1
|
Nieberding CM, Beldade P, Baumlé V, San Martin G, Arun A, Lognay G, Montagné N, Bastin-Héline L, Jacquin-Joly E, Noirot C, Klopp C, Visser B. Mosaic Evolution of Molecular Pathways for Sex Pheromone Communication in a Butterfly. Genes (Basel) 2022; 13:1372. [PMID: 36011283 PMCID: PMC9407440 DOI: 10.3390/genes13081372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
Unraveling the origin of molecular pathways underlying the evolution of adaptive traits is essential for understanding how new lineages emerge, including the relative contribution of conserved ancestral traits and newly evolved derived traits. Here, we investigated the evolutionary divergence of sex pheromone communication from moths (mostly nocturnal) to butterflies (mostly diurnal) that occurred ~119 million years ago. In moths, it is the females that typically emit pheromones to attract male mates, but in butterflies males emit pheromones that are used by females for mate choice. The molecular bases of sex pheromone communication are well understood in moths, but they have remained relatively unexplored in butterflies. We used a combination of transcriptomics, real time qPCR, and phylogenetics to identify genes involved in the different steps (i.e., production, regulation, and reception) of sex pheromone communication of the butterfly Bicyclus anynana. Our results show that the biosynthesis and reception of sex pheromones relies both on moth-specific gene families (reductases) and on more ancestral insect gene families (desaturases, olfactory receptors, odorant binding proteins). Interestingly, B. anynana appears to use what was believed to be the moth-specific neuropeptide Pheromone Biosynthesis Activating Neuropeptide (PBAN) for regulating sex pheromone production. Altogether, our results suggest that a mosaic pattern best explains how sex pheromone communication evolved in butterflies, with some molecular components derived from moths, and others conserved from more ancient insect ancestors. This is the first large-scale investigation of the genetic pathways underlying sex pheromone communication in a butterfly.
Collapse
Affiliation(s)
- Caroline M. Nieberding
- Evolutionary Ecology and Genetics Group, Earth and Life Institute, UC Louvain, 1348 Louvain-la-Neuve, Belgium; (V.B.); (G.S.M.); (A.A.); (G.L.)
| | - Patrícia Beldade
- Center for Ecology, Evolution and Environmental Changes (cE3c) & Global Change and Sustainability Institute (CHANGE), Faculty of Sciences, University of Lisbon (FCUL), 1749-016 Lisboa, Portugal;
| | - Véronique Baumlé
- Evolutionary Ecology and Genetics Group, Earth and Life Institute, UC Louvain, 1348 Louvain-la-Neuve, Belgium; (V.B.); (G.S.M.); (A.A.); (G.L.)
| | - Gilles San Martin
- Evolutionary Ecology and Genetics Group, Earth and Life Institute, UC Louvain, 1348 Louvain-la-Neuve, Belgium; (V.B.); (G.S.M.); (A.A.); (G.L.)
| | - Alok Arun
- Evolutionary Ecology and Genetics Group, Earth and Life Institute, UC Louvain, 1348 Louvain-la-Neuve, Belgium; (V.B.); (G.S.M.); (A.A.); (G.L.)
| | - Georges Lognay
- Evolutionary Ecology and Genetics Group, Earth and Life Institute, UC Louvain, 1348 Louvain-la-Neuve, Belgium; (V.B.); (G.S.M.); (A.A.); (G.L.)
| | - Nicolas Montagné
- INRAE, CNRS, IRD, UPEC, Sorbonne Université, Institute of Ecology and Environmental Sciences of Paris, Université de Paris, 78000 Versailles, France; (N.M.); (L.B.-H.); (E.J.-J.)
| | - Lucie Bastin-Héline
- INRAE, CNRS, IRD, UPEC, Sorbonne Université, Institute of Ecology and Environmental Sciences of Paris, Université de Paris, 78000 Versailles, France; (N.M.); (L.B.-H.); (E.J.-J.)
| | - Emmanuelle Jacquin-Joly
- INRAE, CNRS, IRD, UPEC, Sorbonne Université, Institute of Ecology and Environmental Sciences of Paris, Université de Paris, 78000 Versailles, France; (N.M.); (L.B.-H.); (E.J.-J.)
| | - Céline Noirot
- Plateforme Bio-Informatique GenoToul, MIAT, INRAE, UR875 Mathématiques et Informatique Appliquées Toulouse, 31326 Castanet-Tolosan, France; (C.N.); (C.K.)
| | - Christophe Klopp
- Plateforme Bio-Informatique GenoToul, MIAT, INRAE, UR875 Mathématiques et Informatique Appliquées Toulouse, 31326 Castanet-Tolosan, France; (C.N.); (C.K.)
| | - Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium;
| |
Collapse
|
2
|
Debat V, Chazot N, Jarosson S, Blandin P, Llaurens V. What Drives the Diversification of Eyespots in Morpho Butterflies? Disentangling Developmental and Selective Constraints From Neutral Evolution. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
3
|
Varón‐González C, Fraimout A, Debat V. Drosophila suzukii wing spot size is robust to developmental temperature. Ecol Evol 2020; 10:3178-3188. [PMID: 32273979 PMCID: PMC7141071 DOI: 10.1002/ece3.5902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
Phenotypic plasticity is an important mechanism allowing adaptation to new environments and as such it has been suggested to facilitate biological invasions. Under this assumption, invasive populations are predicted to exhibit stronger plastic responses than native populations. Drosophila suzukii is an invasive species whose males harbor a spot on the wing tip. In this study, by manipulating developmental temperature, we compare the phenotypic plasticity of wing spot size of two invasive populations with that of a native population. We then compare the results with data obtained from wild-caught flies from different natural populations. While both wing size and spot size are plastic to temperature, no difference in plasticity was detected between native and invasive populations, rejecting the hypothesis of a role of the wing-spot plasticity in the invasion success. In contrast, we observed a remarkable stability in the spot-to-wing ratio across temperatures, as well as among geographic populations. This stability suggests either that the spot relative size is under stabilizing selection, or that its variation might be constrained by a tight developmental correlation between spot size and wing size. Our data show that this correlation was lost at high temperature, leading to an increased variation in the relative spot size, particularly marked in the two invasive populations. This suggests: (a) that D. suzukii's development is impaired by hot temperatures, in agreement with the cold-adapted status of this species; (b) that the spot size can be decoupled from wing size, rejecting the hypothesis of an absolute constraint and suggesting that the wing color pattern might be under stabilizing (sexual) selection; and (c) that such sexual selection might be relaxed in the invasive populations. Finally, a subtle but consistent directional asymmetry in spot size was detected in favor of the right side in all populations and temperatures, possibly indicative of a lateralized sexual behavior.
Collapse
Affiliation(s)
- Ceferino Varón‐González
- Institut de Systématique, Evolution, Biodiversité (ISYEB)Muséum National d'Histoire NaturelleCNRSSorbonne UniversitéEPHEUniversité des AntillesParisFrance
| | - Antoine Fraimout
- Institut de Systématique, Evolution, Biodiversité (ISYEB)Muséum National d'Histoire NaturelleCNRSSorbonne UniversitéEPHEUniversité des AntillesParisFrance
- Present address:
Ecological Genetics Research UnitOrganismal and Evolutionary Biology Research ProgrammeFaculty of Biology and Environmental SciencesBiocenter 3University of HelsinkiHelsinkiFinland
| | - Vincent Debat
- Institut de Systématique, Evolution, Biodiversité (ISYEB)Muséum National d'Histoire NaturelleCNRSSorbonne UniversitéEPHEUniversité des AntillesParisFrance
| |
Collapse
|
4
|
Muller D, Elias B, Collard L, Pels C, Holveck MJ, Nieberding CM. Polyphenism of visual and chemical secondary sexually-selected wing traits in the butterfly Bicyclus anynana: How different is the intermediate phenotype? PLoS One 2019; 14:e0225003. [PMID: 31738776 PMCID: PMC6860419 DOI: 10.1371/journal.pone.0225003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/25/2019] [Indexed: 12/05/2022] Open
Abstract
Polyphenism is a type of phenotypic plasticity supposedly adaptive to drastic and recurrent changes in the environment such as seasonal alternation in temperate and tropical regions. The butterfly Bicyclus anynana shows polyphenism with well-described wet and dry seasonal forms in sub-Saharan Africa, displaying striking morphological, physiological and behavioural differences in response to higher or lower developmental temperatures. During the seasonal transition in the wild, the intermediate phenotype co-occurs with wet and dry phenotypes. In this study, we aimed to characterize the secondary sexually-selected wing traits of the intermediate form to infer its potential fitness compared to wet and dry phenotypes. Among the previously described wing morphological traits, we first showed that the area of the fifth eyespot on the ventral hindwing is the most discriminant trait to identify wet, dry and intermediate phenotypes in both sexes. Second, we characterized the intermediate form for two secondary sexually-selected wing traits: the area and UV reflectance of the dorsal forewing pupil and the composition of the male sex pheromone. We showed that values of these two traits are often between those of the wet and dry phenotypes. Third, we observed increasing male sex pheromone production in ageing dry and wet phenotypes. Our results contrast with previous reports of values for sexually-selected traits in wet and dry seasonal forms, which might be explained by differences in rearing conditions or sample size effects among studies. Wet, dry and intermediate phenotypes display redundant sexually dimorphic traits, including sexually-selected traits that can inform about their developmental temperature in sexual interactions.
Collapse
Affiliation(s)
- Doriane Muller
- Group of Evolutionary Ecology and Genetics, Biodiversity Research Centre, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Benjamin Elias
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Laurent Collard
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Christophe Pels
- Group of Evolutionary Ecology and Genetics, Biodiversity Research Centre, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Marie-Jeanne Holveck
- Group of Evolutionary Ecology and Genetics, Biodiversity Research Centre, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Caroline M. Nieberding
- Group of Evolutionary Ecology and Genetics, Biodiversity Research Centre, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| |
Collapse
|
5
|
Visser B, Dublon IAN, Heuskin S, Laval F, Bacquet PMB, Lognay G, Nieberding CM. Common Practice Solvent Extraction Does not Reflect Actual Emission of a Sex Pheromone During Butterfly Courtship. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|