1
|
Tseng YH, Chien HC, Zhu GX. Comparative plastome analyses and phylogenetic insights of Elatostema. BMC PLANT BIOLOGY 2025; 25:537. [PMID: 40281442 PMCID: PMC12032637 DOI: 10.1186/s12870-025-06569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Elatostema, one of the largest genera in Urticaceae, comprises approximately 570 species. The taxonomic delimitation of Elatostema and its closely related genera, Elatostematoides and Procris and the infrageneric classification of Elatostema, have historically been challenging. Previous studies have been limited by insufficient molecular data, hindering our understanding of species-level relationships and the evolution of plastid genomes in this group. To address these limitations, we assembled and analyzed a comprehensive plastome analysis of 42 species across Elatostema and its allied genera. Our study focused on plastome structure, sequence diversity, and phylogenetic relationships to elucidate the evolutionary history of these taxa. RESULTS Our findings reveal that Elatostema plastomes exhibit a typical quadripartite structure, with genome sizes ranging from 149,152 bp to 164,019 bp. Comparative analysis of plastome structures across Elatostema and its related genera indicates high conservation in genome size, structure, gene content, and inverted repeat boundary configuration. Our findings indicate a strong association between the length of small single-copy (SSC) regions and phylogenetic grouping within Elatostema and between Elatostema, Elatostematoides and Procris. The length variations in the ndhF-rpl32, rpl32-trnL, and rps15-SSC/IRa regions may account for this observed correlation, highlighting the utility of SSC sequences in resolving phylogenetic relationships within this genus. Furthermore, we identified seven highly variable regions with potential as DNA barcodes for species identification and phylogenetic analysis. Our phylogenomic analysis provides robust support for the taxonomic delimitation of Elatostema s.l. into three distinct genera: Elatostema, Procris, and Elatostematoides. We also reconfirm the infrageneric classification of Elatostema into four major clades. CONCLUSIONS The utilization of plastome sequences has enabled a highly resolved phylogenetic framework, shedding light on the evolutionary history and speciation mechanism within Elatostema, particularly its species-rich core Elatostema clade. These findings provide a valuable foundation for future taxonomic revisions and evolutionary studies within this challenging plant group.
Collapse
Affiliation(s)
- Yu-Hsin Tseng
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Han-Chun Chien
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Geng-Xi Zhu
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
2
|
Yin DP, Li MZ, Cao Y, Li H, Wu YZ, Li JY, Chen T, Jia Q, Wang D. Chloroplast-nuclear genome interaction drives asymmetric inverted repeats in chloroplast genome of Huperzia. Gene 2025; 946:149324. [PMID: 39938759 DOI: 10.1016/j.gene.2025.149324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
Huperzia plants are important natural medicine species that have attracted increased amounts of attention due to the presence of huperzine A (Hup A), which efficiently, selectively, and reversibly inhibits acetylcholinesterase activity. However, due to the complexity of the genome structure and lack of genetic information, the phylogenetic and evolutionary relationships of Huperzia species are still unclear. In this study, seven chloroplast genome structures of Huperzia were verified and comparatively analyzed, and the phylogenetic relationships between Huperzia and other related ferns were evaluated. The results showed that a 58 kb insertion in the middle of the IRb region in the seven chloroplast genomes led to large differences in sequence size, GC content and tRNA number between IRa and IRb. All seven chloroplast genomes exhibited asymmetric structural conformations in the IR regions. We used sequence alignment and screening of the organelle and nuclear genomes to identify the source of the gene. The inserted sequence had no homologous region with the mitochondrial genome, and the same sequence as another segment was found in the nuclear genome. Then, the chloroplast genomes of Huperzia were comparatively analyzed. Phylogenetic tree showed that Phlegmariurus and Huperzia were closely related and belonged to the same branch. H. javanica and Huperzia serrata are closely related. From the perspective of phylogenetic tree, their phylogenetic relationship is closely related to geographical distribution. In conclusion, this study provides insights into the interaction mechanism between chloroplast genome and nuclear genome and the phylogeny of Huperzia. In addition, by comparing the chloroplast genomes of Huperzia, we analyzed its genetic diversity and provided important molecular information for the protection of these endangered species.
Collapse
Affiliation(s)
- Deng-Pan Yin
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| | - Mu-Zi Li
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| | - Yu Cao
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| | - Haibo Li
- Yuyao Seedling Management Station, Ningbo, Zhejiang 315400, China.
| | - Ya-Zhu Wu
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| | - Jun-Yi Li
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| | - Tongtong Chen
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| | - Qiaojun Jia
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| | - Dekai Wang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
3
|
Kipkoech A, Li K, Milne RI, Oyebanji OO, Wambulwa MC, Fu XG, Wakhungu DA, Wu ZY, Liu J. An integrative approach clarifies species delimitation and biogeographic history of Debregeasia (Urticaceae). PLANT DIVERSITY 2025; 47:229-243. [PMID: 40182483 PMCID: PMC11962966 DOI: 10.1016/j.pld.2024.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 04/05/2025]
Abstract
Integrative data from plastid and nuclear loci are increasingly utilized to resolve species boundaries and phylogenetic relationships within major angiosperm clades. Debregeasia (Urticaceae), an economically important genus, presents challenges in species delimitation due to its overlapping morphological traits and unstable taxonomic assignments. Here, we analyzed 14 morphological traits and generated 12 data matrices from the plastomes and nrDNA using genome skimming from the nine recognized morphospecies to clarify species boundaries and assess barcode performance in Debregeasia. We also used a universal set of 353 nuclear genes to explore reticulate evolution and biogeographic history of Debregeasia. Plastomes of Debregeasia exhibited the typical quadripartite structure with conserved gene content and marginal independent variations in the SC/IR boundary at inter- and intra-specific levels. Three Debregeasia species were non-monophyletic and could not be discerned by any barcode; however, ultra-barcodes identified the remaining six (67%), outperforming standard barcodes (56%). Our phylogenetic analyses placed Debregeasia wallichiana outside the genus and suggested six monophyletic clades in Debregeasia, although the placement between Debregeasia hekouensis and Debregeasia libera varied. There was extensive trait overlap in key morphologically diagnostic characters, with reticulation analysis showing potentially pervasive hybridization, likely influenced by speciation patterns and overlaps between species ranges. We inferred that Debregeasia crown diversification began at ca. 12.82 Ma (95% HPD: 11.54-14.63 Ma) in the mid-Miocene within Australia, followed by vicariance and later long-distance dispersal, mainly out of southern China. Our findings highlight the utility of genomic data with integrative lines of evidence to refine species delimitation and explore evolutionary relationships in complex plant lineages.
Collapse
Affiliation(s)
- Amos Kipkoech
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Ke Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| | - Richard I. Milne
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JH, UK
| | - Oyetola Olusegun Oyebanji
- Department of Biology, University of Louisiana, Lafayette, LA, USA
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Moses C. Wambulwa
- Department of Life Sciences, School of Science and Computing, South Eastern Kenya University, Kitui, Kenya
| | - Xiao-Gang Fu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Dennis A. Wakhungu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Zeng-Yuan Wu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Jie Liu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| |
Collapse
|
4
|
Park S, Park S. Comparative and Adaptive Analyses of the Complete Chloroplast Genome Diversity in Sium serra. Genes (Basel) 2024; 15:1567. [PMID: 39766834 PMCID: PMC11728278 DOI: 10.3390/genes15121567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES Sium serra is distributed in Korea, China, and Japan. It was first identified as the genus Pimpinella and then reclassified as Sium by Kitagawa. Some Sium species are used as herbal medicine and are often confused with the similar form Ligusticum sinense. In this study, we analyzed the cp genome of S. serra and conducted comparative analyses with the cp genomes of related taxa. METHODS We extracted gDNA from fresh leaves and sequenced it using Illumina HiSeq2500. For the chloroplast genome assembly, de novo assembly was performed using Velvet v1.2.07. For the annotation, GeSeq and NCBI BLASTN were used. Afterwards, related taxa were analyzed using programs such as DnaSP and MISA. RESULTS S. serra was excluded from the study on the chloroplast (cp) genome in Sium because it was classified as Pimpinella in China. Therefore, this study aimed to analyze the cp genome of S. serra for the first time and its location within the genus Sium. The complete cp genome of S. serra was 154,755 bp in length, including a pair of inverted repeats, each 26,255 bp, a large single-copy region of 84,581 bp, and a small single-copy region of 17,664 bp. The cp genome comprised 79 protein-coding, 30 tRNA, and 4 rRNA genes. Furthermore, six regions of high nucleotide diversity were identified in the genus Sium. In the genus Sium, 1630 repeats that can serve as markers were also identified. Eight protein-coding genes with high KA/KS values were under positive selection in the Sium. Our phylogenetic analyses suggest that S. serra was positioned with high bootstrap support within the Sium of the tribe Oenantheae, specifically in the southern Palearctic subclade. CONCLUSIONS In this study, the S. serra chloroplast genome was sequenced and assembled. The genus Sium formed a monophyletic group; however, as not all the Sium species were included in this study, further research is necessary. This study can serve as foundational data not only for Sium but also for the tribe Oenantheae.
Collapse
Affiliation(s)
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Republic of Korea;
| |
Collapse
|
5
|
Noroozi M, Ghahremaninejad F, Riahi M, Cohen JI. Phylogenomics and plastome evolution of Lithospermeae (Boraginaceae). BMC PLANT BIOLOGY 2024; 24:957. [PMID: 39396939 PMCID: PMC11475214 DOI: 10.1186/s12870-024-05665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Lithospermeae is the largest tribe within Boraginaceae. The tribe has been the focus of multiple phylogenetic studies over the last 15 years, with most focused on one genus or a few genera. In the present study, we newly sequenced 69 species of Lithospermeae and relatives to analyze the phylogenomic relationships among its members as well as the evolution of the plastid genome. RESULTS The phylogeny of Lithospermeae resolved from the plastid genome and nrDNA cistron is generally congruent with prior studies, but is better resolved and supported. Increasing character sampling across the plastid genome results in gradually more similar trees to that from the entire plastid genome. Overall, plastid genome structure was quite consistent across Lithospermeae. Codon Usage Bias (CUB) analyses demonstrate that across Lithospermeae plastid genomes were rich in AT and poor in GC. Mutation may play a greater role than selection across the plastid genome of Lithospermeae. The present study is the first to highlight the CUB characteristics of Lithospermeae species, which can help elucidate the mechanisms underlying patterns of molecular evolution and improve the expression levels of exogenous genes by codon optimization. CONCLUSIONS This study provides a comprehensive phylogenomic analysis of Lithospermeae, significantly enhancing our understanding of the phylogenetic relationships and plastid genome evolution within this largest tribe of Boraginaceae. By utilizing an expanded genomic sampling approach, we have achieved increased resolution and support among the evolutionary relationships of the tribe, in line with but improving upon previous studies. The analyses of plastid genome structure revealed consistency across Lithospermeae, with a notable CUB. This study marks the first investigation into the CUB of Lithospermeae species and sets the stage for further research on the molecular evolution of plastid genomes across Boraginaceae.
Collapse
Affiliation(s)
- Maryam Noroozi
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911, Iran
| | - Farrokh Ghahremaninejad
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911, Iran.
| | - Mehrshid Riahi
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911, Iran
| | - James I Cohen
- Department of Botany and Plant Ecology, Weber State University, 1415 Edvalson St., Dept. 2504, Ogden, UT, 84408, USA
| |
Collapse
|
6
|
Mano H, Boltenkov EV, Marchuk EA, Nakamura K, Yoichi W. The complete chloroplast genome sequence of Hypecoum erectum L. (Papaveraceae). Mitochondrial DNA B Resour 2024; 9:1010-1014. [PMID: 39113749 PMCID: PMC11305052 DOI: 10.1080/23802359.2024.2386410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Hypecoum erectum L., a widespread species in northern Eurasia, is a valuable medicinal plant, but its chloroplast genome has not previously been reported. We determined its complete chloroplast genome using a high-throughput sequencing technique. Its total length was 169,241 bp, consisting of a large single-copy region of 93,301 bp and a small single-copy region of 17,316 bp, separated by a pair of inverted repeat regions of 29,312 bp. A total of 140 genes were annotated, including 91 protein coding genes, 41 tRNA genes, and eight rRNA genes. The phylogenetic analysis shows that H. erectum and H. zhukanum of the subfamily Hypecoideae are monophyletic with the highest support.
Collapse
Affiliation(s)
- Haruto Mano
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Eugeny V. Boltenkov
- Botanical Garden-Institute, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Elena A. Marchuk
- Botanical Garden-Institute, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Koh Nakamura
- Botanic Garden, Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Watanabe Yoichi
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| |
Collapse
|
7
|
Wang J, Kan S, Kong J, Nie L, Fan W, Ren Y, Reeve W, Mower JP, Wu Z. Accumulation of Large Lineage-Specific Repeats Coincides with Sequence Acceleration and Structural Rearrangement in Plantago Plastomes. Genome Biol Evol 2024; 16:evae177. [PMID: 39190481 PMCID: PMC11354287 DOI: 10.1093/gbe/evae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Repeats can mediate rearrangements and recombination in plant mitochondrial genomes and plastid genomes. While repeat accumulations are linked to heightened evolutionary rates and complex structures in specific lineages, debates persist regarding the extent of their influence on sequence and structural evolution. In this study, 75 Plantago plastomes were analyzed to investigate the relationships between repeats, nucleotide substitution rates, and structural variations. Extensive repeat accumulations were associated with significant rearrangements and inversions in the large inverted repeats (IRs), suggesting that repeats contribute to rearrangement hotspots. Repeats caused infrequent recombination that potentially led to substoichiometric shifting, supported by long-read sequencing. Repeats were implicated in elevating evolutionary rates by facilitating localized hypermutation, likely through DNA damage and repair processes. This study also observed a decrease in nucleotide substitution rates for loci translocating into IRs, supporting the role of biased gene conversion in maintaining lower substitution rates. Combined with known parallel changes in mitogenomes, it is proposed that potential dysfunction in nuclear-encoded genes associated with DNA replication, recombination, and repair may drive the evolution of Plantago organellar genomes. These findings contribute to understanding how repeats impact organellar evolution and stability, particularly in rapidly evolving plant lineages.
Collapse
Affiliation(s)
- Jie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA 6150, Australia
- College of Environmental and Life Sciences, Murdoch University, Perth, WA 6150, Australia
| | - Shenglong Kan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Marine College, Shandong University, Weihai 264209, China
| | - Jiali Kong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Liyun Nie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA 6150, Australia
| | - Weishu Fan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yonglin Ren
- College of Environmental and Life Sciences, Murdoch University, Perth, WA 6150, Australia
| | - Wayne Reeve
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA 6150, Australia
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
8
|
Lee SR, Oh A, Son DC. Characterization, comparison, and phylogenetic analyses of chloroplast genomes of Euphorbia species. Sci Rep 2024; 14:15352. [PMID: 38961172 PMCID: PMC11222452 DOI: 10.1038/s41598-024-66102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
The genus Euphorbia (Euphorbiaceae) has near-cosmopolitan distribution and serves as a significant resource for both ornamental and medicinal purposes. Despite its economic importance, Euphorbia's taxonomy has long been challenged by the intricate nature of morphological traits exhibiting high levels of convergence. While molecular markers are essential for phylogenetic studies, their availability for Euphorbia has been limited. To address this gap, we conducted comparative analyses focusing on the chloroplast (CP) genomes of nine Euphorbia species, incorporating three newly sequenced and annotated accessions. In addition, phylogenetic informativeness and nucleotide diversity were computed to identify candidate markers for phylogenetic analyses among closely related taxa in the genus. Our investigation revealed relatively conserved sizes and structures of CP genomes across the studied species, with notable interspecific variations observed primarily in non-coding regions and IR/SC borders. By leveraging phylogenetic informativeness and nucleotide diversity, we identified rpoB gene as the optimal candidate for species delimitation and shallow-level phylogenetic inference within the genus. Through this comprehensive analysis of CP genomes across multiple taxa, our study sheds light on the evolutionary dynamics and taxonomic intricacies of Euphorbia, offering valuable insights into its CP genome evolution and taxonomy.
Collapse
Affiliation(s)
- Soo-Rang Lee
- Department of Biology Education, College of Education, Chosun University, Gwangju, 61452, Republic of Korea.
| | - Ami Oh
- Department of Biology Education, College of Education, Chosun University, Gwangju, 61452, Republic of Korea
| | - Dong Chan Son
- Division of Forest Biodiversity and Herbarium, Korea National Arboretum, Pocheon, 11186, Republic of Korea.
| |
Collapse
|
9
|
Cao Z, Qu Y, Song Y, Xin P. Comparative genomics and phylogenetic analysis of chloroplast genomes of Asian Caryodaphnopsis taxa (Lauraceae). Gene 2024; 907:148259. [PMID: 38346458 DOI: 10.1016/j.gene.2024.148259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
The genus Caryodaphnopsis, a member of the Lauraceae family, is characterized by seeds that are rich in oil, as well as highly exploitable fruits and wood. The Asian taxa within this genus exhibit complex morphological variations, posing challenges to their accurate classification and impeding their effective use and development as a resource. In this study, we sequenced the chloroplast genomes of 31 individuals representing nine Asian taxa within the Caryodaphnopsis genus. Our primary objectives were to reveal structural variations in these chloroplast genomes through comparative analyses and to infer the species' phylogenetic relationships. Our findings revealed that all chloroplast genomes had a tetrad structure, ranged in length from 148,828 to 154,946 bp, and harbored 128-131 genes. Notably, contraction of the IR region led to the absence of some genes in eight taxa. A comprehensive analysis identified 1267 long repetitive sequences and 2176 SSRs, 286 SNPs, and 135 indels across the 31 chloroplast genomes. The Ka/Ks ratio analysis indicated potential positive selection on the matK, rpl22, and rpoC2 genes. Furthermore, we identified six variable regions as promising barcode regions. Phylogenetic analysis grouped the nine Asian taxa into six branches, with C. henryi forming the basal group from which three distinct complexes emerged. This study contributes significantly to the current understanding of the evolutionary dynamics and phylogenetic relationships within the genus Caryodaphnopsis. Furthermore, the identified molecular markers hold potential for molecular barcoding applications in population genetics, providing valuable tools for future research and conservation efforts within this diverse genus.
Collapse
Affiliation(s)
- Zhengying Cao
- Southwest Research Center for Landscape Architecture Engineering, National Forestry and Grassland Administration, Southwest Forestry University, Kunming, China; Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Yaya Qu
- Southwest Research Center for Landscape Architecture Engineering, National Forestry and Grassland Administration, Southwest Forestry University, Kunming, China; Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Yu Song
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education), Guangxi Normal University, Guilin, Guangxi, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, China.
| | - Peiyao Xin
- Southwest Research Center for Landscape Architecture Engineering, National Forestry and Grassland Administration, Southwest Forestry University, Kunming, China; Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China.
| |
Collapse
|
10
|
Li ZZ, Xu Z, Wu S, Yuan LX, Zou CY, Liu Y, Lin JY, Liang SC. Molecular analyses display the increasing diversity of Podostemaceae in China. PLANT DIVERSITY 2024; 46:421-424. [PMID: 38798722 PMCID: PMC11119515 DOI: 10.1016/j.pld.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 05/29/2024]
Abstract
•Four newly recorded species of Podostemaceae from southern China were identified by molecular and morphological evidence.•17 plastomes of Podostemaceae were newly sequenced and two novel polymorphic barcodes (ccsA and ndhA) detected.•Our findings reveal greater species richness (15 species from five genera) of Podostemaceae in China and supply molecular resources for research on taxonomy and phylogenomics of this enigmatic aquatic family.
Collapse
Affiliation(s)
- Zhi-Zhong Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541006, China
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhun Xu
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Shuang Wu
- Guangxi Association for Science and Technology, Nanning 530023, China
| | - Lang-Xing Yuan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Chun-Yu Zou
- Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin 541006, China
| | - Yan Liu
- Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin 541006, China
| | - Jian-Yong Lin
- Guangxi Forestry Research Institute, Nanning 530028, China
| | - Shi-Chu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541006, China
| |
Collapse
|
11
|
Han S, Zhang S, Yi R, Bi D, Ding H, Yang J, Ye Y, Xu W, Wu L, Zhuo R, Kan X. Phylogenomics and plastomics offer new evolutionary perspectives on Kalanchoideae (Crassulaceae). ANNALS OF BOTANY 2024; 133:585-604. [PMID: 38359907 PMCID: PMC11037489 DOI: 10.1093/aob/mcae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND AND AIMS Kalanchoideae is one of three subfamilies within Crassulaceae and contains four genera. Despite previous efforts, the phylogeny of Kalanchoideae remains inadequately resolved with persistent issues including low support, unstructured topologies and polytomies. This study aimed to address two central objectives: (1) resolving the pending phylogenetic questions within Kalanchoideae by using organelle-scale 'barcodes' (plastomes) and nuclear data; and (2) investigating interspecific diversity patterns among Kalanchoideae plastomes. METHODS To explore the plastome evolution in Kalanchoideae, we newly sequenced 38 plastomes representing all four constituent genera (Adromischus, Cotyledon, Kalanchoe and Tylecodon). We performed comparative analyses of plastomic features, including GC and gene contents, gene distributions at the IR (inverted repeat) boundaries, nucleotide divergence, plastomic tRNA (pttRNA) structures and codon aversions. Additionally, phylogenetic inferences were inferred using both the plastomic dataset (79 genes) and nuclear dataset (1054 genes). KEY RESULTS Significant heterogeneities were observed in plastome lengths among Kalanchoideae, strongly correlated with LSC (large single copy) lengths. Informative diversities existed in the gene content at SSC/IRa (small single copy/inverted repeat a), with unique patterns individually identified in Adromischus leucophyllus and one major Kalanchoe clade. The ycf1 gene was assessed as a shared hypervariable region among all four genera, containing nine lineage-specific indels. Three pttRNAs exhibited unique structures specific to Kalanchoideae and the genera Adromischus and Kalanchoe. Moreover, 24 coding sequences revealed a total of 41 lineage-specific unused codons across all four constituent genera. The phyloplastomic inferences clearly depicted internal branching patterns in Kalanchoideae. Most notably, by both plastid- and nuclear-based phylogenies, our research offers the first evidence that Kalanchoe section Eukalanchoe is not monophyletic. CONCLUSIONS This study conducted comprehensive analyses on 38 newly reported Kalanchoideae plastomes. Importantly, our results not only reconstructed well-resolved phylogenies within Kalanchoideae, but also identified highly informative unique markers at the subfamily, genus and species levels. These findings significantly enhance our understanding of the evolutionary history of Kalanchoideae.
Collapse
Affiliation(s)
- Shiyun Han
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Sijia Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ran Yi
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - De Bi
- Suzhou Polytechnic Institute of Agriculture, Suzhou 215000, China
| | - Hengwu Ding
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jianke Yang
- School of Basic Medical Sciences, Wannan Medical College, Wuhu 241000, China
| | - Yuanxin Ye
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Wenzhong Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Longhua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xianzhao Kan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
12
|
Gu X, Li L, Zhong X, Su Y, Wang T. The size diversity of the Pteridaceae family chloroplast genome is caused by overlong intergenic spacers. BMC Genomics 2024; 25:396. [PMID: 38649816 PMCID: PMC11036588 DOI: 10.1186/s12864-024-10296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND While the size of chloroplast genomes (cpDNAs) is often influenced by the expansion and contraction of inverted repeat regions and the enrichment of repeats, it is the intergenic spacers (IGSs) that appear to play a pivotal role in determining the size of Pteridaceae cpDNAs. This provides an opportunity to delve into the evolution of chloroplast genomic structures of the Pteridaceae family. This study added five Pteridaceae species, comparing them with 36 published counterparts. RESULTS Poor alignment in the non-coding regions of the Pteridaceae family was observed, and this was attributed to the widespread presence of overlong IGSs in Pteridaceae cpDNAs. These overlong IGSs were identified as a major factor influencing variations in cpDNA size. In comparison to non-expanded IGSs, overlong IGSs exhibited significantly higher GC content and were rich in repetitive sequences. Species divergence time estimations suggest that these overlong IGSs may have already existed during the early radiation of the Pteridaceae family. CONCLUSIONS This study reveals new insights into the genetic variation, evolutionary history, and dynamic changes in the cpDNA structure of the Pteridaceae family, providing a fundamental resource for further exploring its evolutionary research.
Collapse
Affiliation(s)
- Xiaolin Gu
- College of Life Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Lingling Li
- College of Life Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Xiaona Zhong
- College of Life Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China.
- Research Institute of Sun Yat-sen University in Shenzhen, 518057, Shenzhen, China.
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, 510642, Guangzhou, China.
| |
Collapse
|
13
|
Long J, He WC, Peng HW, Erst AS, Wang W, Xiang KL. Comparative plastome analysis of the sister genera Ceratocephala and Myosurus (Ranunculaceae) reveals signals of adaptive evolution to arid and aquatic environments. BMC PLANT BIOLOGY 2024; 24:202. [PMID: 38509479 PMCID: PMC10953084 DOI: 10.1186/s12870-024-04891-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Expansion and contraction of inverted repeats can cause considerable variation of plastid genomes (plastomes) in angiosperms. However, little is known about whether structural variations of plastomes are associated with adaptation to or occupancy of new environments. Moreover, adaptive evolution of angiosperm plastid genes remains poorly understood. Here, we sequenced the complete plastomes for four species of xerophytic Ceratocephala and hydrophytic Myosurus, as well as Ficaria verna. By an integration of phylogenomic, comparative genomic, and selection pressure analyses, we investigated evolutionary patterns of plastomes in Ranunculeae and their relationships with adaptation to dry and aquatic habitats. RESULTS Owing to the significant contraction of the boundary of IRA/LSC towards the IRA, plastome sizes and IR lengths of Myosurus and Ceratocephala are smaller within Ranunculeae. Compared to other Ranunculeae, the Myosurus plastome lost clpP and rps16, one copy of rpl2 and rpl23, and one intron of rpoC1 and rpl16, and the Ceratocephala plastome added an infA gene and lost one copy of rpl2 and two introns of clpP. A total of 11 plastid genes (14%) showed positive selection, two genes common to Myosurus and Ceratocephala, seven in Ceratocephala only, and two in Myosurus only. Four genes showed strong signals of episodic positive selection. The rps7 gene of Ceratocephala and the rpl32 and ycf4 genes of Myosurus showed an increase in the rate of variation close to 3.3 Ma. CONCLUSIONS The plastomic structure variations as well as the positive selection of two plastid genes might be related to the colonization of new environments by the common ancestor of Ceratocephala and Myosurus. The seven and two genes under positive selection might be related to the adaptation to dry and aquatic habitats in Ceratocephala and Myosurus, respectively. Moreover, intensified aridity and frequent sea-level fluctuations, as well as global cooling, might have favored an increased rate of change in some genes at about 3.3 Ma, associated with adaptation to dry and aquatic environments, respectively. These findings suggest that changing environments might have influenced structural variations of plastomes and fixed new mutations arising on some plastid genes owing to adaptation to specific habitats.
Collapse
Affiliation(s)
- Jing Long
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Wen-Chuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Huan-Wen Peng
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Andrey S Erst
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, Zolotodolinskaya Str. 101, Novosibirsk, 630090, Russia
| | - Wei Wang
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- China National Botanical Garden, Beijing, 100093, China.
| | - Kun-Li Xiang
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
14
|
Cao J, Wang H, Cao Y, Kan S, Li J, Liu Y. Extreme Reconfiguration of Plastid Genomes in Papaveraceae: Rearrangements, Gene Loss, Pseudogenization, IR Expansion, and Repeats. Int J Mol Sci 2024; 25:2278. [PMID: 38396955 PMCID: PMC10888665 DOI: 10.3390/ijms25042278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
The plastid genomes (plastomes) of angiosperms are typically highly conserved, with extreme reconfiguration being uncommon, although reports of such events have emerged in some lineages. In this study, we conducted a comprehensive comparison of the complete plastomes from twenty-two species, covering seventeen genera from three subfamilies (Fumarioideae, Hypecooideae, and Papaveroideae) of Papaveraceae. Our results revealed a high level of variability in the plastid genome size of Papaveraceae, ranging from 151,864 bp to 219,144 bp in length, which might be triggered by the expansion of the IR region and a large number of repeat sequences. Moreover, we detected numerous large-scale rearrangements, primarily occurring in the plastomes of Fumarioideae and Hypecooideae. Frequent gene loss or pseudogenization were also observed for ndhs, accD, clpP, infA, rpl2, rpl20, rpl32, rps16, and several tRNA genes, particularly in Fumarioideae and Hypecooideae, which might be associated with the structural variation in their plastomes. Furthermore, we found that the plastomes of Fumarioideae exhibited a higher GC content and more repeat sequences than those of Papaveroideae. Our results showed that Papaveroideae generally displayed a relatively conserved plastome, with the exception of Eomecon chionantha, while Fumarioideae and Hypecooideae typically harbored highly reconfigurable plastomes, showing high variability in the genome size, gene content, and gene order. This study provides insights into the plastome evolution of Papaveraceae and may contribute to the development of effective molecular markers.
Collapse
Affiliation(s)
- Jialiang Cao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (J.C.); (H.W.); (Y.C.)
| | - Hongwei Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (J.C.); (H.W.); (Y.C.)
| | - Yanan Cao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (J.C.); (H.W.); (Y.C.)
| | - Shenglong Kan
- Marine College, Shandong University, Weihai 264209, China;
| | - Jiamei Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanyan Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (J.C.); (H.W.); (Y.C.)
| |
Collapse
|
15
|
Yang W, Zou J, Wang J, Li N, Luo X, Jiang X, Li S. Variation in Rice Plastid Genomes in Wide Crossing Reveals Dynamic Nucleo-Cytoplasmic Interaction. Genes (Basel) 2023; 14:1411. [PMID: 37510315 PMCID: PMC10379430 DOI: 10.3390/genes14071411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Plastid genomes (plastomes) of angiosperms are well known for their relative stability in size, structure, and gene content. However, little is known about their heredity and variations in wide crossing. To such an end, the plastomes of five representative rice backcross inbred lines (BILs) developed from crosses of O. glaberrima/O. sativa were analyzed. We found that the size of all plastomes was about 134,580 bp, with a quadripartite structure that included a pair of inverted repeat (IR) regions, a small single-copy (SSC) region and a large single-copy (LSC) region. They contained 76 protein genes, 4 rRNA genes, and 30 tRNA genes. Although their size, structure, and gene content were stable, repeat-mediated recombination, gene expression, and RNA editing were extensively changed between the maternal line and the BILs. These novel discoveries demonstrate that wide crossing causes not only nuclear genomic recombination, but also plastome variation in plants, and that the plastome plays a critical role in coordinating the nuclear-cytoplasmic interaction.
Collapse
Affiliation(s)
- Weilong Yang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518036, China
| | - Jianing Zou
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Jiajia Wang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Nengwu Li
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Xiaoyun Luo
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Xiaofen Jiang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| |
Collapse
|
16
|
Cao Z, Yang L, Xin Y, Xu W, Li Q, Zhang H, Tu Y, Song Y, Xin P. Comparative and phylogenetic analysis of complete chloroplast genomes from seven Neocinnamomum taxa (Lauraceae). FRONTIERS IN PLANT SCIENCE 2023; 14:1205051. [PMID: 37484476 PMCID: PMC10362447 DOI: 10.3389/fpls.2023.1205051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/29/2023] [Indexed: 07/25/2023]
Abstract
The genus Neocinnamomum is considered to be one of the most enigmatic groups in Lauraceae, mainly distributed in tropical and subtropical regions of Southeast Asia. The genus contains valuable oilseed and medicinal tree species. However, there are few studies on the genus Neocinnamomum at present, and its interspecific relationship is still unclear. In order to explore the genetic structure and evolutionary characteristics of the Neocinnamomum chloroplast genome and to resolve the species relationships within the genus, comparative genomic and phylogenetic analyses were performed on the whole chloroplast genome sequences of 51 samples representing seven Neocinnamomum taxa. The whole Neocinnamomum chloroplast genome size ranged from 150,753-150,956 bp, with a GC content of 38.8%-38.9%. A total of 128 genes were annotated within the Neocinnamomum chloroplast genome, including 84 protein coding genes, 8 rRNA genes, and 36 tRNA genes. Between 71-82 SSRs were detected, among which A/T base repeats were the most common. The chloroplast genome contained a total of 31 preferred codons. Three highly variable regions, trnN-GUU-ndhF, petA-psbJ, and ccsA-ndhD, were identified with Pi values > 0.004. Based on the whole chloroplast genome phylogenetic tree, the phylogenetic relationships among the seven Neocinnamomum taxa were determined. N. delavayi and N. fargesii were the most closely related species, and N. lecomtei was identified as the most basal taxon. In this study, the characteristics and sequence variation of the chloroplast genomes of seven Neocinnamomum taxa were revealed, and the genetic relationship among the species was clarified. The results of this study will provide a reference for subsequent molecular marker development and phylogenetic research of Neocinnamomum.
Collapse
Affiliation(s)
- Zhengying Cao
- Southwest Research Center for Landscape Architecture Engineering, National Forestry and Grassland Administration, Southwest Forestry University, Kunming, China
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Linyi Yang
- Yunnan Forestry Vocational and Technical College, Kunming, Yunnan, China
| | - Yaxuan Xin
- Southwest Research Center for Landscape Architecture Engineering, National Forestry and Grassland Administration, Southwest Forestry University, Kunming, China
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Wenbin Xu
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qishao Li
- Southwest Research Center for Landscape Architecture Engineering, National Forestry and Grassland Administration, Southwest Forestry University, Kunming, China
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Haorong Zhang
- Southwest Research Center for Landscape Architecture Engineering, National Forestry and Grassland Administration, Southwest Forestry University, Kunming, China
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Yuxiang Tu
- Southwest Research Center for Landscape Architecture Engineering, National Forestry and Grassland Administration, Southwest Forestry University, Kunming, China
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Yu Song
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, China
| | - Peiyao Xin
- Southwest Research Center for Landscape Architecture Engineering, National Forestry and Grassland Administration, Southwest Forestry University, Kunming, China
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
17
|
Zhang H, Si Y, Zhao R, Sheng Q, Zhu Z. Complete chloroplast genome and phylogenetic relationship of Nymphaea nouchali (Nymphaeaceae), a rare species of water lily in China. Gene 2023; 858:147139. [PMID: 36621658 DOI: 10.1016/j.gene.2022.147139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023]
Abstract
Nymphaea nouchali is a native species of Chinese water lily with important ornamental, economical, and medicinal purposes. However, due to the serious disturbance by alien biological invasion and human factors, N. nouchali is in an endangered state in China and urgently needs to be protected. Here, we reported the complete chloroplast genome of N. nouchali for the first time, and we found that its plastome is 159 978 bp long, comprising large and small single copies and two inverted repeats (90 001, 19 603, and 50 374 bp, respectively), indicating a typical tetrad structure. In total, 130 genes were identified, including 85 protein-coding genes, 37 transfer RNAs, and 8 ribosomal RNAs. Additionally, 136 simple sequence repeat sites were identified, composed mainly of single nucleotide (46.32%) and trinucleotide (47.05%) sequences. Five highly variable sites (psaI, rps19, ndhF, rps15, and ycf1) with a high Pi value were identified as potential molecular markers. Phylogenetic analysis showed that N. nouchali and N. ampla are closely related, and further validated previous water lily classification results based on morphological characteristics, which divided water lilies into five subgenera: Nymphaea, Brachyceras, Anecphya, Hydrocallis, and Lotos. These results are valuable for the identification and the formulation of protection strategies of N. nouchali, as well as contributing to understanding the evolutionary relationships among Nymphaeaceae species.
Collapse
Affiliation(s)
- Huihui Zhang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Yu Si
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Runan Zhao
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Qianqian Sheng
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Zunling Zhu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Art & Design, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
18
|
Han S, Ding H, Bi D, Zhang S, Yi R, Gao J, Yang J, Ye Y, Wu L, Kan X. Structural Diversities and Phylogenetic Signals in Plastomes of the Early-Divergent Angiosperms: A Case Study in Saxifragales. PLANTS (BASEL, SWITZERLAND) 2022; 11:3544. [PMID: 36559654 PMCID: PMC9787361 DOI: 10.3390/plants11243544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
As representative of the early-divergent groups of angiosperms, Saxifragales is extremely divergent in morphology, comprising 15 families. Within this order, our previous case studies observed significant structural diversities among the plastomes of several lineages, suggesting a possible role in elucidating their deep phylogenetic relationships. Here, we collected 208 available plastomes from 11 constituent families to explore the evolutionary patterns among Saxifragales. With thorough comparisons, the losses of two genes and three introns were found in several groups. Notably, 432 indel events have been observed from the introns of all 17 plastomic intron-containing genes, which could well play an important role in family barcoding. Moreover, numerous heterogeneities and strong intrafamilial phylogenetic implications were revealed in pttRNA (plastomic tRNA) structures, and the unique structural patterns were also determined for five families. Most importantly, based on the well-supported phylogenetic trees, evident phylogenetic signals were detected in combinations with the identified pttRNAs features and intron indels, demonstrating abundant lineage-specific characteristics for Saxifragales. Collectively, the results reported here could not only provide a deeper understanding into the evolutionary patterns of Saxifragales, but also provide a case study for exploring the plastome evolution at a high taxonomic level of angiosperms.
Collapse
Affiliation(s)
- Shiyun Han
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Hengwu Ding
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - De Bi
- College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou 215000, China
| | - Sijia Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ran Yi
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jinming Gao
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jianke Yang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yuanxin Ye
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Longhua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xianzhao Kan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
19
|
Plastomes of limestone karst gesneriad genera Petrocodon and Primulina, and the comparative plastid phylogenomics of Gesneriaceae. Sci Rep 2022; 12:15800. [PMID: 36138079 PMCID: PMC9500069 DOI: 10.1038/s41598-022-19812-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Petrocodon and Primulina are two characteristic genera of Gesneriaceae that exhibit remarkable species and floral diversity, and high endemism across the Sino-Vietnamese Limestone Karsts. To better understand the evolution of limestone gesneriad plastomes, we report nine complete plastomes of seven Primulina and two Petrocodon which have never been assembled before. The newly generated plastomes range from 152,323 to 153,786 bp in size and display a typical quadripartite structure. To further explore the plastome evolution across Gesneriaceae, we assembled five additional plastomes from public reads data and incorporated 38 complete Gesneriaceae plastomes available online into comparative and phylogenomic analyses. The comparison of 52 Gesneriaceae plastomes reveals that not only Primulina and Petrocodon but all gesneriad genera analyzed are highly conserved in genome size, genome structure, gene contents, IR boundary configurations, and codon usage bias. Additionally, sliding window analyses were implemented across alignments of Primulina and Petrocodon for identifying highly variable regions, providing informative markers for future studies. Meanwhile, the SSRs and long repeats of Gesneriaceae plastomes were characterized, serving as useful data in studying population and repetitive sequence evolutions. The results of plastome phylogenetics represent a preliminary but highly resolved maternal backbone genealogy of Primulina and the Old World subtribes of Gesneriaceae.
Collapse
|
20
|
Cai H, Gu X, Li Y, Ren Y, Yan S, Yang M. Cold Resistance of Euonymus japonicus Beihaidao Leaves and Its Chloroplast Genome Structure and Comparison with Celastraceae Species. PLANTS 2022; 11:plants11192449. [PMID: 36235317 PMCID: PMC9573587 DOI: 10.3390/plants11192449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022]
Abstract
Euonymus japonicus Beihaidao is one of the most economically important ornamental species of the Euonymus genus. There are approximately 97 genera and 1194 species of plants worldwide in this family (Celastraceae). Using E. japonicus Beihaidao, we conducted a preliminary study of the cold resistance of this species, evaluated its performance during winter, assembled and annotated its chloroplast genome, and performed a series of analyses to investigate its gene structure GC content, sequence alignment, and nucleic acid diversity. Our objectives were to understand the evolutionary relationships of the genus and to identify positive selection genes that may be related to adaptations to environmental change. The results indicated that E. japonicus Beihaidao leaves have certain cold resistance and can maintain their viability during wintering. Moreover, the chloroplast genome of E. japonicus Beihaidao is a typical double-linked ring tetrad structure, which is similar to that of the other four Euonymus species, E. hamiltonianus, E. phellomanus, E. schensianus, and E. szechuanensis, in terms of gene structure, gene species, gene number, and GC content. Compared to other Celastraceae species, the variation in the chloroplast genome sequence was lower, and the gene structure was more stable. The phylogenetic relationships of 37 species inferred that members of the Euonymus genus do not form a clade and that E. japonicus Beihaidao is closely related to E. japonicus and E. fortunei. A total of 11 functional positive selected genes were identified, which may have played an important role in the process of Celastraceae species adapting to environmental changes. Our study provides important genetic information to support further investigations into the phylogenetic development and adaptive evolution of Celastraceae species.
Collapse
Affiliation(s)
- Hongyu Cai
- Forest Department, College of Forestry, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Xiaozheng Gu
- Forest Department, College of Forestry, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Yongtan Li
- Forest Department, College of Forestry, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Yachao Ren
- Forest Department, College of Forestry, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Shufang Yan
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang 050050, China
| | - Minsheng Yang
- Forest Department, College of Forestry, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
- Correspondence: ; Tel.: +86-0312-752-8715
| |
Collapse
|
21
|
Xu X, Li X, Wang D. New Insights Into the Backbone Phylogeny and Character Evolution of Corydalis (Papaveraceae) Based on Plastome Data. FRONTIERS IN PLANT SCIENCE 2022; 13:926574. [PMID: 35991421 PMCID: PMC9389321 DOI: 10.3389/fpls.2022.926574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 05/27/2023]
Abstract
A robust backbone phylogeny is fundamental for developing a stable classification and is instructive for further research. However, it was still not available for Corydalis DC., a species-rich (> 500 species), ecologically and medically important, but taxonomically notoriously difficult genus. Here, we constructed backbone phylogeny and estimated the divergence of Corydalis based on the plastome data from 39 Corydalis species (32 newly sequenced), which represent ca. 80% of sections and series across this genus. Our phylogenetic analyses recovered six fully supported main clades (I-VI) and provided full support for the majority of lineages within Corydalis. Section Archaeocapnos was unexpectedly turned out to be sister to the rest of the subg. Corydalis s. l. (clades IV-VI), thus treating as a distinct clade (clade III) to render all the main clades monophyletic. Additionally, some unusual plastome structural rearrangements were constantly detected within Corydalis and were proven to be lineage-specific in this study, which, in turn, provided further support to our phylogeny. A segment containing five genes (trnV-UAC-rbcL) in the plastome's LSC region was either normally located downstream of the ndhC gene in clade I species or translocated downstream of the atpH gene in clade II species or translocated to downstream of the trnK-UUU gene in clade III-VI species. The unique large inversion (ca. 50 kb) in the plastome LSC region of clade III species, representing an intermediate stage of the above translocation in clades IV-VI, firmly supported clade III as a distinct and early diverged clade within this large lineage (clades III-VI). Our phylogeny contradicted substantially with the morphology-based taxonomy, rejected the treatment of tuberous species as an independent evolutionary group, and proved that some commonly used diagnostic characters (e.g., root and rhizome) were results of convergent evolution, suggestive of unreliability in Corydalis. We dated the origin of crown Corydalis to the early Eocene (crown age 49.08 Ma) and revealed possible explosive radiation around 25 Ma, coinciding with the drastic uplift of the Qinghai-Tibetan Plateau in Oligocene and Miocene. This study provided the most reliable and robust backbone phylogeny of Corydalis to date and shed some new insights on the evolution of Corydalis.
Collapse
Affiliation(s)
- Xiaodong Xu
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xuexiu Li
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Dong Wang
- School of Life Sciences, Central China Normal University, Wuhan, China
- Bio-Resources key Laboratory of Shaanxi Province, Shaanxi University of Technology, Hanzhong, China
| |
Collapse
|
22
|
Comparative analysis of two Korean irises (Iris ruthenica and I. uniflora, Iridaceae) based on plastome sequencing and micromorphology. Sci Rep 2022; 12:9424. [PMID: 35676304 PMCID: PMC9177672 DOI: 10.1038/s41598-022-13528-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/06/2022] [Indexed: 11/12/2022] Open
Abstract
Iris ruthenica Ker Gawl. and I. uniflora Pall. ex Link, which are rare and endangered species in Korea, possess considerable horticultural and medicinal value among Korean irises. However, discrimination of the species is hindered by extensive morphological similarity. Thus, the aim of the present study was to identify discriminating features by comparing the species’ complete plastid genome (i.e., plastome) sequences and micromorphological features, including leaf margins, stomatal complex distribution (hypostomatic vs. amphistomatic leaves), anther stomata density, and tepal epidermal cell patterns. Plastome comparison revealed slightly divergent regions within intergenic spacer regions, and the most variable sequences, which were distributed in non-coding regions, could be used as molecular markers for the discrimination of I. ruthenica and I. uniflora. Phylogenetic analysis of the Iris species revealed that I. ruthenica and I. uniflora formed a well-supported clade. The comparison of plastomes and micromorphological features performed in this study provides useful information for elucidating taxonomic, phylogenetic, and evolutionary relationships in Iridaceae. Further studies, including those based on molecular cytogenetic approaches using species specific markers, will offer insights into species delimitation of the two closely related Iris species.
Collapse
|
23
|
Claude SJ, Park S, Park S. Gene loss, genome rearrangement, and accelerated substitution rates in plastid genome of Hypericum ascyron (Hypericaceae). BMC PLANT BIOLOGY 2022; 22:135. [PMID: 35321651 PMCID: PMC8941745 DOI: 10.1186/s12870-022-03515-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/08/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND Comparative genomic analysis exhibits dynamic evolution of plastid genome (plastome) in the clusioid clade of Malpighiales, which comprise five families, including multiple inversions and gene losses. Little is known about the plastome evolution in Hypericaceae, a large family in the clade. Only the plastome of one species, Cratoxylum cochinchinense, has been published. RESULTS We generated a complete plastome sequence for Hypericum ascyron, providing the first complete plastome from the tribe Hypericeae (Hypericaceae). The H. ascyron plastome exhibits dynamic changes in gene and intron content, structure, and sequence divergence compared to the C. cochinchinense plastome from the tribe Cratoxyleae (Hypericaceae). Transcriptome data determined the evolutionary fate of the missing plastid genes infA, rps7, rps16, rpl23, and rpl32 in H. ascyron. Putative functional transfers of infA, rps7, and rpl32 were detected to the nucleus, whereas rps16 and rpl23 were substituted by nuclear-encoded homologs. The plastid rpl32 was integrated into the nuclear-encoded SODcp gene. Our findings suggested that the transferred rpl32 had undergone subfunctionalization by duplication rather than alternative splicing. The H. ascyron plastome rearrangements involved seven inversions, at least three inverted repeat (IR) boundary shifts, which generated gene relocations and duplications. Accelerated substitution rates of plastid genes were observed in the H. ascyron plastome compared with that of C. cochinchinense plastid genes. The higher substitution rates in the accD and clpP were correlated with structural change, including a large insertion of amino acids and losses of two introns, respectively. In addition, we found evidence of positive selection of the clpP, matK, and rps3 genes in the three branches related to H. ascyron. In particular, the matK gene was repeatedly under selection within the family Hypericaceae. Selective pressure in the H. ascyron matK gene was associated with the loss of trnK-UUU and relocation into the IR region. CONCLUSIONS The Hypericum ascyron plastome sequence provides valuable information for improving the understanding of plastome evolution among the clusioid of the Malpighiales. Evidence for intracellular gene transfer from the plastid to the nucleus was detected in the nuclear transcriptome, providing insight into the evolutionary fate of plastid genes in Hypericaceae.
Collapse
Affiliation(s)
- Sivagami-Jean Claude
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
| | - Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
| |
Collapse
|
24
|
Xi J, Lv S, Zhang W, Zhang J, Wang K, Guo H, Hu J, Yang Y, Wang J, Xia G, Fan G, Wang X, Xiao L. Comparative plastomes of Carya species provide new insights into the plastomes evolution and maternal phylogeny of the genus. FRONTIERS IN PLANT SCIENCE 2022; 13:990064. [PMID: 36407576 PMCID: PMC9667483 DOI: 10.3389/fpls.2022.990064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/21/2022] [Indexed: 05/03/2023]
Abstract
Carya, in the Juglandiodeae subfamily, is to a typical temperate-subtropical forest-tree genus for studying the phylogenetic evolution and intercontinental disjunction between eastern Asia (EA) and North America (NA). Species of the genus have high economic values worldwide for their high-quality wood and the rich healthy factors of their nuts. Although previous efforts based on multiple molecular markers or genome-wide SNPs supported the monophyly of Carya and its two EA and NA major subclades, the maternal phylogeny of Carya still need to be comprehensively evaluated. The variation of Carya plastome has never been thoroughly characterized. Here, we novelly present 19 newly generated plastomes of congeneric Carya species, including the recently rediscovered critically endangered C. poilanei. The overall assessment of plastomes revealed highly conservative in the general structures. Our results indicated that remarkable differences in several plastome features are highly consistent with the EA-NA disjunction and showed the relatively diverse matrilineal sources among EA Carya compared to NA Carya. The maternal phylogenies were conducted with different plastome regions and full-length plastome datasets from 30 plastomes, representing 26 species in six genera of Juglandoideae and Myrica rubra (as root). Six out of seven phylogenetic topologies strongly supported the previously reported relationships among genera of Juglandoideae and the two subclades of EA and NA Carya, but displayed significant incongruencies between species within the EA and NA subclades. The phylogenetic tree generated from full-length plastomes demonstrated the optimal topology and revealed significant geographical maternal relationships among Carya species, especially for EA Carya within overlapping distribution areas. The full-length plastome-based phylogenetic topology also strongly supported the taxonomic status of five controversial species as separate species of Carya. Historical and recent introgressive hybridization and plastid captures might contribute to plastome geographic patterns and inconsistencies between topologies built from different datasets, while incomplete lineage sorting could account for the discordance between maternal topology and the previous nuclear genome data-based phylogeny. Our findings highlight full-length plastomes as an ideal tool for exploring maternal relationships among the subclades of Carya, and potentially in other outcrossing perennial woody plants, for resolving plastome phylogenetic relationships.
Collapse
Affiliation(s)
- Jianwei Xi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Saibin Lv
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Weiping Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jingbo Zhang
- Department of Biological Sciences, St. John’s University - Queens, NY, United States
- *Correspondence: Lihong Xiao, ; Jingbo Zhang,
| | - Ketao Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Haobing Guo
- The Beijing Genomics Institute (BGI) -Qingdao, The Beijing Genomics Institute (BGI)-Shenzhen, Qingdao, China
| | - Jie Hu
- The Beijing Genomics Institute (BGI) -Qingdao, The Beijing Genomics Institute (BGI)-Shenzhen, Qingdao, China
| | - Yang Yang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jianhua Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Guohua Xia
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Guangyi Fan
- The Beijing Genomics Institute (BGI) -Qingdao, The Beijing Genomics Institute (BGI)-Shenzhen, Qingdao, China
| | - Xinwang Wang
- Pecan Breeding and Genetics, Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, United States
| | - Lihong Xiao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- *Correspondence: Lihong Xiao, ; Jingbo Zhang,
| |
Collapse
|
25
|
Raman G, Nam GH, Park S. Extensive reorganization of the chloroplast genome of Corydalis platycarpa: A comparative analysis of their organization and evolution with other Corydalis plastomes. FRONTIERS IN PLANT SCIENCE 2022; 13:1043740. [PMID: 37090468 PMCID: PMC10115153 DOI: 10.3389/fpls.2022.1043740] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/07/2022] [Indexed: 05/03/2023]
Abstract
Introduction The chloroplast (cp) is an autonomous plant organelle with an individual genome that encodes essential cellular functions. The genome architecture and gene content of the cp is highly conserved in angiosperms. The plastome of Corydalis belongs to the Papaveraceae family, and the genome is comprised of unusual rearrangements and gene content. Thus far, no extensive comparative studies have been carried out to understand the evolution of Corydalis chloroplast genomes. Methods Therefore, the Corydalis platycarpa cp genome was sequenced, and wide-scale comparative studies were conducted using publicly available twenty Corydalis plastomes. Results Comparative analyses showed that an extensive genome rearrangement and IR expansion occurred, and these events evolved independently in the Corydalis species. By contrast, the plastomes of its closely related subfamily Papaveroideae and other Ranunculales taxa are highly conserved. On the other hand, the synapomorphy characteristics of both accD and the ndh gene loss events happened in the common ancestor of the Corydalis and sub-clade of the Corydalis lineage, respectively. The Corydalis-sub clade species (ndh lost) are distributed predominantly in the Qinghai-Tibetan plateau (QTP) region. The phylogenetic analysis and divergence time estimation were also employed for the Corydalis species. Discussion The divergence time of the ndh gene in the Corydalis sub-clade species (44.31 - 15.71 mya) coincides very well with the uplift of the Qinghai-Tibet Plateau in Oligocene and Miocene periods, and maybe during this period, it has probably triggered the radiation of the Corydalis species. Conclusion To the best of the authors' knowledge, this is the first large-scale comparative study of Corydalis plastomes and their evolution. The present study may provide insights into the plastome architecture and the molecular evolution of Corydalis species.
Collapse
Affiliation(s)
- Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
| | - Gi-Heum Nam
- Plants Resource Division, Biological Resources Research Department, National Institute of Biological Resources, Seo-gu, Incheon, Republic of Korea
- *Correspondence: SeonJoo Park, ; Gi-Heum Nam,
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
- *Correspondence: SeonJoo Park, ; Gi-Heum Nam,
| |
Collapse
|
26
|
Park S, Jun M, Park S, Park S. Lineage-Specific Variation in IR Boundary Shift Events, Inversions, and Substitution Rates among Caprifoliaceae s.l. (Dipsacales) Plastomes. Int J Mol Sci 2021; 22:ijms221910485. [PMID: 34638831 PMCID: PMC8508905 DOI: 10.3390/ijms221910485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/18/2022] Open
Abstract
Caprifoliaceae s.l. plastid genomes (plastomes) show that one inversion and two inverted repeat boundary shifts occurred in the common ancestor of this family, after which the plastomes are generally conserved. This study reports plastome sequences of five additional species, Fedia cornucopiae, Valeriana fauriei, and Valerianella locusta from the subfamily Valerianoideae, as well as Dipsacus japonicus and Scabiosa comosa from the subfamily Dipsacoideae. Combined with the published plastomes, these plastomes provide new insights into the structural evolution of plastomes within the family. Moreover, the three plastomes from the subfamily Valerianoideae exhibited accelerated nucleotide substitution rates, particularly at synonymous sites, across the family. The patterns of accD sequence divergence in the family are dynamic with structural changes, including interruption of the conserved domain and increases in nonsynonymous substitution rates. In particular, the Valeriana accD gene harbors a large insertion of amino acid repeat (AAR) motifs, and intraspecific polymorphism with a variable number of AARs in the Valeriana accD gene was detected. We found a correlation between intron losses and increased ratios of nonsynonymous to synonymous substitution rates in the clpP gene with intensified positive selection. In addition, two Dipsacoideae plastomes revealed the loss of the plastid-encoded rps15, and a potential functional gene transfer to the nucleus was confirmed.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
| | - Minji Jun
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea; (M.J.); (S.P.)
| | - Sunmi Park
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea; (M.J.); (S.P.)
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea; (M.J.); (S.P.)
- Correspondence: ; Tel.: +82-53-810-2377
| |
Collapse
|
27
|
Cauz-Santos LA, da Costa ZP, Callot C, Cauet S, Zucchi MI, Bergès H, van den Berg C, Vieira MLC. A Repertory of Rearrangements and the Loss of an Inverted Repeat Region in Passiflora Chloroplast Genomes. Genome Biol Evol 2021; 12:1841-1857. [PMID: 32722748 PMCID: PMC7586853 DOI: 10.1093/gbe/evaa155] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Chloroplast genomes (cpDNA) in angiosperms are usually highly conserved. Although rearrangements have been observed in some lineages, such as Passiflora, the mechanisms that lead to rearrangements are still poorly elucidated. In the present study, we obtained 20 new chloroplast genomes (18 species from the genus Passiflora, and Dilkea retusa and Mitostemma brevifilis from the family Passifloraceae) in order to investigate cpDNA evolutionary history in this group. Passiflora cpDNAs vary in size considerably, with ∼50 kb between shortest and longest. Large inverted repeat (IR) expansions were identified, and at the extreme opposite, the loss of an IR was detected for the first time in Passiflora, a rare event in angiosperms. The loss of an IR region was detected in Passiflora capsularis and Passiflora costaricensis, a species in which occasional biparental chloroplast inheritance has previously been reported. A repertory of rearrangements such as inversions and gene losses were detected, making Passiflora one of the few groups with complex chloroplast genome evolution. We also performed a phylogenomic study based on all the available cp genomes and our analysis implies that there is a need to reconsider the taxonomic classifications of some species in the group.
Collapse
Affiliation(s)
- Luiz Augusto Cauz-Santos
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Zirlane Portugal da Costa
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Caroline Callot
- Centre National de Ressources Génomiques Végétales, INRA, Auzeville, Castanet-Tolosan, France
| | - Stéphane Cauet
- Centre National de Ressources Génomiques Végétales, INRA, Auzeville, Castanet-Tolosan, France
| | - Maria Imaculada Zucchi
- Polo Regional de Desenvolvimento Tecnológico do Centro Sul, Agência Paulista de Tecnologia dos Agronegócios, Piracicaba, SP, Brazil
| | - Hélène Bergès
- Centre National de Ressources Génomiques Végétales, INRA, Auzeville, Castanet-Tolosan, France
| | - Cássio van den Berg
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP, Brazil.,Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, BA, Brazil
| | - Maria Lucia Carneiro Vieira
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
28
|
Yang J, Park S, Gil HY, Pak JH, Kim SC. Characterization and Dynamics of Intracellular Gene Transfer in Plastid Genomes of Viola (Violaceae) and Order Malpighiales. FRONTIERS IN PLANT SCIENCE 2021; 12:678580. [PMID: 34512682 PMCID: PMC8429499 DOI: 10.3389/fpls.2021.678580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Functional gene transfer from organelles to the nucleus, known as intracellular gene transfer (IGT), is an ongoing process in flowering plants. The complete plastid genomes (plastomes) of two Ulleung island endemic violets, Viola ulleungdoensis and V. woosanensis, were characterized, revealing a lack of the plastid-encoded infA, rpl32, and rps16 genes. In addition, functional replacement of the three plastid-encoded genes in the nucleus was confirmed within the genus Viola and the order Malpighiales. Three strategies for the acquisition of a novel transit peptide for successful IGT were identified in the genus Viola. Nuclear INFA acquired a novel transit peptide with very low identity between these proteins, whereas the nuclear RPL32 gene acquired an existing transit peptide via fusion with the nuclear-encoded plastid-targeted SOD gene (Cu-Zn superoxide dismutase superfamily) as one exon, and translated both proteins in the cytosol using alternative mRNA splicing. Nuclear RPS16 contains an internal transit peptide without an N-terminal extension. Gene loss or pseudogenization of the plastid-borne rpl32 and rps16 loci was inferred to occur in the common ancestor of the genus Viola based on an infrageneric phylogenetic framework in Korea. Although infA was lost in the common ancestor of the order Malpighiales, the rpl32 and rps16 genes were lost multiple times independently within the order. Our current study sheds additional light on plastid genome composition and IGT mechanisms in the violet genus and in the order Malpighiales.
Collapse
Affiliation(s)
- JiYoung Yang
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, South Korea
| | - Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, South Korea
| | - Hee-Young Gil
- DMZ Botanic Garden, Korea National Arboretum, Yanggu, South Korea
| | - Jae-Hong Pak
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, South Korea
- Department of Biology, School of Life Science, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
- Department of Integrative Natural Sciences for the East Sea Rim, Kyungpook National University, Daegu, South Korea
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
29
|
Rodda M, Niissalo MA. Plastome evolution and organisation in the Hoya group (Apocynaceae). Sci Rep 2021; 11:14520. [PMID: 34267257 PMCID: PMC8282776 DOI: 10.1038/s41598-021-93890-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 07/01/2021] [Indexed: 11/12/2022] Open
Abstract
The genus Hoya is highly diverse and many of its species are popular ornamental plants. However, the relationships between Hoya and related genera (the Hoya group) are not fully resolved. In this study, we report 20 newly sequenced plastomes of species in the Hoya group. The complete plastomes vary in length from 175,405 to 178,525 bp while the LSCs vary from 90,248 to 92,364 bp and the complete SSCs vary from 2,285 to 2,304 bp, making the SSC in the Hoya group one of the shortest known in the angiosperms. The plastome structure in the Hoya group is characterised by a massive increase in the size of the inverted repeats as compared to the outgroups. In all ingroup species, the IR/SSC boundary moved from ycf1 to ndhF while this was not observed in outgroup taxa, making it a synapomorphy for the Hoya group. We have also assembled the mitogenome of Hoya lithophytica, which, at 718,734 bp, is the longest reported in the family. The phylogenetic analysis using exons from 42 taxa in the Hoya group and three outgoups confirms that the earliest divergent genus in the Hoya group is Papuahoya, followed by Dischidia. The relationship between Dischidia and the clade which includes all Hoya and Oreosparte taxa, is not fully supported. Oreosparte is nested in Hoya making it paraphyletic unless Clemensiella is recognised as a separate genus.
Collapse
Affiliation(s)
- Michele Rodda
- Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, Singapore, 259569, Singapore.
| | - Matti A Niissalo
- Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, Singapore, 259569, Singapore
| |
Collapse
|
30
|
Lee C, Ruhlman TA, Jansen RK. Unprecedented Intraindividual Structural Heteroplasmy in Eleocharis (Cyperaceae, Poales) Plastomes. Genome Biol Evol 2021; 12:641-655. [PMID: 32282915 PMCID: PMC7426004 DOI: 10.1093/gbe/evaa076] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Plastid genomes (plastomes) of land plants have a conserved quadripartite structure in a gene-dense unit genome consisting of a large inverted repeat that separates two single copy regions. Recently, alternative plastome structures were suggested in Geraniaceae and in some conifers and Medicago the coexistence of inversion isomers has been noted. In this study, plastome sequences of two Cyperaceae, Eleocharis dulcis (water chestnut) and Eleocharis cellulosa (gulf coast spikerush), were completed. Unlike the conserved plastomes in basal groups of Poales, these Eleocharis plastomes have remarkably divergent features, including large plastome sizes, high rates of sequence rearrangements, low GC content and gene density, gene duplications and losses, and increased repetitive DNA sequences. A novel finding among these features was the unprecedented level of heteroplasmy with the presence of multiple plastome structural types within a single individual. Illumina paired-end assemblies combined with PacBio single-molecule real-time sequencing, long-range polymerase chain reaction, and Sanger sequencing data identified at least four different plastome structural types in both Eleocharis species. PacBio long read data suggested that one of the four E. dulcis plastome types predominates.
Collapse
Affiliation(s)
- Chaehee Lee
- Department of Integrative Biology, University of Texas at Austin
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin.,Center of Excellence for Bionanoscience Research, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| |
Collapse
|
31
|
Guo YY, Yang JX, Bai MZ, Zhang GQ, Liu ZJ. The chloroplast genome evolution of Venus slipper (Paphiopedilum): IR expansion, SSC contraction, and highly rearranged SSC regions. BMC PLANT BIOLOGY 2021; 21:248. [PMID: 34058997 DOI: 10.21203/rs.3.rs-257472/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/20/2021] [Indexed: 05/29/2023]
Abstract
BACKGROUND Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well resolved, and sparse taxon sampling documented inverted repeat (IR) expansion and small single copy (SSC) contraction of the chloroplast genomes of Paphiopedilum. RESULTS Here, we sequenced, assembled, and annotated 77 plastomes of Paphiopedilum species (size range of 152,130 - 164,092 bp). The phylogeny based on the plastome resolved the relationships of the genus except for the phylogenetic position of two unstable species. We used phylogenetic and comparative genomic approaches to elucidate the plastome evolution of Paphiopedilum. The plastomes of Paphiopedilum have a conserved genome structure and gene content except in the SSC region. The large single copy/inverted repeat (LSC/IR) boundaries are relatively stable, while the boundaries of the inverted repeat and small single copy region (IR/SSC) varied among species. Corresponding to the IR/SSC boundary shifts, the chloroplast genomes of the genus experienced IR expansion and SSC contraction. The IR region incorporated one to six genes of the SSC region. Unexpectedly, great variation in the size, gene order, and gene content of the SSC regions was found, especially in the subg. Parvisepalum. Furthermore, Paphiopedilum provides evidence for the ongoing degradation of the ndh genes in the photoautotrophic plants. The estimated substitution rates of the protein coding genes show accelerated rates of evolution in clpP, psbH, and psbZ. Genes transferred to the IR region due to the boundary shift also have higher substitution rates. CONCLUSIONS We found IR expansion and SSC contraction in the chloroplast genomes of Paphiopedilum with dense sampling, and the genus shows variation in the size, gene order, and gene content of the SSC region. This genus provides an ideal system to investigate the dynamics of plastome evolution.
Collapse
Affiliation(s)
- Yan-Yan Guo
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jia-Xing Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ming-Zhu Bai
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guo-Qiang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China, The Orchid Conservation and Research Center of Shenzhen, Shenzhen, 518114, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization At College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
32
|
Guo YY, Yang JX, Bai MZ, Zhang GQ, Liu ZJ. The chloroplast genome evolution of Venus slipper (Paphiopedilum): IR expansion, SSC contraction, and highly rearranged SSC regions. BMC PLANT BIOLOGY 2021; 21:248. [PMID: 34058997 PMCID: PMC8165784 DOI: 10.1186/s12870-021-03053-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/20/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well resolved, and sparse taxon sampling documented inverted repeat (IR) expansion and small single copy (SSC) contraction of the chloroplast genomes of Paphiopedilum. RESULTS Here, we sequenced, assembled, and annotated 77 plastomes of Paphiopedilum species (size range of 152,130 - 164,092 bp). The phylogeny based on the plastome resolved the relationships of the genus except for the phylogenetic position of two unstable species. We used phylogenetic and comparative genomic approaches to elucidate the plastome evolution of Paphiopedilum. The plastomes of Paphiopedilum have a conserved genome structure and gene content except in the SSC region. The large single copy/inverted repeat (LSC/IR) boundaries are relatively stable, while the boundaries of the inverted repeat and small single copy region (IR/SSC) varied among species. Corresponding to the IR/SSC boundary shifts, the chloroplast genomes of the genus experienced IR expansion and SSC contraction. The IR region incorporated one to six genes of the SSC region. Unexpectedly, great variation in the size, gene order, and gene content of the SSC regions was found, especially in the subg. Parvisepalum. Furthermore, Paphiopedilum provides evidence for the ongoing degradation of the ndh genes in the photoautotrophic plants. The estimated substitution rates of the protein coding genes show accelerated rates of evolution in clpP, psbH, and psbZ. Genes transferred to the IR region due to the boundary shift also have higher substitution rates. CONCLUSIONS We found IR expansion and SSC contraction in the chloroplast genomes of Paphiopedilum with dense sampling, and the genus shows variation in the size, gene order, and gene content of the SSC region. This genus provides an ideal system to investigate the dynamics of plastome evolution.
Collapse
Affiliation(s)
- Yan-Yan Guo
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jia-Xing Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ming-Zhu Bai
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guo-Qiang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China, The Orchid Conservation and Research Center of Shenzhen, Shenzhen, 518114, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization At College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
33
|
Yudina SV, Schelkunov MI, Nauheimer L, Crayn D, Chantanaorrapint S, Hroneš M, Sochor M, Dančák M, Mar SS, Luu HT, Nuraliev MS, Logacheva MD. Comparative Analysis of Plastid Genomes in the Non-photosynthetic Genus Thismia Reveals Ongoing Gene Set Reduction. FRONTIERS IN PLANT SCIENCE 2021; 12:602598. [PMID: 33796122 PMCID: PMC8009136 DOI: 10.3389/fpls.2021.602598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/22/2021] [Indexed: 05/14/2023]
Abstract
Heterotrophic plants provide intriguing examples of reductive evolution. This is especially evident in the reduction of their plastid genomes, which can potentially proceed toward complete genome loss. Several milestones at the beginning of this path of degradation have been described; however, little is known about the latest stages of plastome reduction. Here we analyze a diversity of plastid genomes in a set of closely related non-photosynthetic plants. We demonstrate how a gradual loss of genes shapes the miniaturized plastomes of these plants. The subject of our study, the genus Thismia, represents the mycoheterotrophic monocot family Thismiaceae, a group that may have experienced a very ancient (60-80 mya) transition to heterotrophy. In all 18 species examined, the plastome is reduced to 14-18 kb and is highly AT-biased. The most complete observed gene set includes accD, seven ribosomal protein genes, three rRNA, and two tRNA genes. Different clades of Thismia have undergone further gene loss (complete absence or pseudogenization) compared to this set: in particular, we report two independent losses of rps2 and rps18.
Collapse
Affiliation(s)
- Sophia V. Yudina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Institute for Information Transmission Problems, Moscow, Russia
- Joint Russian-Vietnamese Tropical Scientific and Technological Center, Hanoi, Vietnam
| | - Mikhail I. Schelkunov
- Institute for Information Transmission Problems, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Lars Nauheimer
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
| | - Darren Crayn
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
| | - Sahut Chantanaorrapint
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Michal Hroneš
- Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Michal Sochor
- Centre of the Region Haná for Biotechnological and Agricultural Research, Crop Research Institute, Olomouc, Czechia
| | - Martin Dančák
- Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | | | - Hong Truong Luu
- Southern Institute of Ecology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Maxim S. Nuraliev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Joint Russian-Vietnamese Tropical Scientific and Technological Center, Hanoi, Vietnam
| | - Maria D. Logacheva
- Institute for Information Transmission Problems, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
34
|
Xu X, Wang D. Comparative Chloroplast Genomics of Corydalis Species (Papaveraceae): Evolutionary Perspectives on Their Unusual Large Scale Rearrangements. FRONTIERS IN PLANT SCIENCE 2021; 11:600354. [PMID: 33584746 PMCID: PMC7873532 DOI: 10.3389/fpls.2020.600354] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/21/2020] [Indexed: 05/08/2023]
Abstract
The chloroplast genome (plastome) of angiosperms (particularly photosynthetic members) is generally highly conserved, although structural rearrangements have been reported in a few lineages. In this study, we revealed Corydalis to be another unusual lineage with extensive large-scale plastome rearrangements. In the four newly sequenced Corydalis plastomes that represent all the three subgenera of Corydalis, we detected (1) two independent relocations of the same five genes (trnV-UAC-rbcL) from the typically posterior part of the large single-copy (LSC) region to the front, downstream of either the atpH gene in Corydalis saxicola or the trnK-UUU gene in both Corydalis davidii and Corydalis hsiaowutaishanensis; (2) relocation of the rps16 gene from the LSC region to the inverted repeat (IR) region in Corydalis adunca; (3) uniform inversion of an 11-14 kb segment (ndhB-trnR-ACG) in the IR region of all the four Corydalis species (the same below); (4) expansions (>10 kb) of IR into the small single-copy (SSC) region and corresponding contractions of SSC region; and (5) extensive pseudogenizations or losses of 13 genes (accD, clpP, and 11 ndh genes). In addition, we also found that the four Corydalis plastomes exhibited elevated GC content in both gene and intergenic regions and high number of dispersed repeats. Phylogenomic analyses generated a well-supported topology that was consistent with the result of previous studies based on a few DNA markers but contradicted with the morphological character-based taxonomy to some extent. This study provided insights into the evolution of plastomes throughout the three Corydalis subgenera and will be of value for further study on taxonomy, phylogeny, and evolution of Corydalis.
Collapse
Affiliation(s)
- Xiaodong Xu
- School of Life Sciences, Central China Normal University, Key Laboratory for Geographical Process Analysis and Simulation, Wuhan, China
| | - Dong Wang
- School of Life Sciences, Central China Normal University, Key Laboratory for Geographical Process Analysis and Simulation, Wuhan, China
- Bio-Resources Key Laboratory of Shaanxi Province, Shaanxi University of Technology, Hanzhong, China
| |
Collapse
|
35
|
Liao M, Gao XF, Zhang JY, Deng HN, Xu B. Comparative Chloroplast Genomics of Sophora Species: Evolution and Phylogenetic Relationships in the Early-Diverging Legume Subfamily Papilionoideae (Fabaceae). FRONTIERS IN PLANT SCIENCE 2021; 12:778933. [PMID: 34975964 PMCID: PMC8716937 DOI: 10.3389/fpls.2021.778933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/08/2021] [Indexed: 05/04/2023]
Abstract
The taxonomy and evolutionary history of Sophora L., a genus with high economic and medicinal value, remain uncertain due to the absence of genetic resource (especially in China) and low polymorphism of molecular markers. Our aim was to elucidate the molecular evolution and phylogenetic relationships in chloroplast genomes of Sophora species in the early-diverging legume subfamily Papilionoideae (Fabaceae). We reported nine Sophora chloroplast genome from China using Illumina sequencing. We performed a series of analyses with previously published genomes of Sophora species to investigate their genomic characteristics, identified simple sequence repeats, large repeat sequences, tandem repeats, and highly polymorphic loci. The genomes were 152,953-158,087 bp in length, and contained 111-113 unique genes, including 76-78 protein coding, 31 tRNA, and 4 rRNA. The expansion of inverted repeat boundary of Sophora resulted in rps12 entering into the LSC region and loss of trnT-CGU gene in some species. Also, we found an approximately 23 kb inversion between trnC-GCA and trnF-GAA within the genus. In addition, we identified seven highly polymorphic loci (pi (π) > 0.035) suitable for inferring the phylogeny of Sophora species. Among these, three regions also co-occurred with large repeat sequences and support use of repeats as a proxy for the identification of polymorphic loci. Based on whole chloroplast genome and protein-coding sequences data-set, a well-supported phylogenetic tree of Sophora and related taxa showed that this genus is monophyletic, but sect. Disamaea and sect. Sophora, are incongruent with traditional taxonomic classifications based on fruit morphology. Our finding provides significant genetic resources to support further investigation into the phylogenetic relationship and evolution of the genus Sophora.
Collapse
Affiliation(s)
- Min Liao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Fen Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jun-Yi Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Heng-Ning Deng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Bo Xu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- *Correspondence: Bo Xu,
| |
Collapse
|
36
|
Yang W, Zou J, Yu Y, Long W, Li S. Repeats in mitochondrial and chloroplast genomes characterize the ecotypes of the Oryza. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:7. [PMID: 37309528 PMCID: PMC10236085 DOI: 10.1007/s11032-020-01198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/28/2020] [Indexed: 06/14/2023]
Abstract
Mitochondria and chloroplast are very important organelles for organism, participating in basic life activity. Their genomes contain many repeats which can lead to a variation of genome structure. Oryza is an important genus for human beings' nutrition. Several mitochondrial and chloroplast genomes of Oryza have been sequenced, which help us to insight the distribution and evolution of the repeats in Oryza species. In this paper, we compared six mitochondrial and 13 chloroplast genomes of Oryza and found that the structures of mitochondrial genomes were more diverse than chloroplast genomes. Since repeats can change the structure of the genome, resulting in the structural diversity of the genome, we analyzed all repeats and found 31 repeats in mitochondrial and 13 repeats in chloroplast genomes. Further, we developed 21 pairs of MRS molecular markers and 12 pairs of CRS molecular markers based on mitochondrial repeats and chloroplast repeats, respectively. These molecular markers can be used to detect the repeat-mediated recombination in Oryza mitochondrial and chloroplast genomes by PCR or fluorescence quantification. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-020-01198-6.
Collapse
Affiliation(s)
- Weilong Yang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072 China
| | - Jianing Zou
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072 China
| | - Yajie Yu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072 China
| | - Weixiong Long
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072 China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
37
|
Köhler M, Reginato M, Souza-Chies TT, Majure LC. Insights Into Chloroplast Genome Evolution Across Opuntioideae (Cactaceae) Reveals Robust Yet Sometimes Conflicting Phylogenetic Topologies. FRONTIERS IN PLANT SCIENCE 2020; 11:729. [PMID: 32636853 PMCID: PMC7317007 DOI: 10.3389/fpls.2020.00729] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/06/2020] [Indexed: 05/22/2023]
Abstract
Chloroplast genomes (plastomes) are frequently treated as highly conserved among land plants. However, many lineages of vascular plants have experienced extensive structural rearrangements, including inversions and modifications to the size and content of genes. Cacti are one of these lineages, containing the smallest plastome known for an obligately photosynthetic angiosperm, including the loss of one copy of the inverted repeat (∼25 kb) and the ndh gene suite, but only a few cacti from the subfamily Cactoideae have been sufficiently characterized. Here, we investigated the variation of plastome sequences across the second-major lineage of the Cactaceae, the subfamily Opuntioideae, to address (1) how variable is the content and arrangement of chloroplast genome sequences across the subfamily, and (2) how phylogenetically informative are the plastome sequences for resolving major relationships among the clades of Opuntioideae. Our de novo assembly of the Opuntia quimilo plastome recovered an organelle of 150,347 bp in length with both copies of the inverted repeat and the presence of all the ndh gene suite. An expansion of the large single copy unit and a reduction of the small single copy unit was observed, including translocations and inversion of genes, as well as the putative pseudogenization of some loci. Comparative analyses among all clades within Opuntioideae suggested that plastome structure and content vary across taxa of this subfamily, with putative independent losses of the ndh gene suite and pseudogenization of genes across disparate lineages, further demonstrating the dynamic nature of plastomes in Cactaceae. Our plastome dataset was robust in resolving three tribes with high support within Opuntioideae: Cylindropuntieae, Tephrocacteae and Opuntieae. However, conflicting topologies were recovered among major clades when exploring different assemblies of markers. A plastome-wide survey for highly informative phylogenetic markers revealed previously unused regions for future use in Sanger-based studies, presenting a valuable dataset with primers designed for continued evolutionary studies across Cactaceae. These results bring new insights into the evolution of plastomes in cacti, suggesting that further analyses should be carried out to address how ecological drivers, physiological constraints and morphological traits of cacti may be related with the common rearrangements in plastomes that have been reported across the family.
Collapse
Affiliation(s)
- Matias Köhler
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Florida Museum of Natural History, University of Florida Herbarium (FLAS), Gainesville, FL, United States
| | - Marcelo Reginato
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Lucas C Majure
- Florida Museum of Natural History, University of Florida Herbarium (FLAS), Gainesville, FL, United States
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, United States
| |
Collapse
|
38
|
Plastid phylogenomic data yield new and robust insights into the phylogeny of Cleisostoma–Gastrochilus clades (Orchidaceae, Aeridinae). Mol Phylogenet Evol 2020; 145:106729. [DOI: 10.1016/j.ympev.2019.106729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 01/02/2023]
|
39
|
Park S, An B, Park S. Recurrent gene duplication in the angiosperm tribe Delphinieae (Ranunculaceae) inferred from intracellular gene transfer events and heteroplasmic mutations in the plastid matK gene. Sci Rep 2020; 10:2720. [PMID: 32066766 PMCID: PMC7026143 DOI: 10.1038/s41598-020-59547-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/30/2020] [Indexed: 01/08/2023] Open
Abstract
The study of intracellular gene transfer may allow for the detection of interesting evolutionary processes such as ancient polyploidization. We compared 24 plastid genomes (plastomes) from tribe Delphinieae, one from tribe Nigelleae and one from tribe Ranunculeae, including five newly sequenced genomes. The functional transfers of the plastids rpl32 and rps16 to the nucleus in tribe Delphinieae were identified. Unexpectedly, we discovered multiple divergent copies of the nuclear-encoded plastid rpl32 in the genus Aconitum. Phylogenetic and synonymous substitution rate analyses revealed that the nuclear-encoded plastid rpl32 underwent two major duplication events. These ancient gene duplication events probably occurred via multiple polyploidization events in Aconitum between 11.9 and 24.7 Mya. Furthermore, our sequence rate analysis indicated that the eight plastid-encoded rpl subunits in Aconitum had a significantly accelerated evolutionary rate compared to those in other genera, suggesting that highly divergent paralogs targeted to the plastid may contribute to an elevated rate of evolution in plastid rpl genes. In addition, heteroplasmy of the plastid matK from two Aconitum species suggested the existence of potentially functional plastid maturases in its plastome. Our results provide insight into the evolutionary history of the tribe Delphinieae.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Boram An
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
40
|
Li Y, Dong Y, Liu Y, Yu X, Yang M, Huang Y. Comparative Analyses of Euonymus Chloroplast Genomes: Genetic Structure, Screening for Loci With Suitable Polymorphism, Positive Selection Genes, and Phylogenetic Relationships Within Celastrineae. FRONTIERS IN PLANT SCIENCE 2020; 11:593984. [PMID: 33643327 PMCID: PMC7905392 DOI: 10.3389/fpls.2020.593984] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/28/2020] [Indexed: 05/06/2023]
Abstract
In this study, we assembled and annotated the chloroplast (cp) genome of the Euonymus species Euonymus fortunei, Euonymus phellomanus, and Euonymus maackii, and performed a series of analyses to investigate gene structure, GC content, sequence alignment, and nucleic acid diversity, with the objectives of identifying positive selection genes and understanding evolutionary relationships. The results indicated that the Euonymus cp genome was 156,860-157,611bp in length and exhibited a typical circular tetrad structure. Similar to the majority of angiosperm chloroplast genomes, the results yielded a large single-copy region (LSC) (85,826-86,299bp) and a small single-copy region (SSC) (18,319-18,536bp), separated by a pair of sequences (IRA and IRB; 26,341-26,700bp) with the same encoding but in opposite directions. The chloroplast genome was annotated to 130-131 genes, including 85-86 protein coding genes, 37 tRNA genes, and eight rRNA genes, with GC contents of 37.26-37.31%. The GC content was variable among regions and was highest in the inverted repeat (IR) region. The IR boundary of Euonymus happened expanding resulting that the rps19 entered into IR region and doubled completely. Such fluctuations at the border positions might be helpful in determining evolutionary relationships among Euonymus. The simple-sequence repeats (SSRs) of Euonymus species were composed primarily of single nucleotides (A)n and (T)n, and were mostly 10-12bp in length, with an obvious A/T bias. We identified several loci with suitable polymorphism with the potential use as molecular markers for inferring the phylogeny within the genus Euonymus. Signatures of positive selection were seen in rpoB protein encoding genes. Based on data from the whole chloroplast genome, common single copy genes, and the LSC, SSC, and IR regions, we constructed an evolutionary tree of Euonymus and related species, the results of which were consistent with traditional taxonomic classifications. It showed that E. fortunei sister to the Euonymus japonicus, whereby E. maackii appeared as sister to Euonymus hamiltonianus. Our study provides important genetic information to support further investigations into the phylogenetic development and adaptive evolution of Euonymus species.
Collapse
Affiliation(s)
- Yongtan Li
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Yan Dong
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Yichao Liu
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
- Institute of Landscaping, Hebei Academic of Forestry and Grassland, Shijiazhuang, China
| | - Xiaoyue Yu
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Minsheng Yang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
- *Correspondence: Minsheng Yang,
| | - Yinran Huang
- Institute of Landscaping, Hebei Academic of Forestry and Grassland, Shijiazhuang, China
- Yinran Huang,
| |
Collapse
|
41
|
De Novo Assembly Discovered Novel Structures in Genome of Plastids and Revealed Divergent Inverted Repeats in Mammillaria (Cactaceae, Caryophyllales). PLANTS 2019; 8:plants8100392. [PMID: 31581555 PMCID: PMC6843559 DOI: 10.3390/plants8100392] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 11/17/2022]
Abstract
The complete sequence of chloroplast genome (cpDNA) has been documented for single large columnar species of Cactaceae, lacking inverted repeats (IRs). We sequenced cpDNA for seven species of the short-globose cacti of Mammillaria and de novo assembly revealed three novel structures in land plants. These structures have a large single copy (LSC) that is 2.5 to 10 times larger than the small single copy (SSC), and two IRs that contain strong differences in length and gene composition. Structure 1 is distinguished by short IRs of <1 kb composed by rpl23-trnI-CAU-ycf2; with a total length of 110,189 bp and 113 genes. In structure 2, each IR is approximately 7.2 kb and is composed of 11 genes and one Intergenic Spacer-(psbK-trnQ)-trnQ-UUG-rps16-trnK-UUU-matK-trnK-UUU-psbA-trnH-GUG-rpl2-rpl23-trnI-CAU-ycf2; with a total size of 116,175 bp and 120 genes. Structure 3 has divergent IRs of approximately 14.1 kb, where IRA is composed of 20 genes: psbA-trnH-GUG-rpl23-trnI-CAU-ycf2-ndhB-rps7-rps12-trnV-GAC-rrn16-ycf68-trnI-GAU-trnA-AGC-rrn23-rrn4.5-rrn5-trnR-ACG-trnN-GUU-ndhF-rpl32; and IRB is identical to the IRA, but lacks rpl23. This structure has 131 genes and, by pseudogenization, it is shown to have the shortest cpDNA, of just 107,343 bp. Our findings show that Mammillaria bears an unusual structural diversity of cpDNA, which supports the elucidation of the evolutionary processes involved in cacti lineages.
Collapse
|
42
|
Analyzing and Characterizing the Chloroplast Genome of Salix wilsonii. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5190425. [PMID: 31380427 PMCID: PMC6662467 DOI: 10.1155/2019/5190425] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/13/2019] [Indexed: 11/18/2022]
Abstract
Salix wilsonii is an important ornamental willow tree widely distributed in China. In this study, an integrated circular chloroplast genome was reconstructed for S. wilsonii based on the chloroplast reads screened from the whole-genome sequencing data generated with the PacBio RSII platform. The obtained pseudomolecule was 155,750 bp long and had a typical quadripartite structure, comprising a large single copy region (LSC, 84,638 bp) and a small single copy region (SSC, 16,282 bp) separated by two inverted repeat regions (IR, 27,415 bp). The S. wilsonii chloroplast genome encoded 115 unique genes, including four rRNA genes, 30 tRNA genes, 78 protein-coding genes, and three pseudogenes. Repetitive sequence analysis identified 32 tandem repeats, 22 forward repeats, two reverse repeats, and five palindromic repeats. Additionally, a total of 118 perfect microsatellites were detected, with mononucleotide repeats being the most common (89.83%). By comparing the S. wilsonii chloroplast genome with those of other rosid plant species, significant contractions or expansions were identified at the IR-LSC/SSC borders. Phylogenetic analysis of 17 willow species confirmed that S. wilsonii was most closely related to S. chaenomeloides and revealed the monophyly of the genus Salix. The complete S. wilsonii chloroplast genome provides an additional sequence-based resource for studying the evolution of organelle genomes in woody plants.
Collapse
|
43
|
Lee HO, Joh HJ, Kim K, Lee SC, Kim NH, Park JY, Park HS, Park MS, Kim S, Kwak M, Kim KY, Lee WK, Yang TJ. Dynamic Chloroplast Genome Rearrangement and DNA Barcoding for Three Apiaceae Species Known as the Medicinal Herb "Bang-Poong". Int J Mol Sci 2019; 20:E2196. [PMID: 31060231 PMCID: PMC6539805 DOI: 10.3390/ijms20092196] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 11/17/2022] Open
Abstract
Three Apiaceae species Ledebouriella seseloides, Peucedanum japonicum, and Glehnia littoralis are used as Asian herbal medicines, with the confusingly similar common name "Bang-poong". We characterized the complete chloroplast (cp) genomes and 45S nuclear ribosomal DNA (45S nrDNA) sequences of two accessions for each species. The complete cp genomes of G. littoralis, L. seseloides, and P. japonicum were 147,467, 147,830, and 164,633 bp, respectively. Compared to the other species, the P. japonicum cp genome had a huge inverted repeat expansion and a segmental inversion. The 45S nrDNA cistron sequences of the three species were almost identical in size and structure. Despite the structural variation in the P. japonicum cp genome, phylogenetic analysis revealed that G. littoralis diverged 5-6 million years ago (Mya), while P. japonicum diverged from L. seseloides only 2-3 Mya. Abundant copy number variations including tandem repeats, insertion/deletions, and single nucleotide polymorphisms, were found at the interspecies level. Intraspecies-level polymorphism was also found for L. seseloides and G. littoralis. We developed nine PCR barcode markers to authenticate all three species. This study characterizes the genomic differences between L. seseloides, P. japonicum, and G. littoralis; provides a method of species identification; and sheds light on the evolutionary history of these three species.
Collapse
Affiliation(s)
- Hyun Oh Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
- Phyzen Genomics Institute, 605, Baekgoong Plaza1, Seongnam 13558, Korea.
| | - Ho Jun Joh
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Kyunghee Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Sang-Choon Lee
- Phyzen Genomics Institute, 605, Baekgoong Plaza1, Seongnam 13558, Korea.
| | - Nam-Hoon Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
- Phyzen Genomics Institute, 605, Baekgoong Plaza1, Seongnam 13558, Korea.
| | - Jee Young Park
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Hyun-Seung Park
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Mi-So Park
- Phyzen Genomics Institute, 605, Baekgoong Plaza1, Seongnam 13558, Korea.
| | - Soonok Kim
- Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon 404-170, Korea.
| | - Myounghai Kwak
- Plant Resources Division, National Institute of Biological Resources, Incheon 404-170, Korea.
| | - Kyu-Yeob Kim
- Herbal Medicine Research Division, Ministry of Food and Drug Safety, Cheongju 28159, Korea.
| | - Woo Kyu Lee
- Criminal Investigation Office, Ministry of Food and Drug Safety, Cheongju 28159, Korea.
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
44
|
Thode VA, Lohmann LG. Comparative Chloroplast Genomics at Low Taxonomic Levels: A Case Study Using Amphilophium (Bignonieae, Bignoniaceae). FRONTIERS IN PLANT SCIENCE 2019; 10:796. [PMID: 31275342 PMCID: PMC6594259 DOI: 10.3389/fpls.2019.00796] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/03/2019] [Indexed: 05/13/2023]
Abstract
Chloroplast (cp) genome organization, gene order, and content have long been considered conserved among land plants. Despite that, the generation of thousands of complete plastomes through next-generation sequencing (NGS) has challenged their conserved nature. In this study, we analyze 11 new complete plastomes of Amphilophium (Bignonieae, Bignoniaceae), a diverse genus of Neotropical lianas, and that of Anemopaegma prostratum. We explored the structure and content of the assembled plastomes and performed comparative analyses within Amphilophium and among other plastomes available for Bignoniaceae. The overall gene content and orientation of plastomes is similar in all species studied. Plastomes are not conserved among Amphilophium, showing significant differences in length (155,262-164,786 bp), number of genes duplicated in the IRs (eight, 18, or 19), and location of the SC/IR boundaries (i.e., LSC/IRa junction between rps19 and rpl2 genes, within petD, or within petB). Length differences reflect expansions of the IRs and contractions of the LSC regions. The plastome of A. prostratum is 168,172 bp, includes 19 duplicated genes, and has the LSC/IRa boundary located within the petB gene. Amphilophium plastomes show high nucleotide diversity, with many hypervariable regions, and 16 genes with signatures of positive selection. Multiple SSRs and repeat regions were identified for Amphilophium and Anemopaegma prostratum. The differences in structure detected within Amphilophium plastomes in terms of LSC/IR and IR/SSC boundaries, number of duplicated genes, and genome sizes are mostly shared between taxa that belong to the same clade. Our results bring new insights into the evolution of plastomes at low taxonomic levels.
Collapse
|