and swallowing from the air you breathe,what you eat, how you travel, and your occupational longlife history are key. Control of NP sources becomes critical.
Collapse
Affiliation(s)
| | | | | | - Jessica Hammond
- Centre for Environmental Magnetism and Paleomagnetism, Lancaster Environment Centre, University of Lancaster, Lancaster, LA1 4YQ, UK
| | - Randy Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | | | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, UNAM, Mexico City, 04510, Mexico
| | | | - Barbara A Maher
- Centre for Environmental Magnetism and Paleomagnetism, Lancaster Environment Centre, University of Lancaster, Lancaster, LA1 4YQ, UK
| |
Collapse
|
20
|
Zastko L, Makinistian L, Moravčíková A, Jakuš J, Belyaev I. Effect of Intermittent ELF MF on Umbilical Cord Blood Lymphocytes. Bioelectromagnetics 2020; 41:649-655. [PMID: 33190314 DOI: 10.1002/bem.22302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/11/2020] [Accepted: 10/10/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Lucián Zastko
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Leonardo Makinistian
- Department of Physics, Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis-CONICET, San Luis, Argentina
| | - Andrea Moravčíková
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ján Jakuš
- Department of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Igor Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
21
|
Novikov VV, Yablokova EV, Shaev IA, Fesenko EE. The Effect of a Weak Static Magnetic Field in the Range of Magnitudes from a “Zero” Field (0.01 μT) to 100 μT on the Production of Reactive Oxygen Species in Nonactivated Neutrophils. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920030161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
22
|
Righi H, Arruda-Neto JDT, Gomez JGC, da Silva LF, Somessari ESR, Lemos ACC. Exposure of Deinococcus radiodurans to both static magnetic fields and gamma radiation: observation of cell recuperation effects. J Biol Phys 2020; 46:309-324. [PMID: 32809182 DOI: 10.1007/s10867-020-09554-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/04/2020] [Indexed: 11/28/2022] Open
Abstract
The extremophilic bacterium Deinococcus radiodurans displays an extraordinary ability to withstand lethal radiation effects, due to its complex mechanisms for both proteome radiation protection and DNA repair. Published results obtained recently at this laboratory show that D. radiodurans submitted to ionizing radiation results in its DNA being shattered into small fragments which, when exposed to a "static electric field' (SEF), greatly decreases cell viability. These findings motivated the performing of D. radiodurans exposed to gamma radiation, yet exposed to a different exogenous physical agent, "static magnetic fields" (SMF). Cells of D. radiodurans [strain D.r. GY 9613 (R1)] in the exponential phase were submitted to 60Co gamma radiation from a gamma cell. Samples were exposed to doses in the interval 0.5-12.5 kGy, while the control samples were kept next to the irradiation setup. Exposures to SMF were carried out with intensities of 0.08 T and 0.8 T delivered by two settings: (a) a device built up at this laboratory with niobium magnets, delivering 0.08 T, and (b) an electromagnet (Walker Scientific) generating static magnetic fields with intensities from 0.1 to 0.8 T. All samples were placed in a bacteriological incubator at 30 °C for 48 h, and after incubation, a counting of colony forming units was performed. Two sets of cell surviving data were measured, each in triplicate, obtained in independent experiments. A remarkable similarity between the two data sets is revealed, underscoring reproducibility within the 5% range. Appraisal of raw data shows that exposure of irradiated cells to SMF substantially increases their viability. Data interpretation strongly suggests that the increase of D. radiodurans cell viability is a sole magnetic physical effect, driven by a stochastic process, improving the efficiency of the rejoining of DNA fragments, thus increasing cell viability. A type of cut-off dose is identified at 10 kGy, above which the irradiated cellular system loses recovery and the cell survival mechanism collapses.
Collapse
Affiliation(s)
- Henriette Righi
- Physics Institute, University of Sao Paulo, Sao Paulo, Brazil.,Institute for Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - José G C Gomez
- Institute for Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Luiziana F da Silva
- Institute for Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Aline C C Lemos
- Institute for Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
23
|
Vencloviene J, Radisauskas R, Vaiciulis V, Kiznys D, Bernotiene G, Kranciukaite-Butylkiniene D, Tamosiunas A. Associations between Quasi-biennial Oscillation phase, solar wind, geomagnetic activity, and the incidence of acute myocardial infarction. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2020; 64:1207-1220. [PMID: 32291532 DOI: 10.1007/s00484-020-01895-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/28/2020] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
An increase in the daily rate of acute myocardial infarction (AMI) has been observed during days of geomagnetic storm (GS). However, the analysis of associations between the daily number of AMI and geomagnetic activity (GMA) over longer periods sometimes yields controversial results. The study aimed to detect the complex association between the daily numbers of AMI and weather, the Quasi-biennial Oscillation (QBO) phase, GMA, and solar wind variables. We used data of Kaunas population-based Ischemic Heart Disease Register of residents of Kaunas city (Lithuania) for 2000-2012. The associations between weather and space weather variables and the daily number of AMI were evaluated by applying the multivariate Poisson regression. A higher risk of AMI was positively associated with active-stormy local GMA (rate ratio (RR) = 1.06 (95% CI 1.01-1.10)), solar wind dynamic pressure with a lag of 4 days (RR = 1.02 (1.01-1.04) per 1 nPa increase), and solar wind speed with a lag of 3-7 days (RR = 1.03 (1.01-1.05) per 100 km/s increase). A positive association was found between the west QBO phase and the risk of AMI during winter (RR = 1.08 (1.01-1.16)), and a negative association was observed between them during March-November (RR = 0.93 (0.90-0.97)). The risk of AMI positively associated with the GS due to stream interaction regions with a lag of 0-2 days during the east QBO phase (RR = 1.10, p = 0.046) and was negatively associated with them during the west QBO phase (RR = 0.82, p = 0.024). These results may help understand the population's sensitivity under different weather and space weather conditions. The QBO phase may modify the effect of GS.
Collapse
Affiliation(s)
- Jone Vencloviene
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu St. 15, LT-50103, Kaunas, Lithuania.
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Donelaicio St. 58, LT-44248, Kaunas, Lithuania.
| | - Ricardas Radisauskas
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu St. 15, LT-50103, Kaunas, Lithuania
- Department of Environmental and Occupational Medicine, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181, Kaunas, Lithuania
| | - Vidmantas Vaiciulis
- Department of Environmental and Occupational Medicine, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181, Kaunas, Lithuania
| | - Deivydas Kiznys
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Donelaicio St. 58, LT-44248, Kaunas, Lithuania
| | - Gailute Bernotiene
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu St. 15, LT-50103, Kaunas, Lithuania
| | - Daina Kranciukaite-Butylkiniene
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu St. 15, LT-50103, Kaunas, Lithuania
- Department of Family Medicine, Lithuanian University of Health Sciences, Eiveniu St. 2, LT-50009, Kaunas, Lithuania
| | - Abdonas Tamosiunas
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu St. 15, LT-50103, Kaunas, Lithuania
- Department of Preventive Medicine, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181, Kaunas, Lithuania
| |
Collapse
|
24
|
Nizhelska O, Marynchenko L, Piasetskyi V. Biological Risks of Using Non-Thermal Non-Ionizing Electromagnetic Fields. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2020. [DOI: 10.20535/ibb.2020.4.2.202452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
25
|
Sarimov R, Binhi V. Low‐Frequency Magnetic Fields in Cars and Office Premises and the Geomagnetic Field Variations. Bioelectromagnetics 2020; 41:360-368. [DOI: 10.1002/bem.22269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Ruslan Sarimov
- Prokhorov General Physics Institute of the Russian Academy of SciencesMoscow Russia
| | - Vladimir Binhi
- Prokhorov General Physics Institute of the Russian Academy of SciencesMoscow Russia
| |
Collapse
|
26
|
Kiznys D, Vencloviene J, Milvidaitė I. The associations of geomagnetic storms, fast solar wind, and stream interaction regions with cardiovascular characteristic in patients with acute coronary syndrome. LIFE SCIENCES IN SPACE RESEARCH 2020; 25:1-8. [PMID: 32414482 DOI: 10.1016/j.lssr.2020.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/14/2019] [Accepted: 01/16/2020] [Indexed: 06/11/2023]
Abstract
It is shown the statistical associations between space weather pattern and humans' cardiovascular system. We investigated the association between space weather events and cardiovascular characteristics of 4076 randomly selected patients with acute coronary syndrome (ACS) who were admitted for inpatient treatment in Kaunas city, Lithuania during 2000-2005. We hypothesized that days of the space weather events, 1-3 days after, and the period between two events, named as intersection days (1-3 days after the event, which coincided with 1-3 days before the event), might be associated with patients' cardiovascular characteristics. The multivariate logistic regression was applied, and the patients' risk was evaluated by odds ratio (OR), adjusting for age, sex, smoking status, the day of the week, and seasonality. During the intersection days of geomagnetic storms (GS), the risk of ACS increases in obese patients (OR=1.72, p = 0.008). The risk of ventricular fibrillation during admission was associated with stream interaction region (SIR) with a lag of 0-3 days (OR=1.44, p = 0.049) The risk of ACS in patients with chronic atrial fibrillation was associated with fast solar wind (FSW) (≥600 km/s) (lag 0-3 days, OR=1.39, p = 0.030) and with days of solar proton event (lag 0-3) going in conjunction with SIR (lag 0-3) (OR=2.06, p = 0.021). During days which were not assigned as GS with a lag of (-3 to 3) days, FSW (lag 0-3) was associated with the risk of ACS in patients with renal disease (OR=1.71, p = 0.008) and days of SIR - with the risk in patients with pulmonary disease (OR=1.53, p = 0.021). A SIR event, days between two space weather events, and FSW without GS may be associated with a risk to human health.
Collapse
Affiliation(s)
- Deivydas Kiznys
- Department of Environmental Sciences, Vytautas Magnus University, Donelaicio St. 58, Kaunas LT-44248, Lithuania.
| | - Jone Vencloviene
- Department of Environmental Sciences, Vytautas Magnus University, Donelaicio St. 58, Kaunas LT-44248, Lithuania.
| | - Irena Milvidaitė
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu str.17, Kaunas LT-50028, Lithuania.
| |
Collapse
|
27
|
Novikov VV, Yablokova EV, Fesenko EE. A Decrease of the Respiratory Burst in Neutrophils after Exposure to Weak Combined Magnetic Fields of a Certain Duration. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920010157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
Poznański RR, Brändas EJ. Panexperiential materialism: A physical exploration of qualitativeness in the brain. ADVANCES IN QUANTUM CHEMISTRY 2020. [DOI: 10.1016/bs.aiq.2020.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Guerra MF, Lacoste MG, Anzulovich AC, Makinistian L. Magnetic fields, cancer and circadian rhythms: hypotheses on the relevance of intermittence and cycling. Proc Biol Sci 2019; 286:20192337. [PMID: 31795871 DOI: 10.1098/rspb.2019.2337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- María Florencia Guerra
- Departamento de Física, Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis y Consejo Nacional de Investigaciones Científicas y Técnicas, Ejército de los Andes 950, 5700 San Luis, Argentina.,Laboratorio de Cronobiología, IMIBIO-SL (CONICET-UNSL), Ejército de los Andes 950, 5700 San Luis, Argentina
| | - María Gabriela Lacoste
- Laboratorio de Cronobiología, IMIBIO-SL (CONICET-UNSL), Ejército de los Andes 950, 5700 San Luis, Argentina.,Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Ana Cecilia Anzulovich
- Laboratorio de Cronobiología, IMIBIO-SL (CONICET-UNSL), Ejército de los Andes 950, 5700 San Luis, Argentina.,Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Leonardo Makinistian
- Departamento de Física, Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis y Consejo Nacional de Investigaciones Científicas y Técnicas, Ejército de los Andes 950, 5700 San Luis, Argentina
| |
Collapse
|
30
|
Binhi VN. Nonspecific magnetic biological effects: A model assuming the spin-orbit coupling. J Chem Phys 2019; 151:204101. [DOI: 10.1063/1.5127972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- V. N. Binhi
- Prokhorov General Physics Institute, Moscow 119991, Russian Federation
| |
Collapse
|
31
|
Marynchenko L, Nizhelska A, Shirinyan A, Makara V. Prospects of Using Biological Test-Systems for Evaluation of Effects of Electromagnetic Fields. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2019. [DOI: 10.20535/ibb.2019.3.2.169259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
32
|
Poznanski RR, Cacha LA, Latif AZA, Salleh SH, Ali J, Yupapin P, Tuszynski JA, Ariff TM. Molecular orbitals of delocalized electron clouds in neuronal domains. Biosystems 2019; 183:103982. [PMID: 31195028 DOI: 10.1016/j.biosystems.2019.103982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 02/08/2023]
Abstract
We have further developed the two-brains hypothesis as a form of complementarity (or complementary relationship) of endogenously induced weak magnetic fields in the electromagnetic brain. The locally induced magnetic field between electron magnetic dipole moments of delocalized electron clouds in neuronal domains is complementary to the exogenous electromagnetic waves created by the oscillating molecular dipoles in the electro-ionic brain. In this paper, we mathematically model the operation of the electromagnetic grid, especially in regard to the functional role of atomic orbitals of dipole-bound delocalized electrons. A quantum molecular dynamic approach under quantum equilibrium conditions is taken to illustrate phase differences between quasi-free electrons tethered to an oscillating molecular core. We use a simplified version of the many-body problem to analytically solve the macro-quantum wave equation (equivalent to the Kohn-Sham equation). The resultant solution for the mechanical angular momentum can be used to approximate the molecular orbital of the dipole-bound delocalized electrons. In addition to non-adiabatic motion of the molecular core, 'guidance waves' may contribute to the delocalized macro-quantum wave functions in generating nonlocal phase correlations. The intrinsic magnetic properties of the origins of the endogenous electromagnetic field are considered to be a nested hierarchy of electromagnetic fields that may also include electromagnetic patterns in three-dimensional space. The coupling between the two-brains may involve an 'anticipatory affect' based on the conceptualization of anticipation as potentiality, arising either from the macro-quantum potential energy or from the electrostatic effects of residual charges in the quantum and classical subsystems of the two-brains that occurs through partitioning of the potential energy of the combined quantum molecular dynamic system.
Collapse
Affiliation(s)
- Roman R Poznanski
- Faculty of Medicine, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia.
| | - Lleuvelyn A Cacha
- Faculty of Medicine, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia
| | - Ahmad Z A Latif
- Faculty of Medicine, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia
| | - Sheik H Salleh
- Centre for Biomedical Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Jalil Ali
- Laser Centre, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Preecha Yupapin
- Computational Optics Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Jack A Tuszynski
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R7, Canada; Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129, Torino, Italy
| | - Tengku M Ariff
- Faculty of Medicine, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
33
|
A new class of signals for magnetobiology research. Sci Rep 2019; 9:7478. [PMID: 31097756 DOI: 10.1038/s41598-019-43984-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/07/2019] [Indexed: 11/08/2022] Open
Abstract
The great majority of experimental and theoretical studies in magnetobiology explored and tried to explain bioeffects on organisms (ranging from bacteria to humans) upon exposure to variable (AC) magnetic fields (MF) with a pure sinusoidal waveform, typically combined with a static (DC) component. In this report, a new class of signals is presented and posed as a relevant candidate for research in magnetobiology. The proposed signals are derived within the classic theory of the precession of a magnetic moment in a DC + AC MF in a parallel configuration. They display a frequency modulation such that the phase change per unit time of the applied AC field is, at all times, identical to that of the precession of the magnetic moment to which the field was tuned (considering its gyromagnetic ratio). In other words, applied AC field and precession of the 'engaged' magnetic moment are phase-locked. These phase-locked frequency modulated (PLFM) signals are discussed in the context of current literature, and possible future experimental and theoretical developments are suggested.
Collapse
|
34
|
Novikov VV, Yablokova EV, Novikova NI, Fesenko EE. The Effects of Various Chemical Agents on Priming of Neutrophils Exposed to Weak Combined Magnetic Fields. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s000635091902012x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
35
|
Baranova E, Sarimov R, Gulevich A. Stress induced «railway for pre-ribosome export» structure as a new model for studying eukaryote ribosome biogenesis. AIMS BIOPHYSICS 2019. [DOI: 10.3934/biophy.2019.2.47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
36
|
Agliassa C, Maffei ME. Reduction of geomagnetic field (GMF) to near null magnetic field (NNMF) affects some Arabidopsis thaliana clock genes amplitude in a light independent manner. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:23-26. [PMID: 30530200 DOI: 10.1016/j.jplph.2018.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 05/20/2023]
Abstract
Plant endogenous clock consists of self-sustained interlocked transcriptional/translational feedback loops whose oscillation regulates many circadian processes, including gene expression. Its free running rhythm can be entrained by external cues, which can influence all clock parameters. Among external cues, the geomagnetic field (GMF) has been demonstrated to influence plant growth and development. We evaluated the quantitative expression (qRT-PCR) of three clock genes (LHY, GI and PRR7) in time-course experiments under either continuous darkness (CD) or long days (LD) conditions in Arabidopsis thaliana seedlings exposed to GMF (∼40 μT) and Near Null Magnetic Field (NNMF; ∼40 nT) conditions. Under both LD and CD conditions, reduction of GMF to NNMF prompted a significant increase of the gene expression of LHY and PRR7, whereas an opposite trend was found for GI gene expression. Exposure of Arabidopsis to NNMF altered clock gene amplitude, regardless the presence of light, by reinforcing the morning loop. Our data are consistent with the existence of a plant magnetoreceptor that affects the Arabidopsis endogenous clock.
Collapse
Affiliation(s)
- Chiara Agliassa
- Plant Physiology Unit, Dept. Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135 Turin, Italy
| | - Massimo E Maffei
- Plant Physiology Unit, Dept. Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135 Turin, Italy.
| |
Collapse
|