1
|
Limcharoen B, Wanichwecharungruang S, Banlunara W, Darvin ME. Seeing through the skin: Optical methods for visualizing transdermal drug delivery with microneedles. Adv Drug Deliv Rev 2025; 217:115478. [PMID: 39603387 DOI: 10.1016/j.addr.2024.115478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Optical methods play a pivotal role in advancing transdermal drug delivery research, particularly with the emergence of microneedle technology. This review presents a comprehensive analysis of optical methods used in studying transdermal drug delivery facilitated by microneedle technology. Beginning with an introduction to microneedle technology and skin anatomy and optical properties, the review explores the integration of optical methods for enhanced visualization. Optical imaging offers key advantages including real-time drug distribution visualization, non-invasive skin response monitoring, and quantitative drug penetration analysis. A spectrum of optical imaging modalities ranging from conventional dermoscopy and stereomicroscopy to advance techniques as fluorescence microscopy, laser scanning microscopy, in vivo imaging system, two-photon microscopy, fluorescence lifetime imaging microscopy, optical coherence tomography, Raman microspectroscopy, laser speckle contrast imaging, and photoacoustic microscopy is discussed. Challenges such as resolution and depth penetration limitations are addressed alongside potential breakthroughs and future directions in optical techniques development. The review underscores the importance of bridging the gap between preclinical and clinical studies, explores opportunities for integrating optical imaging and chemical sensing methods with drug delivery systems, and highlight the importance of non-invasive "optical biopsy" as a valuable alternative to conventional histology. Overall, this review provides insight into the role of optical methods in understanding transdermal drug delivery mechanisms with microneedles.
Collapse
Affiliation(s)
- Benchaphorn Limcharoen
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| | - Supason Wanichwecharungruang
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Maxim E Darvin
- Fraunhofer Institute for Photonic Microsystems IPMS, Dresden 01109, Germany.
| |
Collapse
|
2
|
Shrestha P, Geffner C, Jaffey M, Wu Z, Iapichino M, Bacca M, Stoeber B. Force decomposition and toughness estimation from puncture experiments in soft solids. SOFT MATTER 2024; 20:5377-5388. [PMID: 38932556 DOI: 10.1039/d4sm00211c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Several medical applications, like drug delivery and biosensing, are critically preceded by the insertion of needles and microneedles into biological tissue. However, the mechanical process of needle insertions, especially at high velocities, is currently not fully understood. Here, we explore the insertion of hollow needles into transparent silicone samples with an insertion velocity v ranging from 0.1 mm s-1 to 2.3 m s-1 (with needle radius R = 101.5 μm, thus strain rates ∼v/R ranging from 1 s-1 to 2.3 × 104 s-1). We use a double-insertion method, where the needle is inserted and re-inserted at the same location, to estimate the fracture properties of the material. The deflection of the specimen's free surface is found to be different between insertion and re-insertion experiments for identical needle positions, which is associated with different force magnitudes between insertion/reinsertion. This aspect was previously neglected in the original double-insertion method, thus here we develop a method based on imaging, image analyses and force measurements to decompose the measured force into individual force components, including deflection force Fd, frictional and spreading force Ff + Fs, and cutting force Ft. We estimate that the toughness Γ of our silicone samples, calculated using the cutting force Ft and the crack dimensions, increases with needle velocity, and ranges within observed values in previous literature for the same material and for some soft biological materials. In addition to toughness Γ, other parameters, such as critical force Fc and mechanical work Wc, also show strain-rate dependence, suggesting tissue stiffening, due to accumulated strain energy, at high speeds.
Collapse
Affiliation(s)
- Pranav Shrestha
- Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, British Columbia, V6T 1Z4, Canada.
| | - Curtis Geffner
- Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, British Columbia, V6T 1Z4, Canada.
| | - Matthew Jaffey
- Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, British Columbia, V6T 1Z4, Canada.
| | - Zhongnan Wu
- Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, British Columbia, V6T 1Z4, Canada.
| | - Martina Iapichino
- Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, British Columbia, V6T 1Z4, Canada.
| | - Mattia Bacca
- Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, British Columbia, V6T 1Z4, Canada.
| | - Boris Stoeber
- Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, British Columbia, V6T 1Z4, Canada.
- Department of Electrical and Computer Engineering, The University of British Columbia, 2332 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
3
|
Park J, Shobayashi K, Kim B. Optical Microneedle-Lens Array for Selective Photothermolysis. MICROMACHINES 2024; 15:725. [PMID: 38930695 PMCID: PMC11206131 DOI: 10.3390/mi15060725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Photothermolysis is the process that converts radiation energy into thermal energy, which results in the destruction of surrounding tissues or cells through thermal diffusion. Laser therapy that is based on photothermolysis has been a widely used treatment for various skin diseases such as skin cancers and port-wine stains. It offers several benefits such as non-invasiveness and selective treatment. However, the use of light, e.g., laser, for safe and effective photothermolysis becomes challenging due to the limited penetration of light into skin tissue as well as the presence of melanin, which absorbs this light. To solve the current issues, we propose an optical microneedle-lens array (OMLA) coated with gold in this work to directly deliver light to targeted skin layers without being absorbed by surrounding tissues as well as melanin, which results in the improvement of the efficiency of photothermal therapy. We developed a novel fabrication method, frame-guided micromolding, to prepare the OMLA by assembling two negative molds with simultaneous alignment. In addition, evaluations of the optical and heat transfer characteristics of the OMLA were performed. We expect our developed OMLA to play a crucial role in realizing more effective laser therapy by allowing the precise delivery of photons to the target area.
Collapse
Affiliation(s)
- Jongho Park
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan;
| | - Kotaro Shobayashi
- Department of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan;
| | - Beomjoon Kim
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan;
| |
Collapse
|
4
|
Ortega-Cuartiella A. Therapeutic Potential of Adipose-Derived Stem Cells and Their Secretome in Reversible Alopecias: A Systematic Review. Int J Trichology 2023; 15:173-182. [PMID: 39170092 PMCID: PMC11335044 DOI: 10.4103/ijt.ijt_3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/19/2021] [Indexed: 08/23/2024] Open
Abstract
Androgenic alopecia (AGA) and alopecia areata (AA) are two highly prevalent conditions, affecting both men and women of a wide range of ages, which strongly impact their quality of life and self-esteem. Both pathologies are deemed to be reversible, although conventional therapies have shown limited scope and efficacy. New therapeutic approaches, focusing on the degenerative changes that take place in the hair follicle, are needed to achieve better outcomes. For instance, adipose-derived stem cells (ADSC), abundant and easy to obtain, hold great potential in follicular regeneration. ADSCs can be isolated as stromal vascular fraction (SVF) by the enzymatic digestion of the lipoaspirate or as nanofat by the mechanical breakdown of adipocytes. In addition, commercial preparations of the conditioned medium of the ADSCs secretome (ADSC-conditionate medium [CM]) have entered the market as an appealing alternative because of their comparatively lower cost and accessibility. A search was conducted, crossing relevant terms, on PubMed Central and Google Scholar. Criteria for inclusion were studies in the past 10 years on humans with AGA or AA, where either SVF, nanofat, or ADSC-CM was tested as the main treatment. Eleven publications qualified: two studied nanofat, three, ADSC-CM, and six, SVF, either individually or in combination with other therapies. Only one randomized controlled trial (RCT) was found and classified as evidence 2b according to the Sackett scale. The rest were case-control studies or case series with small samples and no control, graded as evidence 3b and 4. A meta-analysis could not be conducted due to the heterogenicity of the study designs. Given the evidence obtained, Level D NICE recommendation was established. However, we consider that the positive findings are sufficiently consistent to support the elaboration of further RCTs that share criteria and methods.
Collapse
Affiliation(s)
- Alexis Ortega-Cuartiella
- Ad Astra Clinic® Medical Director and Founder, Cl. Doctor Roux 67, Bajo. Barcelona, Spain, International Society for Stem Cell Applications: Platinum Member, Real Instituto Alfonso XIII: Academician
| |
Collapse
|
5
|
O'Mahony C, Sebastian R, Tjulkins F, Whelan D, Bocchino A, Hu Y, O'Brien J, Scully J, Hegarty M, Blake A, Slimi I, Clover AJP, Lyness A, Kelleher AM. Hollow silicon microneedles, fabricated using combined wet and dry etching techniques, for transdermal delivery and diagnostics. Int J Pharm 2023; 637:122888. [PMID: 36977451 DOI: 10.1016/j.ijpharm.2023.122888] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023]
Abstract
Microneedle-based technologies are the subject of intense research and commercial interest for applications in transdermal delivery and diagnostics, primarily because of their minimally invasive and painless nature, which in turn could lead to increased patient compliance and self-administration. In this paper, a process for the fabrication of arrays of hollow silicon microneedles is described. This method uses just two bulk silicon etches - a front-side wet etch to define the 500 μm tall octagonal needle structure itself, and a rear-side dry etch to create a 50 μm diameter bore through the needle. This reduces the number of etches and process complexity over the approaches described elsewhere. Ex-vivo human skin and a customised applicator were used to demonstrate biomechanical reliability and the feasibility of using these microneedles for both transdermal delivery and diagnostics. Microneedle arrays show no damage even when applied to skin up to 40 times, are capable of delivering several mL of fluid at flowrates of 30 μL/min, and of withdrawing 1 μL of interstitial fluid using capillary action.
Collapse
Affiliation(s)
- Conor O'Mahony
- Tyndall National Institute, University College Cork, Cork, Ireland; Insight Centre for Data Analytics, Tyndall National Institute, University College Cork, Cork, Ireland.
| | - Ryan Sebastian
- Tyndall National Institute, University College Cork, Cork, Ireland; Insight Centre for Data Analytics, Tyndall National Institute, University College Cork, Cork, Ireland
| | - Fjodors Tjulkins
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Derek Whelan
- Department of Biomedical, Mechanical and Manufacturing Engineering, Munster Technological University, Cork, Ireland
| | - Andrea Bocchino
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Yuan Hu
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Joe O'Brien
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Jim Scully
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Margaret Hegarty
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Alan Blake
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Inès Slimi
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - A James P Clover
- Department of Plastic and Reconstructive Surgery, Cork University Hospital, Cork, Ireland
| | | | | |
Collapse
|
6
|
Mohizin A, Imran JH, Lee KS, Kim JK. Dynamic interaction of injected liquid jet with skin layer interfaces revealed by microsecond imaging of optically cleared ex vivo skin tissue model. J Biol Eng 2023; 17:15. [PMID: 36849998 PMCID: PMC9969392 DOI: 10.1186/s13036-023-00335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/21/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Needle-free jet injection (NFJI) systems enable a controlled and targeted delivery of drugs into skin tissue. However, a scarce understanding of their underlying mechanisms has been a major deterrent to the development of an efficient system. Primarily, the lack of a suitable visualization technique that could capture the dynamics of the injected fluid-tissue interaction with a microsecond range temporal resolution has emerged as a main limitation. A conventional needle-free injection system may inject the fluids within a few milliseconds and may need a temporal resolution in the microsecond range for obtaining the required images. However, the presently available imaging techniques for skin tissue visualization fail to achieve these required spatial and temporal resolutions. Previous studies on injected fluid-tissue interaction dynamics were conducted using in vitro media with a stiffness similar to that of skin tissue. However, these media are poor substitutes for real skin tissue, and the need for an imaging technique having ex vivo or in vivo imaging capability has been echoed in the previous reports. METHODS A near-infrared imaging technique that utilizes the optical absorption and fluorescence emission of indocyanine green dye, coupled with a tissue clearing technique, was developed for visualizing a NFJI in an ex vivo porcine skin tissue. RESULTS The optimal imaging conditions obtained by considering the optical properties of the developed system and mechanical properties of the cleared ex vivo samples are presented. Crucial information on the dynamic interaction of the injected liquid jet with the ex vivo skin tissue layers and their interfaces could be obtained. CONCLUSIONS The reported technique can be instrumental for understanding the injection mechanism and for the development of an efficient transdermal NFJI system as well.
Collapse
Affiliation(s)
- Abdul Mohizin
- School of Mechanical Engineering, Kookmin University, 77 Jeongneung-Ro, Seongbuk-Gu, Seoul, 02707, Republic of Korea
| | - Jakir Hossain Imran
- Department of Mechanical Engineering, Graduate School, Kookmin University, Seoul, 02707, Republic of Korea
| | - Kee Sung Lee
- School of Mechanical Engineering, Kookmin University, 77 Jeongneung-Ro, Seongbuk-Gu, Seoul, 02707, Republic of Korea
| | - Jung Kyung Kim
- School of Mechanical Engineering, Kookmin University, 77 Jeongneung-Ro, Seongbuk-Gu, Seoul, 02707, Republic of Korea.
| |
Collapse
|
7
|
Nguyen HX, Nguyen CN. Microneedle-Mediated Transdermal Delivery of Biopharmaceuticals. Pharmaceutics 2023; 15:277. [PMID: 36678906 PMCID: PMC9864466 DOI: 10.3390/pharmaceutics15010277] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Transdermal delivery provides numerous benefits over conventional routes of administration. However, this strategy is generally limited to a few molecules with specific physicochemical properties (low molecular weight, high potency, and moderate lipophilicity) due to the barrier function of the stratum corneum layer. Researchers have developed several physical enhancement techniques to expand the applications of the transdermal field; among these, microneedle technology has recently emerged as a promising platform to deliver therapeutic agents of any size into and across the skin. Typically, hydrophilic biomolecules cannot penetrate the skin by passive diffusion. Microneedle insertion disrupts skin integrity and compromises its protective function, thus creating pathways (microchannels) for enhanced permeation of macromolecules. Microneedles not only improve stability but also enhance skin delivery of various biomolecules. Academic institutions and industrial companies have invested substantial resources in the development of microneedle systems for biopharmaceutical delivery. This review article summarizes the most recent research to provide a comprehensive discussion about microneedle-mediated delivery of macromolecules, covering various topics from the introduction of the skin, transdermal delivery, microneedles, and biopharmaceuticals (current status, conventional administration, and stability issues), to different microneedle types, clinical trials, safety and acceptability of microneedles, manufacturing and regulatory issues, and the future of microneedle technology.
Collapse
Affiliation(s)
- Hiep X. Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Chien N. Nguyen
- National Institute of Pharmaceutical Technology, Hanoi University of Pharmacy, Hanoi 100000, Vietnam
- Faculty of Pharmaceutics and Pharmaceutical Technology, Hanoi University of Pharmacy, Hanoi 100000, Vietnam
| |
Collapse
|
8
|
Tabriz AG, Viegas B, Okereke M, Uddin MJ, Lopez EA, Zand N, Ranatunga M, Getti G, Douroumis D. Evaluation of 3D Printability and Biocompatibility of Microfluidic Resin for Fabrication of Solid Microneedles. MICROMACHINES 2022; 13:mi13091368. [PMID: 36143991 PMCID: PMC9505489 DOI: 10.3390/mi13091368] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/07/2022] [Accepted: 08/13/2022] [Indexed: 05/27/2023]
Abstract
In this study, we have employed Digital Light Processing (DLP) printing technology for the fabrication of solid microneedle (MN) arrays. Several arrays with various geometries, such as cones, three-sided pyramids and four-sided pyramids, with different height to aspect ratios of 1:1, 2:1 and 3:1, were printed. Post-processing curing optimizations showed that optimal mechanical properties of the photocurable resin were obtained at 40 °C and 60 min. Ex vivo skin studies showed that piercing forces, penetration depth and penetration width were affected by the MN geometry and height to aspect ratio. Cone-shaped MNs required lower applied forces to penetrate skin and showed higher penetration depth with increasing height to aspect ratio, followed by three-sided and four-sided printed arrays. Cytotoxicity studies presented 84% cell viability of human fibroblasts after 2.5 h, suggesting the very good biocompatibility of the photocurable resin. Overall, DLP demonstrated excellent printing capacity and high resolution for a variety of MN designs.
Collapse
Affiliation(s)
- Atabak Ghanizadeh Tabriz
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham ME4 4TB, UK
- CIPER Centre for Innovation and Process Engineering Research, Kent ME4 4TB, UK
| | - Beatriz Viegas
- School of Science and Technology, NOVA University Lisbon, 2829-516 Almada, Portugal
| | - Michael Okereke
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham ME4 4TB, UK
| | - Md Jasim Uddin
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham ME4 4TB, UK
- CIPER Centre for Innovation and Process Engineering Research, Kent ME4 4TB, UK
| | - Elena Arribas Lopez
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham ME4 4TB, UK
| | - Nazanin Zand
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham ME4 4TB, UK
| | - Medhavi Ranatunga
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham ME4 4TB, UK
| | - Giulia Getti
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham ME4 4TB, UK
| | - Dennis Douroumis
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham ME4 4TB, UK
- CIPER Centre for Innovation and Process Engineering Research, Kent ME4 4TB, UK
| |
Collapse
|
9
|
Tjulkins F, Sebastian R, Guillerm T, Clover AJP, Hu Y, Lyness A, O'Mahony C. Towards Micropump- and Microneedle-based Drug Delivery using Micro Transdermal Interface Platforms (MicroTIPs). ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3020-3023. [PMID: 36085614 DOI: 10.1109/embc48229.2022.9871455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Micro Transdermal Interface Platforms (MicroTIPs) will combine minimally invasive microneedle arrays with highly miniaturized sensors, actuators, control electronics, wireless communications and artificial intelligence. These patch-like devices will be capable of autonomous physiological monitoring and transdermal drug delivery, resulting in increased patient adherence and devolved healthcare. In this paper, we experimentally demonstrate the feasibility of controlled transdermal drug delivery using a combination of 500 μm tall silicon microneedles, a commercial micropump, pressure and flow sensors, and bespoke electronics. Using ex-vivo human skin samples and a customized application/retraction system, leak-free delivery of volumes ranging from 0.7-1.1 mL has been achieved in under one hour. Clinical Relevance - This work experimentally confirms the feasibility of combining micropumps with microneedle arrays for applications in transdermal drug delivery.
Collapse
|
10
|
Mårtensson LB, Gunnarsson BM, Karlsson S, Lee N, Bergh I. Effect of topical local anaesthesia on injection pain associated with administration of sterile water injections - a randomized controlled trial. BMC Anesthesiol 2022; 22:35. [PMID: 35105307 PMCID: PMC8805377 DOI: 10.1186/s12871-022-01573-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
Background Sterile water injections can provide effective pain relief during childbirth, particularly for low back pain related to childbirth. However, the pain associated administering the injections can negatively impact women’s impressions of the procedure. It may discourage women from considering repeat doses despite the quality of analgesia experienced. Determining strategies to reduce the pain related to the administration of sterile water injections would improve the acceptability of the technique. Therefore, the aim of this study was to evaluate the effect of topical local anesthesia on the pain associated with administration of sterile water injections. Methods The study was designed as a multi-arm single-blind, randomized, controlled trial and 120 female healthy students were randomly divided according to one of four groups. The Intervention group received sterile water injections with topical local anesthesia. Control group 1 received sterile water injections without topical local anesthesia, control group 2 received injections of isotonic saline 0.9% with topical local anesthesia and control group 3 received injections of isotonic saline 0.9% without topical local anesthesia. Pain Immediately after the injections and subsidence in pain were recorded using a visual analogue scale. Sensations in the injection area were reported 15 min and the day after the injections. Results The main finding of this study was that local anesthesia with EMLA® reduces the pain associated with the administration of intracutaneous sterile water injections. There was a significant difference in the self-assessed pain score immediately following the injections between the control (73.3 mm) and intervention groups (50.0 mm), p = 0.001. No adverse side effects were reported. Conclusion Local anesthesia with EMLA® reduces the pain associated with intracutaneous administration of sterile water injections. Trial registration The study was registered 08/07/2014 at ClinicalTrials.gov Identifier: NCT02213185.
Collapse
Affiliation(s)
- Lena B Mårtensson
- School of Health Sciences, University of Skövde, P.O. Box 408, SE-541 28, Skövde, Sweden. .,School of Nursing, Midwifery and Social Work University of Queensland, Chamberlain Building, University of Queensland,, St Lucia, Queensland, 4072, Australia.
| | - Britt-Marie Gunnarsson
- School of Health Sciences, University of Skövde, P.O. Box 408, SE-541 28, Skövde, Sweden
| | - Sandra Karlsson
- School of Health and Welfare, Jönköping University, P.O. Box 1026, SE-551 11, Jönköping, Sweden
| | - Nigel Lee
- School of Nursing, Midwifery and Social Work University of Queensland, Chamberlain Building, University of Queensland,, St Lucia, Queensland, 4072, Australia
| | - Ingrid Bergh
- School of Health Sciences, University of Skövde, P.O. Box 408, SE-541 28, Skövde, Sweden
| |
Collapse
|
11
|
Hsu CC, Hsu I, Chang HH, Hsu R, Dorjee S. Extended Injection Intervals of Gonadotropins by Intradermal Administration in IVF Treatment. J Clin Endocrinol Metab 2022; 107:e716-e733. [PMID: 34601606 DOI: 10.1210/clinem/dgab709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 01/08/2023]
Abstract
CONTEXT Gonadotropins can be administered every 5 days under intradermal injection in in vitro fertilization (IVF) treatment. OBJECTIVE To explore the effectiveness of intradermal injection of recombinant human FSH (rhFSH) for women undergoing IVF. METHODS Women who received their first IVF treatment enrolled in this prospective intervention in 2018. All women received a bolus of 900 IU rhFSH intradermally at day 2 of the treatment cycle followed by additional dosage of rhFSH at day 7 and/or day 10. The main outcome measures included the total dose of rhFSH and number of injections required, sequential serum FSH level detected, and number of mature oocytes retrieved. RESULTS Seventy women completed the study. On average, 2.31 ± 0.73 injections and 1662 ± 397 IU of rhFSH were administered. While the baseline FSH level was 5.6 ± 2.2 IU/L, the serum concentrations of FSH after rhFSH administration were 35.3 ± 7.0 on the first day (24 hours) and 10.7 ± 3.7 IU/L on the fifth day (120 hours). A total of 10.5 ± 6.6 mature oocytes were retrieved, resulting in 7.3 ± 5.1 pronuclear embryos; 1.8 ± 0.6 embryos were transferred to the uterus. Our findings resulted in 72% fertilization, 91% cleavage, 31% implantation, and 36% live birth rates. Although fewer larger follicles were found, noninferiority results were noted in the mature oocytes retrieved, good embryos available, and clinical pregnancy rate compared with those received conventional daily subcutaneous rhFSH administration. CONCLUSION Intradermal administration of rhFSH, with a smaller dose of rhFSH and fewer injections, may achieve the goal of a cost-effective and more patient-friendly regimen.
Collapse
Affiliation(s)
- Chao Chin Hsu
- Taiwan United Birth-promoting Experts Fertility Clinic, Tainan, Taiwan
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, Tainan, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Isabel Hsu
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hui Hua Chang
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Pharmacy, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin,Taiwan
| | - Rosie Hsu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Sonam Dorjee
- Taiwan United Birth-promoting Experts Fertility Clinic, Tainan, Taiwan
| |
Collapse
|
12
|
Osawa Y, Kinbara Y, Kageoka M, Iida K, Kheddar A. Soft robotic shell with active thermal display. Sci Rep 2021; 11:20070. [PMID: 34625575 PMCID: PMC8501096 DOI: 10.1038/s41598-021-99117-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/15/2021] [Indexed: 01/20/2023] Open
Abstract
Almost all robotic systems in use have hard shells, which is limiting in many ways their full potential of physical interaction with humans or their surrounding environment. Robots with soft-shell covers offer an alternative morphology which is more pleasant in both appearance and for haptic human interaction. A persisting challenge in such soft-shell robotic covers is the simultaneous realization of softness and heat-conducting properties. Such heat-conducting properties are important for enabling temperature-control of robotic covers in the range that is comfortable for human touch. The presented soft-shell robotic cover is composed of a linked two-layer structure: (1) The inner layer, with built-in pipes for water circulation, is soft and acts as a thermal-isolation layer between the cover and the robot structure, whereas (2) the outer layer, which can be patterned with a given desired texture and color, allows heat transfer from the circulating water of the inner part to the surface. Moreover, we demonstrate the ability to integrate our prototype cover with a humanoid robot equipped with capacitance sensors. This fabrication technique enables robotic cover possibilities, including tunable color, surface texture, and size, that are likely to have applications in a variety of robotic systems.
Collapse
Affiliation(s)
- Yukiko Osawa
- CNRS-University of Montpellier, LIRMM, Montpellier, France. .,National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| | | | | | - Kenji Iida
- Mitsui Chemicals Europe, Düsseldorf, Germany
| | | |
Collapse
|
13
|
Liu T, Chen M, Fu J, Sun Y, Lu C, Quan G, Pan X, Wu C. Recent advances in microneedles-mediated transdermal delivery of protein and peptide drugs. Acta Pharm Sin B 2021; 11:2326-2343. [PMID: 34522590 PMCID: PMC8424228 DOI: 10.1016/j.apsb.2021.03.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/12/2020] [Accepted: 12/08/2020] [Indexed: 01/14/2023] Open
Abstract
Proteins and peptides have become a significant therapeutic modality for various diseases because of their high potency and specificity. However, the inherent properties of these drugs, such as large molecular weight, poor stability, and conformational flexibility, make them difficult to be formulated and delivered. Injection is the primary route for clinical administration of protein and peptide drugs, which usually leads to poor patient's compliance. As a portable, minimally invasive device, microneedles (MNs) can overcome the skin barrier and generate reversible microchannels for effective macromolecule permeation. In this review, we highlighted the recent advances in MNs-mediated transdermal delivery of protein and peptide drugs. Emphasis was given to the latest development in representative MNs design and fabrication. We also summarize the current application status of MNs-mediated transdermal protein and peptide delivery, especially in the field of infectious disease, diabetes, cancer, and other disease therapy. Finally, the current status of clinical translation and a perspective on future development are also provided.
Collapse
Affiliation(s)
- Ting Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Minglong Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jintao Fu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ying Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
14
|
Violaris IG, Kalafatakis K, Zavala E, Tsoulos IG, Lampros T, Lightman SL, Tsipouras MG, Giannakeas N, Tzallas A, Russell GM. Modelling Hydrocortisone Pharmacokinetics on a Subcutaneous Pulsatile Infusion Replacement Strategy in Patients with Adrenocortical Insufficiency. Pharmaceutics 2021; 13:769. [PMID: 34064165 PMCID: PMC8224376 DOI: 10.3390/pharmaceutics13060769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
In the context of glucocorticoid (GC) therapeutics, recent studies have utilised a subcutaneous hydrocortisone (HC) infusion pump programmed to deliver multiple HC pulses throughout the day, with the purpose of restoring normal circadian and ultradian GC rhythmicity. A key challenge for the advancement of novel HC replacement therapies is the calibration of infusion pumps against cortisol levels measured in blood. However, repeated blood sampling sessions are enormously labour-intensive for both examiners and examinees. These sessions also have a cost, are time consuming and are occasionally unfeasible. To address this, we developed a pharmacokinetic model approximating the values of plasma cortisol levels at any point of the day from a limited number of plasma cortisol measurements. The model was validated using the plasma cortisol profiles of 9 subjects with disrupted endogenous GC synthetic capacity. The model accurately predicted plasma cortisol levels (mean absolute percentage error of 14%) when only four plasma cortisol measurements were provided. Although our model did not predict GC dynamics when HC was administered in a way other than subcutaneously or in individuals whose endogenous capacity to produce GCs is intact, it was found to successfully be used to support clinical trials (or practice) involving subcutaneous HC delivery in patients with reduced endogenous capacity to synthesize GCs.
Collapse
Affiliation(s)
- Ioannis G. Violaris
- Department of Electrical and Computer Engineering, University of Western Macedonia, 50131 Kozani, Greece; (I.G.V.); (M.G.T.)
| | - Konstantinos Kalafatakis
- Laboratories of Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol BS1 3NY, UK; (S.L.L.); (G.M.R.)
- Department of Informatics & Telecommunications, School of Informatics & Telecommunications, University of Ioannina, 47100 Arta, Greece; (I.G.T.); (T.L.); (N.G.); (A.T.)
| | - Eder Zavala
- Centre for Systems Modelling and Quantitative Biomedicine, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Ioannis G. Tsoulos
- Department of Informatics & Telecommunications, School of Informatics & Telecommunications, University of Ioannina, 47100 Arta, Greece; (I.G.T.); (T.L.); (N.G.); (A.T.)
| | - Theodoros Lampros
- Department of Informatics & Telecommunications, School of Informatics & Telecommunications, University of Ioannina, 47100 Arta, Greece; (I.G.T.); (T.L.); (N.G.); (A.T.)
| | - Stafford L. Lightman
- Laboratories of Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol BS1 3NY, UK; (S.L.L.); (G.M.R.)
| | - Markos G. Tsipouras
- Department of Electrical and Computer Engineering, University of Western Macedonia, 50131 Kozani, Greece; (I.G.V.); (M.G.T.)
| | - Nikolaos Giannakeas
- Department of Informatics & Telecommunications, School of Informatics & Telecommunications, University of Ioannina, 47100 Arta, Greece; (I.G.T.); (T.L.); (N.G.); (A.T.)
| | - Alexandros Tzallas
- Department of Informatics & Telecommunications, School of Informatics & Telecommunications, University of Ioannina, 47100 Arta, Greece; (I.G.T.); (T.L.); (N.G.); (A.T.)
| | - Georgina M. Russell
- Laboratories of Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol BS1 3NY, UK; (S.L.L.); (G.M.R.)
| |
Collapse
|
15
|
Clustering and Erratic Movement Patterns of Syringe-Injected versus Mosquito-Inoculated Malaria Sporozoites Underlie Decreased Infectivity. mSphere 2021; 6:6/2/e00218-21. [PMID: 33827910 PMCID: PMC8546700 DOI: 10.1128/msphere.00218-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria vaccine candidates based on live, attenuated sporozoites have led to high levels of protection. However, their efficacy critically depends on the sporozoites' ability to reach and infect the host liver. Administration via mosquito inoculation is by far the most potent method for inducing immunity but highly impractical. Here, we observed that intradermal syringe-injected Plasmodium berghei sporozoites (syrSPZ) were 3-fold less efficient in migrating to and infecting mouse liver than mosquito-inoculated sporozoites (msqSPZ). This was related to a clustered dermal distribution (2-fold-decreased median distance between syrSPZ and msqSPZ) and, more importantly, a 1.4-fold (significantly)-slower and more erratic movement pattern. These erratic movement patterns were likely caused by alteration of dermal tissue morphology (>15-μm intercellular gaps) due to injection of fluid and may critically decrease sporozoite infectivity. These results suggest that novel microvolume-based administration technologies hold promise for replicating the success of mosquito-inoculated live, attenuated sporozoite vaccines.IMPORTANCE Malaria still causes a major burden on global health and the economy. The efficacy of live, attenuated malaria sporozoites as vaccine candidates critically depends on their ability to migrate to and infect the host liver. This work sheds light on the effect of different administration routes on sporozoite migration. We show that the delivery of sporozoites via mosquito inoculation is more efficient than syringe injection; however, this route of administration is highly impractical for vaccine purposes. Using confocal microscopy and automated imaging software, we demonstrate that syringe-injected sporozoites do cluster, move more slowly, and display more erratic movement due to alterations in tissue morphology. These findings indicate that microneedle-based engineering solutions hold promise for replicating the success of mosquito-inoculated live, attenuated sporozoite vaccines.
Collapse
|
16
|
Zheng F, Hou P, Corpstein CD, Xing L, Li T. Multiphysics Modeling and Simulation of Subcutaneous Injection and Absorption of Biotherapeutics: Model Development. Pharm Res 2021; 38:607-624. [PMID: 33811278 DOI: 10.1007/s11095-021-03032-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/16/2021] [Indexed: 01/04/2023]
Abstract
PURPOSE Many monoclonal antibodies (mAbs) are administered via subcutaneous (SC) injection. Local transport and absorption kinetics and mechanisms, however, remain poorly understood. A multiphysics computational model was developed to simulate the injection and absorption processes of a protein solution in the SC tissue. METHODS Quantitative relationships among tissue properties and transport behaviors of an injected solution were described by respective physical laws. SC tissue was treated as a 3-dimensional homogenous, poroelastic medium, in which vasculatures and lymphatic vessels were implicitly treated. Tissue deformation was considered, and interstitial fluid flow was modeled by Darcy's law. Transport of the drug mass was described based on diffusion and advection, which was integrated with tissue mechanics and interstitial fluid dynamics. RESULTS Injection and absorption of albumin and IgG solutions were simulated. Upon injection, a sharp rise in tissue pressure, porosity, and fluid velocity could be observed at the injection tip. Largest tissue deformation appeared at the model surface. Transport of drug mass out of the injection zone was minimal. Absorption by local lymphatics was found to last several weeks. CONCLUSIONS A bottom-up method was developed to simulate drug transport and absorption of protein solutions in skin tissue base on physical principles. The results appear to match experimental observations.
Collapse
Affiliation(s)
- Fudan Zheng
- Department of Industrial and Physical Pharmacy, Purdue University, 525 Stadium Mall Dr., RHPH Building, West Lafayette, Indiana, 47907, USA
| | - Peng Hou
- Department of Industrial and Physical Pharmacy, Purdue University, 525 Stadium Mall Dr., RHPH Building, West Lafayette, Indiana, 47907, USA
| | - Clairissa D Corpstein
- Department of Industrial and Physical Pharmacy, Purdue University, 525 Stadium Mall Dr., RHPH Building, West Lafayette, Indiana, 47907, USA
| | - Lei Xing
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, Purdue University, 525 Stadium Mall Dr., RHPH Building, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
17
|
Shahriar M, Rewanwar A, Rohilla P, Marston J. Understanding the effect of counterpressure buildup during syringe injections. Int J Pharm 2021; 602:120530. [PMID: 33811964 DOI: 10.1016/j.ijpharm.2021.120530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/23/2021] [Accepted: 03/21/2021] [Indexed: 11/17/2022]
Abstract
The pain felt during injection, typically delivered via a hypodermic needle as a single bolus, is associated with the pressure build-up around the site of injection. It is hypothesized that this counterpressure is a function of the target tissue as well as fluid properties. Given that novel vaccines target different tissues (muscle, adipose, and skin) and can exhibit a wide range of fluid properties, we conducted a study of the effect of volumetric flow rate, needle size, viscosity and rheology of fluid, and hyaluronidase as an adjuvant on counterpressure build-up in porcine skin and muscle tissues. In particular, we found a significant increase in counterpressure for intradermal (ID) injections compared to intramuscular (IM) injections, by an order of magnitude in some cases. We also showed that the addition of adjuvant affected the tissue back pressure only in case of subcutaneous (SC) injections. We observed that the volumetric flow rate plays an important role along with the needle size. This study aims to improve the current understanding and limitations of liquid injectability via hypodermic needles, however, the results also have implications for other technologies, such as intradermal jet injection where a liquid bleb is formed under the skin.
Collapse
Affiliation(s)
- Md Shahriar
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Ankit Rewanwar
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Pankaj Rohilla
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Jeremy Marston
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States.
| |
Collapse
|
18
|
Cárcamo-Martínez Á, Mallon B, Domínguez-Robles J, Vora LK, Anjani QK, Donnelly RF. Hollow microneedles: A perspective in biomedical applications. Int J Pharm 2021; 599:120455. [PMID: 33676993 DOI: 10.1016/j.ijpharm.2021.120455] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/26/2022]
Abstract
Microneedles (MN) have the potential to become a highly progressive device for both drug delivery and monitoring purposes as they penetrate the skin and pierce the stratum corneum barrier, allowing the delivery of drugs in the viable skin layers and the extraction of body fluids. Despite the many years of research and the different types of MN developed, only hollow MN have reached the pharmaceutical market under the path of medical devices. Therefore, this review focuses on hollow MN, materials and methods for their fabrication as well as their application in drug delivery, vaccine delivery and monitoring purposes. Furthermore, novel approaches for the fabrication of hollow MN are included as well as prospects of microneedle-based products on the market.
Collapse
Affiliation(s)
| | - Brónach Mallon
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita K Anjani
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
19
|
Characterization method for calculating diffusion coefficient of drug from polylactic acid (PLA) microneedles into the skin. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Pahal S, Badnikar K, Ghate V, Bhutani U, Nayak MM, Subramanyam DN, Vemula PK. Microneedles for Extended Transdermal Therapeutics: A Route to Advanced Healthcare. Eur J Pharm Biopharm 2021; 159:151-169. [PMID: 33388372 DOI: 10.1016/j.ejpb.2020.12.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 11/17/2022]
Abstract
Sustained release of drugs over a pre-determined period is required to maintain an effective therapeutic dose for variety of drug delivery applications. Transdermal devices such as polymeric microneedle patches and other microneedle-based devices have been utilized for sustained release of their payload. Swift clearing of drugs can be prevented either by designing a slow-degrading polymeric matrix or by providing physiochemical triggers to different microneedle-based devices for on-demand release. These long-acting transdermal devices prevent the burst release of drugs. This review highlights the recent advances of microneedle-based devices for sustained release of vaccines, hormones, and antiretrovirals with their prospective safe clinical translation.
Collapse
Affiliation(s)
- Suman Pahal
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India.
| | - Kedar Badnikar
- Department of Electronics Systems Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Vivek Ghate
- Department of Electronics Systems Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Utkarsh Bhutani
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India
| | - Mangalore Manjunatha Nayak
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | | | - Praveen Kumar Vemula
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka 560065, India.
| |
Collapse
|
21
|
Lee KJ, Jeong SS, Roh DH, Kim DY, Choi HK, Lee EH. A practical guide to the development of microneedle systems – In clinical trials or on the market. Int J Pharm 2020; 573:118778. [DOI: 10.1016/j.ijpharm.2019.118778] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022]
|