1
|
Schlaeger L, Olejniczak I, Lehmann M, Schmidt CX, Astiz M, Oster H, Pilorz V. Estrogen-mediated coupling via gap junctions in the suprachiasmatic nucleus. Eur J Neurosci 2024; 59:1723-1742. [PMID: 38326974 DOI: 10.1111/ejn.16270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
The circadian clock orchestrates many physiological and behavioural rhythms in mammals with 24-h periodicity, through a hierarchical organisation, with the central clock located in the suprachiasmatic nucleus (SCN) in the hypothalamus. The circuits of the SCN generate circadian rhythms with precision, relying on intrinsic coupling mechanisms, for example, neurotransmitters like arginine vasopressin (AVP), vasoactive intestinal peptide (VIP), neuronal gamma-aminobutyric acid (GABA) signalling and astrocytes connected by gap junctions composed of connexins (Cx). In female rodents, the presence of estrogen receptors (ERs) in the dorsal SCN suggests an influence of estrogen (E2) on the circuit timekeeping that could regulate circadian rhythm and coupling. To investigate this, we used SCN explants together with hypothalamic neurons and astrocytes. First, we showed that E2 stabilised the circadian amplitude in the SCN when rAVPs (receptor-associated vasopressin peptides) were inhibited. However, the phase delay induced by VIPAC2 (VIP receptors) inhibition remained unaffected by E2. We then showed that E2 exerted its effects in the SCN via ERβ (estrogen receptor beta), resulting in increased expression of Cx36 and Cx43. Notably, specific inhibition of both connexins resulted in a significant reduction in circadian amplitude within the SCN. Remarkably, E2 restored the period with inhibited Cx36 but not with Cx43 inhibition. This implies that the network between astrocytes and neurons, responsible for coupling in the SCN, can be reinforced through E2. In conclusion, these findings provide new insights into how E2 regulates circadian rhythms ex vivo in an ERβ-dependent manner, underscoring its crucial role in fortifying the SCN's rhythm.
Collapse
Affiliation(s)
- Lina Schlaeger
- Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, University of Lübeck, Lübeck, Germany
| | - Iwona Olejniczak
- Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, University of Lübeck, Lübeck, Germany
| | - Marianne Lehmann
- Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, University of Lübeck, Lübeck, Germany
| | - Cosima Xenia Schmidt
- Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, University of Lübeck, Lübeck, Germany
| | - Mariana Astiz
- Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, University of Lübeck, Lübeck, Germany
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, University of Lübeck, Lübeck, Germany
| | - Violetta Pilorz
- Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, University of Lübeck, Lübeck, Germany
| |
Collapse
|
2
|
Lodovichi C, Ratto GM. Control of circadian rhythm on cortical excitability and synaptic plasticity. Front Neural Circuits 2023; 17:1099598. [PMID: 37063387 PMCID: PMC10098176 DOI: 10.3389/fncir.2023.1099598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/09/2023] [Indexed: 04/18/2023] Open
Abstract
Living organisms navigate through a cyclic world: activity, feeding, social interactions are all organized along the periodic succession of night and day. At the cellular level, periodic activity is controlled by the molecular machinery driving the circadian regulation of cellular homeostasis. This mechanism adapts cell function to the external environment and its crucial importance is underlined by its robustness and redundancy. The cell autonomous clock regulates cell function by the circadian modulation of mTOR, a master controller of protein synthesis. Importantly, mTOR integrates the circadian modulation with synaptic activity and extracellular signals through a complex signaling network that includes the RAS-ERK pathway. The relationship between mTOR and the circadian clock is bidirectional, since mTOR can feedback on the cellular clock to shift the cycle to maintain the alignment with the environmental conditions. The mTOR and ERK pathways are crucial determinants of synaptic plasticity and function and thus it is not surprising that alterations of the circadian clock cause defective responses to environmental challenges, as witnessed by the bi-directional relationship between brain disorders and impaired circadian regulation. In physiological conditions, the feedback between the intrinsic clock and the mTOR pathway suggests that also synaptic plasticity should undergo circadian regulation.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Padova Neuroscience Center, Universitá degli Studi di Padova, Padova, Italy
| | - Gian Michele Ratto
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Padova, Italy
- Padova Neuroscience Center, Universitá degli Studi di Padova, Padova, Italy
- National Enterprise for NanoScience and NanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
3
|
Fawad JA, Luzader DH, Hanson GF, Moutinho TJ, McKinney CA, Mitchell PG, Brown-Steinke K, Kumar A, Park M, Lee S, Bolick DT, Medlock GL, Zhao JY, Rosselot AE, Chou CJ, Eshleman EM, Alenghat T, Hong CI, Papin JA, Moore SR. Histone Deacetylase Inhibition by Gut Microbe-Generated Short-Chain Fatty Acids Entrains Intestinal Epithelial Circadian Rhythms. Gastroenterology 2022; 163:1377-1390.e11. [PMID: 35934064 PMCID: PMC11551968 DOI: 10.1053/j.gastro.2022.07.051] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The circadian clock orchestrates ∼24-hour oscillations of gastrointestinal epithelial structure and function that drive diurnal rhythms in gut microbiota. Here, we use experimental and computational approaches in intestinal organoids to reveal reciprocal effects of gut microbial metabolites on epithelial timekeeping by an epigenetic mechanism. METHODS We cultured enteroids in media supplemented with sterile supernatants from the altered Schaedler Flora (ASF), a defined murine microbiota. Circadian oscillations of bioluminescent PER2 and Bmal1 were measured in the presence or absence of individual ASF supernatants. Separately, we applied machine learning to ASF metabolomics to identify phase-shifting metabolites. RESULTS Sterile filtrates from 3 of 7 ASF species (ASF360 Lactobacillus intestinalis, ASF361 Ligilactobacillus murinus, and ASF502 Clostridium species) induced minimal alterations in circadian rhythms, whereas filtrates from 4 ASF species (ASF356 Clostridium species, ASF492 Eubacterium plexicaudatum, ASF500 Pseudoflavonifactor species, and ASF519 Parabacteroides goldsteinii) induced profound, concentration-dependent phase shifts. Random forest classification identified short-chain fatty acid (SCFA) (butyrate, propionate, acetate, and isovalerate) production as a discriminating feature of ASF "shifters." Experiments with SCFAs confirmed machine learning predictions, with a median phase shift of 6.2 hours in murine enteroids. Pharmacologic or botanical histone deacetylase (HDAC) inhibitors yielded similar findings. Further, mithramycin A, an inhibitor of HDAC inhibition, reduced SCFA-induced phase shifts by 20% (P < .05) and conditional knockout of HDAC3 in enteroids abrogated butyrate effects on Per2 expression. Key findings were reproducible in human Bmal1-luciferase enteroids, colonoids, and Per2-luciferase Caco-2 cells. CONCLUSIONS Gut microbe-generated SCFAs entrain intestinal epithelial circadian rhythms by an HDACi-dependent mechanism, with critical implications for understanding microbial and circadian network regulation of intestinal epithelial homeostasis.
Collapse
Affiliation(s)
- Jibraan A Fawad
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| | - Deborah H Luzader
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| | - Gabriel F Hanson
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| | - Thomas J Moutinho
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Craig A McKinney
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| | - Paul G Mitchell
- University of Virginia School of Medicine, Charlottesville, Virginia
| | - Kathleen Brown-Steinke
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| | - Ajay Kumar
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| | - Miri Park
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Suengwon Lee
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio
| | - David T Bolick
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| | - Greg L Medlock
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| | - Jesse Y Zhao
- University of Virginia School of Medicine, Charlottesville, Virginia
| | - Andrew E Rosselot
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio
| | - C James Chou
- College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina
| | - Emily M Eshleman
- Division of Immunobiology, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Theresa Alenghat
- Division of Immunobiology, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Christian I Hong
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Sean R Moore
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
4
|
Abstract
Experiments that compare rhythmic properties across different genetic alterations and entrainment conditions underlie some of the most important breakthroughs in circadian biology. A robust estimation of the rhythmic properties of the circadian signals goes hand in hand with these discoveries. Widely applied traditional signal analysis methods such as fitting cosine functions or Fourier transformations rely on the assumption that oscillation periods do not change over time. However, novel high-resolution recording techniques have shown that, most commonly, circadian signals exhibit time-dependent changes of periods and amplitudes which cannot be captured with the traditional approaches. In this chapter we introduce a method to determine time-dependent properties of oscillatory signals, using the novel open-source Python-based Biological Oscillations Analysis Toolkit (pyBOAT). We show with examples how to detect rhythms, compute and interpret high-resolution time-dependent spectral results, analyze the main oscillatory component, and to subsequently determine these main components' time-dependent instantaneous period, amplitude, and phase. We introduce step-by-step how such an analysis can be done by means of the easy-to-use point-and-click graphical user interface (GUI) provided by pyBOAT or executed within a Python programming environment. Concepts are explained using simulated signals as well as experimentally obtained time series.
Collapse
Affiliation(s)
- Christoph Schmal
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, Berlin, Germany.
| | - Gregor Mönke
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Adrián E Granada
- Charité Comprehensive Cancer Center, Charité Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
5
|
Watanabe E, Isoda M, Muranaka T, Ito S, Oyama T. Detection of Uncoupled Circadian Rhythms in Individual Cells of Lemna minor using a Dual-Color Bioluminescence Monitoring System. PLANT & CELL PHYSIOLOGY 2021; 62:815-826. [PMID: 33693842 DOI: 10.1093/pcp/pcab037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
The plant circadian oscillation system is based on the circadian clock of individual cells. Circadian behavior of cells has been observed by monitoring the circadian reporter activity, such as bioluminescence of AtCCA1::LUC+. To deeply analyze different circadian behaviors in individual cells, we developed the dual-color bioluminescence monitoring system that automatically measured the luminescence of two luciferase reporters simultaneously at a single-cell level. We selected a yellow-green-emitting firefly luciferase (LUC+) and a red-emitting luciferase (PtRLUC) that is a mutant form of Brazilian click beetle ELUC. We used AtCCA1::LUC+ and CaMV35S::PtRLUC. CaMV35S::LUC+ was previously reported as a circadian reporter with a low-amplitude rhythm. These bioluminescent reporters were introduced into the cells of a duckweed, Lemna minor, by particle bombardment. Time series of the bioluminescence of individual cells in a frond were obtained using a dual-color bioluminescence monitoring system with a green-pass- and red-pass filter. Luminescence intensities from the LUC+ and PtRLUC of each cell were calculated from the filtered luminescence intensities. We succeeded in reconstructing the bioluminescence behaviors of AtCCA1::LUC+ and CaMV35S::PtRLUC in the same cells. Under prolonged constant light conditions, AtCCA1::LUC+ showed a robust circadian rhythm in individual cells in an asynchronous state in the frond, as previously reported. By contrast, CaMV35S::PtRLUC stochastically showed circadian rhythms in a synchronous state. These results strongly suggested the uncoupling of cellular behavior between these circadian reporters. This dual-color bioluminescence monitoring system is a powerful tool to analyze various stochastic phenomena accompanying large cell-to-cell variation in gene expression.
Collapse
Affiliation(s)
- Emiri Watanabe
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Minako Isoda
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Tomoaki Muranaka
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
- Faculty of Agriculture, Kagoshima University, Kohrimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Shogo Ito
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Tokitaka Oyama
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
6
|
Ono D, Honma KI, Honma S. GABAergic mechanisms in the suprachiasmatic nucleus that influence circadian rhythm. J Neurochem 2020; 157:31-41. [PMID: 32198942 DOI: 10.1111/jnc.15012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 01/23/2023]
Abstract
The mammalian central circadian clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN contains multiple circadian oscillators which synchronize with each other via several neurotransmitters. Importantly, an inhibitory neurotransmitter, γ-amino butyric acid (GABA), is expressed in almost all SCN neurons. In this review, we discuss how GABA influences circadian rhythms in the SCN. Excitatory and inhibitory effects of GABA may depend on intracellular Cl- concentration, in which several factors such as day-length, time of day, development, and region in the SCN may be involved. GABA also mediates oscillatory coupling of the circadian rhythms in the SCN. Recent genetic approaches reveal that GABA refines circadian output rhythms, but not circadian oscillations in the SCN. Since several efferent projections of the SCN have been suggested, GABA might work downstream of neuronal pathways from the SCN which regulate the temporal order of physiology and behavior.
Collapse
Affiliation(s)
- Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ken-Ichi Honma
- Research and Education Center for Brain Science, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Sato Honma
- Research and Education Center for Brain Science, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
7
|
Schmal C, Ono D, Myung J, Pett JP, Honma S, Honma KI, Herzel H, Tokuda IT. Weak coupling between intracellular feedback loops explains dissociation of clock gene dynamics. PLoS Comput Biol 2019; 15:e1007330. [PMID: 31513579 PMCID: PMC6759184 DOI: 10.1371/journal.pcbi.1007330] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/24/2019] [Accepted: 08/12/2019] [Indexed: 01/11/2023] Open
Abstract
Circadian rhythms are generated by interlocked transcriptional-translational negative feedback loops (TTFLs), the molecular process implemented within a cell. The contributions, weighting and balancing between the multiple feedback loops remain debated. Dissociated, free-running dynamics in the expression of distinct clock genes has been described in recent experimental studies that applied various perturbations such as slice preparations, light pulses, jet-lag, and culture medium exchange. In this paper, we provide evidence that this "presumably transient" dissociation of circadian gene expression oscillations may occur at the single-cell level. Conceptual and detailed mechanistic mathematical modeling suggests that such dissociation is due to a weak interaction between multiple feedback loops present within a single cell. The dissociable loops provide insights into underlying mechanisms and general design principles of the molecular circadian clock.
Collapse
Affiliation(s)
- Christoph Schmal
- Department of Mechanical Engineering, Ritsumeikan University, Kusatsu, Japan
- Institute for Theoretical Biology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Jihwan Myung
- Laboratory of Braintime, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Brain and Consciousness, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - J. Patrick Pett
- Institute for Theoretical Biology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Sato Honma
- Department of Chronomedicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ken-Ichi Honma
- Department of Chronomedicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Isao T. Tokuda
- Department of Mechanical Engineering, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
8
|
Ono D, Honma KI, Yanagawa Y, Yamanaka A, Honma S. GABA in the suprachiasmatic nucleus refines circadian output rhythms in mice. Commun Biol 2019; 2:232. [PMID: 31263776 PMCID: PMC6588595 DOI: 10.1038/s42003-019-0483-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/29/2019] [Indexed: 01/10/2023] Open
Abstract
In mammals, the circadian rhythms are regulated by the central clock located in the hypothalamic suprachiasmatic nucleus (SCN), which is composed of heterogeneous neurons with various neurotransmitters. Among them an inhibitory neurotransmitter, γ-Amino-Butyric-Acid (GABA), is expressed in almost all SCN neurons, however, its role in the circadian physiology is still unclear. Here, we show that the SCN of fetal mice lacking vesicular GABA transporter (VGAT-/-) or GABA synthesizing enzyme, glutamate decarboxylase (GAD65-/-/67-/-), shows burst firings associated with large Ca2+ spikes throughout 24 hours, which spread over the entire SCN slice in synchrony. By contrast, circadian PER2 rhythms in VGAT-/- and GAD65-/-/67-/- SCN remain intact. SCN-specific VGAT deletion in adult mice dampens circadian behavior rhythm. These findings indicate that GABA in the fetal SCN is necessary for refinement of the circadian firing rhythm and, possibly, for stabilizing the output signals, but not for circadian integration of multiple cellular oscillations.
Collapse
Affiliation(s)
- Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Ken-ichi Honma
- Research and Education Center for Brain Science, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638 Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511 Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Sato Honma
- Research and Education Center for Brain Science, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638 Japan
| |
Collapse
|
9
|
Millius A, Ode KL, Ueda HR. A period without PER: understanding 24-hour rhythms without classic transcription and translation feedback loops. F1000Res 2019; 8. [PMID: 31031966 PMCID: PMC6468715 DOI: 10.12688/f1000research.18158.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/09/2019] [Indexed: 01/08/2023] Open
Abstract
Since Ronald Konopka and Seymour Benzer's discovery of the gene Period in the 1970s, the circadian rhythm field has diligently investigated regulatory mechanisms and intracellular transcriptional and translation feedback loops involving Period, and these investigations culminated in a 2017 Nobel Prize in Physiology or Medicine for Michael W. Young, Michael Rosbash, and Jeffrey C. Hall. Although research on 24-hour behavior rhythms started with Period, a series of discoveries in the past decade have shown us that post-transcriptional regulation and protein modification, such as phosphorylation and oxidation, are alternatives ways to building a ticking clock.
Collapse
Affiliation(s)
- Arthur Millius
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Laboratory of Systems Immunology and Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Koji L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki R Ueda
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|