1
|
Jiang H, Li G, Yang X, Feng X, Li P, Yang H, Cai D, Jiang Q, Shu G. Malic enzyme 3 mediated the effects of malic acid on intestinal redox status and feed efficiency in broilers. J Anim Sci Biotechnol 2025; 16:28. [PMID: 39994814 PMCID: PMC11849324 DOI: 10.1186/s40104-025-01163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Intestinal oxidative stress serves as an endogenous host defense against the gut microbiota by increasing energy expenditure and therefore decreasing feed efficiency (FE). Several systems coordinately regulate redox balance, including the mitochondrial respiratory chain, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and different antioxidants. However, it remains unclear which redox balance compartments in the intestine are crucial for determining FE. RESULTS In this study, we first screened the key targets of different metabolites and redox balance-related gene expression in broiler ceca. We then constructed a mouse colitis model to explore malic acid (MA) ability to alleviate intestinal inflammation. We further used controlled release technology to coat MA and investigated its effects on the intestinal redox status and FE in vivo. Finally, we examined the underlying mechanism by which MA modulated redox status using a porcine intestinal epithelial cell jejunum 2 (IPEC-J2) cell model in vitro. Our results demonstrated that the MA/malic enzyme 3 (ME3) pathway may play an important role in reducing oxidative stress in the broiler cecum. In addition, colon infusion of MA attenuated inflammatory phenotypes in the dextran sulfate sodium salt (DSS) induced mouse colitis model. Then, dietary supplementation with controlled-release MA pellet (MAP) reduced the feed to gain (F/G) ratio and promoted chicken growth, with reduced oxidative stress and increased bacterial diversity. Finally, the in vitro IPEC-J2 cell model revealed that ME3 mediated the effect of MA on cellular oxidative stress. CONCLUSION In summary, our study firstly revealed the important role of the MA/ME3 system in the hindgut of broiler chickens for improving intestinal health and FE, which may also be crucial for the implications of colon inflammation associated diseases.
Collapse
Affiliation(s)
- Hongfeng Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Genghui Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xue Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xiaohua Feng
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Penglin Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Huisi Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qingyan Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Gang Shu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- United Bio-Tech Co., Ltd., Guangzhou, China.
| |
Collapse
|
2
|
Fujiwara-Tani R, Nakashima C, Ohmori H, Fujii K, Luo Y, Sasaki T, Ogata R, Kuniyasu H. Significance of Malic Enzyme 1 in Cancer: A Review. Curr Issues Mol Biol 2025; 47:83. [PMID: 39996805 PMCID: PMC11854147 DOI: 10.3390/cimb47020083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Malic enzyme 1 (ME1) plays a key role in promoting malignant phenotypes in various types of cancer. ME1 promotes epithelial-mesenchymal transition (EMT) and enhances stemness via glutaminolysis, energy metabolism reprogramming from oxidative phosphorylation to glycolysis. As a result, ME1 promotes the malignant phenotypes of cancer cells and poor patient prognosis. In particular, ME1 expression is promoted in hypoxic environments associated with hypoxia-inducible factor (HIF1) α. ME1 is overexpressed in budding cells at the cancer invasive front, promoting cancer invasion and metastasis. ME1 also generates nicotinamide adenine dinucleotide (NADPH), which, together with glucose-6-phosphate dehydrogenase (G6PD) and isocitrate dehydrogenase (IDH1), expands the NADPH pool, maintaining the redox balance in cancer cells, suppressing cell death by neutralizing mitochondrial reactive oxygen species (ROS), and promoting stemness. This review summarizes the latest research insights into the mechanisms by which ME1 contributes to cancer progression. Because ME1 is involved in various aspects of cancer and promotes many of its malignant phenotypes, it is expected that ME1 will become a novel drug target in the near future.
Collapse
Affiliation(s)
- Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara 634-8521, Japan; (C.N.); (H.O.); (K.F.); (Y.L.); (T.S.); (R.O.)
| | | | | | | | | | | | | | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara 634-8521, Japan; (C.N.); (H.O.); (K.F.); (Y.L.); (T.S.); (R.O.)
| |
Collapse
|
3
|
Zhang C, Li W, Wu F, Lu Z, Zeng P, Luo Z, Cao Y, Wen F, Li J, Chen X, Wang F. High expression of malic enzyme 1 predicts adverse prognosis in patients with cytogenetically normal acute myeloid leukaemia and promotes leukaemogenesis through the IL-6/JAK2/STAT3 pathways. Ther Adv Hematol 2024; 15:20406207241301948. [PMID: 39610460 PMCID: PMC11603458 DOI: 10.1177/20406207241301948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Background Progress in improving risk stratification methods for patients with cytogenetically normal acute myeloid leukaemia (CN-AML) remains limited. This study investigates the prognostic significance and potential functional mechanism of malic enzyme 1 (ME1) in CN-AML. Methods Gene expression and clinical data of patients with CN-AML were obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets, which were subjected to analysis. The prognostic significance of ME1 was assessed through Kaplan-Meier survival analysis, as well as univariate and multivariate Cox regression analyses. A novel risk model based on ME1 expression levels was developed using TCGA data for predicting CN-AML prognosis. Furthermore, the impact of ME1 silencing on AML cell lines was investigated using the Cell Counting Kit-8 assay and flow cytometry. Gene set enrichment analysis (GSEA) analysis and Western blotting were performed to explore the mechanism of ME1 in CN-AML. Results CN-AML patients expressing higher ME1 levels exhibited shorter event-free survival (EFS) and overall survival (OS) compared to those with lower ME1 expression in the TCGA and multiple GEO datasets (all p < 0.05). Univariate and multivariate Cox regression analyses indicated that ME1 expression served as an independent prognostic factor for the EFS (p = 0.024 in TCGA, p = 0.035 in GSE6891) and OS (p = 0.039 in TCGA, p = 0.008 in GSE6891) in patients with CN-AML. The developed risk model demonstrated that patients with CN-AML in the high-risk group had worse survival than those in the low-risk group (hazard ratio: 2.67, 95% confidence interval: 1.54-4.65, p < 0.001) and exhibited strong predictive accuracy for 1-, 3- and 5-year OS (area under the curve = 0.69, 0.75, 0.79, respectively). ME1 knockdown significantly inhibited proliferation and increased apoptosis in AML cells (all p < 0.05). GSEA and Western blotting demonstrated that ME1 regulates the IL-6/JAK2/STAT3 pathway in CN-AML. Conclusion Elevated ME1 expression serves as an indicator of poorer prognosis in patients with CN-AML, potentially facilitating leukaemogenesis through the IL-6/JAK2/STAT3 pathway. This suggests that ME1 could be a promising prognostic biomarker and therapeutic target for CN-AML.
Collapse
Affiliation(s)
- Chang Zhang
- Department of Hematology and Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenlu Li
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Fei Wu
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhongwei Lu
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Piaorong Zeng
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zeyu Luo
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yixiong Cao
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Feng Wen
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Junjun Li
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xi Chen
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Chuanshan Road No.69, Hunan 421001, China
| | - Fujue Wang
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Chuanshan Road No.69, Hunan 421001, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
4
|
Mi T, Kong X, Chen M, Guo P, He D. Inducing disulfidptosis in tumors:potential pathways and significance. MedComm (Beijing) 2024; 5:e791. [PMID: 39415848 PMCID: PMC11480524 DOI: 10.1002/mco2.791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Regulated cell death (RCD) is crucial for the elimination of abnormal cells. In recent years, strategies aimed at inducing RCD, particularly apoptosis, have become increasingly important in cancer therapy. However, the ability of tumor cells to evade apoptosis has led to treatment resistance and relapse, prompting extensive research into alternative death processes in cancer cells. A recent study identified a novel form of RCD known as disulfidptosis, which is linked to disulfide stress. Cancer cells import cystine from the extracellular environment via solute carrier family 7 member 11 (SLC7A11) and convert it to cysteine using nicotinamide adenine dinucleotide phosphate (NADPH). When NADPH is deficient or its utilization is impaired, cystine accumulates, leading to the formation of disulfide bonds in the actin cytoskeleton, triggering disulfidptosis. Disulfidptosis reveals a metabolic vulnerability in tumors, offering new insights into cancer therapy strategies. This review provides a detailed overview of the mechanisms underlying disulfidptosis, the current research progress, and limitations. It also highlights innovative strategies for inducing disulfidptosis and explores the potential of combining these approaches with traditional cancer therapies, particularly immunotherapy, to expedite clinical translation.
Collapse
Affiliation(s)
- Tao Mi
- Department of UrologyChildren's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChongqingP.R. China
- Chongqing Key Laboratory of Structural Birth Defect and ReconstructionChongqingP.R. China
| | - Xiangpan Kong
- Department of UrologyChildren's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChongqingP.R. China
- Chongqing Key Laboratory of Structural Birth Defect and ReconstructionChongqingP.R. China
| | - Meiling Chen
- Department of UrologyChildren's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChongqingP.R. China
- Chongqing Key Laboratory of Structural Birth Defect and ReconstructionChongqingP.R. China
| | - Peng Guo
- Department of UrologyChildren's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChongqingP.R. China
- Chongqing Key Laboratory of Structural Birth Defect and ReconstructionChongqingP.R. China
- Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouP.R. China
| | - Dawei He
- Department of UrologyChildren's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChongqingP.R. China
- Chongqing Key Laboratory of Structural Birth Defect and ReconstructionChongqingP.R. China
| |
Collapse
|
5
|
Hu W, Yang Y, Cheng C, Tu Y, Chang H, Tsai K. Overexpression of malic enzyme is involved in breast cancer growth and is correlated with poor prognosis. J Cell Mol Med 2024; 28:e18163. [PMID: 38445776 PMCID: PMC10915829 DOI: 10.1111/jcmm.18163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
Malic enzyme (ME) genes are key functional metabolic enzymes playing a crucial role in carcinogenesis. However, the detailed effects of ME gene expression on breast cancer progression remain unclear. Here, our results revealed ME1 expression was significantly upregulated in breast cancer, especially in patients with oestrogen receptor/progesterone receptor-negative and human epidermal growth factor receptor 2-positive breast cancer. Furthermore, upregulation of ME1 was significantly associated with more advanced pathological stages (p < 0.001), pT stage (p < 0.001) and tumour grade (p < 0.001). Kaplan-Meier analysis revealed ME1 upregulation was associated with poor disease-specific survival (DSS: p = 0.002) and disease-free survival (DFS: p = 0.003). Multivariate Cox regression analysis revealed ME1 upregulation was significantly correlated with poor DSS (adjusted hazard ratio [AHR] = 1.65; 95% CI: 1.08-2.52; p = 0.021) and DFS (AHR, 1.57; 95% CI: 1.03-2.41; p = 0.038). Stratification analysis indicated ME1 upregulation was significantly associated with poor DSS (p = 0.039) and DFS (p = 0.038) in patients with non-triple-negative breast cancer (TNBC). However, ME1 expression did not affect the DSS of patients with TNBC. Biological function analysis revealed ME1 knockdown could significantly suppress the growth of breast cancer cells and influence its migration ability. Furthermore, the infiltration of immune cells was significantly reduced when they were co-cultured with breast cancer cells with ME1 knockdown. In summary, ME1 plays an oncogenic role in the growth of breast cancer; it may serve as a potential biomarker of progression and constitute a therapeutic target in patients with breast cancer.
Collapse
Affiliation(s)
- Wan‐Chung Hu
- Department of Clinical Pathology and Medical Research, Taipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
| | - Yi‐Fang Yang
- Department of Medical Education and ResearchKaohsiung Veterans General HospitalKaohsiungTaiwan
| | - Ching‐Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
- Department of PediatricsTzu Chi UniversityHualienTaiwan
| | - Ya‐Ting Tu
- Department of ResearchTaipei Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
| | - Hong‐Tai Chang
- Department of SurgeryKaohsiung Veterans General HospitalKaohsiungTaiwan
| | - Kuo‐Wang Tsai
- Department of ResearchTaipei Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
- Department of NursingCardinal Tien Junior College of Healthcare and ManagementNew Taipei CityTaiwan
| |
Collapse
|
6
|
Moon DO. NADPH Dynamics: Linking Insulin Resistance and β-Cells Ferroptosis in Diabetes Mellitus. Int J Mol Sci 2023; 25:342. [PMID: 38203517 PMCID: PMC10779351 DOI: 10.3390/ijms25010342] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
This review offers an in-depth exploration of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) in metabolic health. It delves into how NADPH affects insulin secretion, influences insulin resistance, and plays a role in ferroptosis. NADPH, a critical cofactor in cellular antioxidant systems and lipid synthesis, plays a central role in maintaining metabolic homeostasis. In adipocytes and skeletal muscle, NADPH influences the pathophysiology of insulin resistance, a hallmark of metabolic disorders such as type 2 diabetes and obesity. The review explores the mechanisms by which NADPH contributes to or mitigates insulin resistance, including its role in lipid and reactive oxygen species (ROS) metabolism. Parallelly, the paper investigates the dual nature of NADPH in the context of pancreatic β-cell health, particularly in its relation to ferroptosis, an iron-dependent form of programmed cell death. While NADPH's antioxidative properties are crucial for preventing oxidative damage in β-cells, its involvement in lipid metabolism can potentiate ferroptotic pathways under certain pathological conditions. This complex relationship underscores the delicate balance of NADPH homeostasis in pancreatic health and diabetes pathogenesis. By integrating findings from recent studies, this review aims to illuminate the nuanced roles of NADPH in different tissues and its potential as a therapeutic target. Understanding these dynamics offers vital insights into the development of more effective strategies for managing insulin resistance and preserving pancreatic β-cell function, thereby advancing the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Department of Biology Education, Daegu University, 201 Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
7
|
Simmen FA, Alhallak I, Simmen RCM. Krüppel-like Factor-9 and Krüppel-like Factor-13: Highly Related, Multi-Functional, Transcriptional Repressors and Activators of Oncogenesis. Cancers (Basel) 2023; 15:5667. [PMID: 38067370 PMCID: PMC10705314 DOI: 10.3390/cancers15235667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 02/12/2024] Open
Abstract
Specificity Proteins/Krüppel-like Factors (SP/KLF family) are a conserved family of transcriptional regulators. These proteins share three highly conserved, contiguous zinc fingers in their carboxy-terminus, requisite for binding to cis elements in DNA. Each SP/KLF protein has unique primary sequence within its amino-terminal and carboxy-terminal regions, and it is these regions which interact with co-activators, co-repressors, and chromatin-modifying proteins to support the transcriptional activation and repression of target genes. Krüppel-like Factor 9 (KLF9) and Krüppel-like Factor 13 (KLF13) are two of the smallest members of the SP/KLF family, are paralogous, emerged early in metazoan evolution, and are highly conserved. Paradoxically, while most similar in primary sequence, KLF9 and KLF13 display many distinct roles in target cells. In this article, we summarize the work that has identified the roles of KLF9 (and to a lesser degree KLF13) in tumor suppression or promotion via unique effects on differentiation, pro- and anti-inflammatory pathways, oxidative stress, and tumor immune cell infiltration. We also highlight the great diversity of miRNAs, lncRNAs, and circular RNAs which provide mechanisms for the ubiquitous tumor-specific suppression of KLF9 mRNA and protein. Elucidation of KLF9 and KLF13 in cancer biology is likely to provide new inroads to the understanding of oncogenesis and its prevention and treatments.
Collapse
Affiliation(s)
- Frank A. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Iad Alhallak
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
| | - Rosalia C. M. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
8
|
Zhang YR, Li FY, Lu ZJ, Wang XF, Yan HC, Wang XQ, Gao CQ. l-Malic Acid Facilitates Stem Cell-Driven Intestinal Epithelial Renewal through the Amplification of β-Catenin Signaling by Targeting Frizzled7 in Chicks. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13079-13091. [PMID: 37632443 DOI: 10.1021/acs.jafc.3c01332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
l-Malic acid (l-MA) contributes to energy metabolism and nutrient digestion, which is an alternative to antibiotics for livestock; however, it is not clear whether l-MA can replace antibiotics to promote intestinal development in chicks. To investigate the effects of l-MA on intestinal stem cells (ISCs) driving epithelial renewal, we employed in vivo chick feeding experiments, chick intestinal organoid (IO) models, and in vitro chick intestinal epithelial cell models. The results showed that the feed conversion rate and diarrhea scores were decreased with improved jejunal morphology and barrier function in the 0.5% l-MA group. l-MA promoted the proliferation and differentiation of ISCs, inhibited the cell apoptosis, increased the IO formation efficiency, surface area, budding efficiency, and number of buds, suggesting that l-MA promoted the expansion of ISCs. Furthermore, l-MA treatment dramatically upregulated the Wnt/β-catenin signaling pathway in the jejunum. Importantly, Wnt transmembrane receptor Frizzled7 (FZD7) mRNA abundance was increased in response to dietary 0.5% l-MA. In addition, molecular docking analysis using Autodock software and isothermal titration calorimetry revealed that l-MA binds to Lys91 of FZD7 with high affinity, indicating a spontaneous interaction. The chick intestinal epithelial cells treated with 10 μM l-MA significantly increased cell viability, and the Wnt/β-catenin signaling pathway was activated, but l-MA failed to upregulate the Wnt/β-catenin signaling when treated with the FZD7-specific inhibitor Fz7-21 in chick intestinal epithelial cells, indicating that FZD7 is indispensable for l-MA activation of the Wnt/β-catenin signaling. Collectively, l-MA stimulated β-catenin signaling by targeting transmembrane receptor FZD7, which promoted ISC expansion and inhibited cell apoptosis to accelerate intestinal epithelial renewal in chicks.
Collapse
Affiliation(s)
- Ya-Ru Zhang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Fu-Yong Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Zhu-Jin Lu
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Fan Wang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Hui-Chao Yan
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Xiu-Qi Wang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Chun-Qi Gao
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Boese AC, Hwang JS, Young I, Malin CM, Avalos V, Kang J, Kang S. Metabolic inhibitor screening identifies dihydrofolate reductase as an inducer of the tumor immune escape mediator CD24. IMMUNOMEDICINE 2022; 2:e1041. [PMID: 36816458 PMCID: PMC9937563 DOI: 10.1002/imed.1041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/27/2022] [Indexed: 12/03/2022]
Abstract
Immune checkpoint inhibitors have improved the clinical management of some cancer cases, yet patients still fail to respond to immunotherapy. Dysregulated metabolism is a common feature of many cancers, and metabolites are known to modulate functions in cancer cells. To identify potential metabolic pathways involved in anti-tumor immune response, we employed a metabolic inhibitor-based drug screen in human lung cancer cell lines and examined expression changes in a panel of immune regulator genes. Notably, pharmacologic inhibition of dihydrofolate reductase (DHFR) downregulated cancer cell expression of cluster of differentiation 24 (CD24), an anti-phagocytic surface protein. Genetic modulation of DHFR resulted in decrease of CD24 expression, whereas tetrahydrofolate, the product of DHFR, enhanced CD24 expression. DHFR inhibition and the consequent CD24 decrease enhanced T cell-mediated tumor cell killing, whereas replenishment of DHFR or CD24 partially mitigated the immune-mediated tumor cell killing that resulted from methotrexate treatment in cancer cells. Moreover, publicly available clinical data analyses further revealed the link between DHFR, CD24, and the antitumor immune response in lung cancer patients. Our study highlights a novel connection between folate metabolism and the anti-tumor immune response and partially interprets how DHFR inhibitors lead to clinical benefits when combined with cancer immunotherapy agents.
Collapse
Affiliation(s)
- Austin C. Boese
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322, USA. Emory University, Atlanta, Georgia 30322, USA
- These authors contributed equally to this work
| | - Jung Seok Hwang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322, USA. Emory University, Atlanta, Georgia 30322, USA
- These authors contributed equally to this work
| | - Isabelle Young
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322, USA. Emory University, Atlanta, Georgia 30322, USA
- Current address: Department of Pediatrics, University of California San Francisco, San Francisco, California 94143, USA
- These authors contributed equally to this work
| | - Courteney M. Malin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322, USA. Emory University, Atlanta, Georgia 30322, USA
| | - Vanessa Avalos
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322, USA. Emory University, Atlanta, Georgia 30322, USA
| | - JiHoon Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322, USA. Emory University, Atlanta, Georgia 30322, USA
| | - Sumin Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322, USA. Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
10
|
SP and KLF Transcription Factors in Cancer Metabolism. Int J Mol Sci 2022; 23:ijms23179956. [PMID: 36077352 PMCID: PMC9456310 DOI: 10.3390/ijms23179956] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor development and progression depend on reprogramming of signaling pathways that regulate cell metabolism. Alterations to various metabolic pathways such as glycolysis, oxidative phosphorylation, lipid metabolism, and hexosamine biosynthesis pathway are crucial to sustain increased redox, bioenergetic, and biosynthesis demands of a tumor cell. Transcription factors (oncogenes and tumor suppressors) play crucial roles in modulating these alterations, and their functions are tethered to major metabolic pathways under homeostatic conditions and disease initiation and advancement. Specificity proteins (SPs) and Krüppel-like factors (KLFs) are closely related transcription factors characterized by three highly conserved zinc fingers domains that interact with DNA. Studies have demonstrated that SP and KLF transcription factors are expressed in various tissues and regulate diverse processes such as proliferation, differentiation, apoptosis, inflammation, and tumorigenesis. This review highlights the role of SP and KLF transcription factors in the metabolism of various cancers and their impact on tumorigenesis. A better understanding of the role and underlying mechanisms governing the metabolic changes during tumorigenesis could provide new therapeutic opportunities for cancer treatment.
Collapse
|
11
|
Abstract
Eukaryotic cells have developed complex systems to regulate the production and response to reactive oxygen species (ROS). Different ROS control diverse aspects of cell behaviour from signalling to death, and deregulation of ROS production and ROS limitation pathways are common features of cancer cells. ROS also function to modulate the tumour environment, affecting the various stromal cells that provide metabolic support, a blood supply and immune responses to the tumour. Although it is clear that ROS play important roles during tumorigenesis, it has been difficult to reliably predict the effect of ROS modulating therapies. We now understand that the responses to ROS are highly complex and dependent on multiple factors, including the types, levels, localization and persistence of ROS, as well as the origin, environment and stage of the tumours themselves. This increasing understanding of the complexity of ROS in malignancies will be key to unlocking the potential of ROS-targeting therapies for cancer treatment.
Collapse
|
12
|
Pavlova NN, Zhu J, Thompson CB. The hallmarks of cancer metabolism: Still emerging. Cell Metab 2022; 34:355-377. [PMID: 35123658 PMCID: PMC8891094 DOI: 10.1016/j.cmet.2022.01.007] [Citation(s) in RCA: 719] [Impact Index Per Article: 239.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Metabolism of cancer cells is geared toward biomass production and proliferation. Since the metabolic resources within the local tissue are finite, this can lead to nutrient depletion and accumulation of metabolic waste. To maintain growth in these conditions, cancer cells employ a variety of metabolic adaptations, the nature of which is collectively determined by the physiology of their cell of origin, the identity of transforming lesions, and the tissue in which cancer cells reside. Furthermore, select metabolites not only serve as substrates for energy and biomass generation, but can also regulate gene and protein expression and influence the behavior of non-transformed cells in the tumor vicinity. As they grow and metastasize, tumors can also affect and be affected by the nutrient distribution within the body. In this hallmark update, recent advances are incorporated into a conceptual framework that may help guide further research efforts in exploring cancer cell metabolism.
Collapse
Affiliation(s)
- Natalya N Pavlova
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jiajun Zhu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
13
|
Zhu Y, Gu L, Lin X, Zhou X, Lu B, Liu C, Lei C, Zhou F, Zhao Q, Prochownik EV, Li Y. USP19 exacerbates lipogenesis and colorectal carcinogenesis by stabilizing ME1. Cell Rep 2021; 37:110174. [PMID: 34965422 DOI: 10.1016/j.celrep.2021.110174] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 08/24/2021] [Accepted: 12/03/2021] [Indexed: 12/14/2022] Open
Abstract
Lipogenesis plays a critical role in colorectal carcinogenesis, but precisely how remains unclear. Here, we show that ERK2 phosphorylates ME1 at T103, thereby inhibiting its polyubiquitination and proteasomal degradation and enhancing its interaction with USP19. USP19 antagonizes RNF1-mediated ME1 degradation by deubiquitination, which in turn promotes lipid metabolism and NADPH production and suppresses ROS. Meanwhile, ROS dramatically increases PD-L1 mRNA levels through accelerating expression of the transcription factor NRF2. Increased lipid metabolism is correlated with ERK2 activity and colorectal carcinogenesis in human patients. Therefore, the combination of ERK2 inhibitor and anti-PD-L1 antibody significantly inhibits spontaneous and chemically induced colorectal carcinogenesis. Collectively, the USP19-ME1 axis plays a vital role in colorectal carcinogenesis and may also provide a potential therapeutic target.
Collapse
Affiliation(s)
- Yahui Zhu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, Wuhan University, Wuhan 430071, China.
| | - Li Gu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Xi Lin
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Xinyi Zhou
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Bingjun Lu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Cheng Liu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Caoqi Lei
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Feng Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University School of Medicine, Wuhan 430071, China; Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University School of Medicine, Wuhan 430071, China; Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Edward V Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, The Department of Microbiology and Molecular Genetics, The Pittsburgh Liver Research Center and The Hillman Cancer Center of UPMC, The University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Youjun Li
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
14
|
Colombo G, Gelardi ELM, Balestrero FC, Moro M, Travelli C, Genazzani AA. Insight Into Nicotinamide Adenine Dinucleotide Homeostasis as a Targetable Metabolic Pathway in Colorectal Cancer. Front Pharmacol 2021; 12:758320. [PMID: 34880756 PMCID: PMC8645963 DOI: 10.3389/fphar.2021.758320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Tumour cells modify their cellular metabolism with the aim to sustain uncontrolled proliferation. Cancer cells necessitate adequate amounts of NAD and NADPH to support several enzymes that are usually overexpressed and/or overactivated. Nicotinamide adenine dinucleotide (NAD) is an essential cofactor and substrate of several NAD-consuming enzymes, such as PARPs and sirtuins, while NADPH is important in the regulation of the redox status in cells. The present review explores the rationale for targeting the key enzymes that maintain the cellular NAD/NADPH pool in colorectal cancer and the enzymes that consume or use NADP(H).
Collapse
Affiliation(s)
- Giorgia Colombo
- Department of Pharmaceutical Sciences, Università Del Piemonte Orientale, Novara, Italy
| | | | | | - Marianna Moro
- Department of Pharmaceutical Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Cristina Travelli
- Department of Drug Sciences, Università Degli Studi di Pavia, Pavia, Italy
| | - Armando A. Genazzani
- Department of Pharmaceutical Sciences, Università Del Piemonte Orientale, Novara, Italy
| |
Collapse
|
15
|
Ying M, You D, Zhu X, Cai L, Zeng S, Hu X. Lactate and glutamine support NADPH generation in cancer cells under glucose deprived conditions. Redox Biol 2021; 46:102065. [PMID: 34293554 PMCID: PMC8321918 DOI: 10.1016/j.redox.2021.102065] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022] Open
Abstract
Although glucose, through pentose phosphate pathway (PPP), is the main source to generate NADPH, solid tumors are often deprived of glucose, hence alternative metabolic pathways to maintain NADPH homeostasis in cancer cells are required. Here, we report that lactate and glutamine support NADPH production via isocitrate dehydrogenase 1 (IDH1) and malic enzyme 1 (ME1), respectively, under glucose-deprived conditions. Isotopic tracing demonstrates that lactate participates in the formation of isocitrate. Malate derived from glutamine in mitochondria shuttles to cytosol to produce NADPH. In cells cultured in the absence of glucose, knockout of IDH1 and ME1 decreases NADPH/NADP+ and GSH/GSSG, increases ROS level and facilitates cell necrosis. In 4T1 murine breast tumors, knockout of ME1 retards tumor growth in vivo, with combined ME1/IDH1 knockout more strongly suppressing tumor growth. Our findings reveal two alternative NADPH-producing pathways that cancer cells use to resist glucose starvation, reflecting the metabolic plasticity and flexibility of cancer cells adapting to nutrition stress.
Collapse
Affiliation(s)
- Minfeng Ying
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
| | - Duo You
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
| | - Xiaobing Zhu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
| | - Limeng Cai
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
| | - Siying Zeng
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
| | - Xun Hu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Prochownik EV, Wang H. The Metabolic Fates of Pyruvate in Normal and Neoplastic Cells. Cells 2021; 10:cells10040762. [PMID: 33808495 PMCID: PMC8066905 DOI: 10.3390/cells10040762] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023] Open
Abstract
Pyruvate occupies a central metabolic node by virtue of its position at the crossroads of glycolysis and the tricarboxylic acid (TCA) cycle and its production and fate being governed by numerous cell-intrinsic and extrinsic factors. The former includes the cell’s type, redox state, ATP content, metabolic requirements and the activities of other metabolic pathways. The latter include the extracellular oxygen concentration, pH and nutrient levels, which are in turn governed by the vascular supply. Within this context, we discuss the six pathways that influence pyruvate content and utilization: 1. The lactate dehydrogenase pathway that either converts excess pyruvate to lactate or that regenerates pyruvate from lactate for use as a fuel or biosynthetic substrate; 2. The alanine pathway that generates alanine and other amino acids; 3. The pyruvate dehydrogenase complex pathway that provides acetyl-CoA, the TCA cycle’s initial substrate; 4. The pyruvate carboxylase reaction that anaplerotically supplies oxaloacetate; 5. The malic enzyme pathway that also links glycolysis and the TCA cycle and generates NADPH to support lipid bio-synthesis; and 6. The acetate bio-synthetic pathway that converts pyruvate directly to acetate. The review discusses the mechanisms controlling these pathways, how they cross-talk and how they cooperate and are regulated to maximize growth and achieve metabolic and energetic harmony.
Collapse
Affiliation(s)
- Edward V. Prochownik
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
- The Department of Microbiology and Molecular Genetics, UPMC, Pittsburgh, PA 15213, USA
- The Hillman Cancer Center, UPMC, Pittsburgh, PA 15213, USA
- The Pittsburgh Liver Research Center, Pittsburgh, PA 15260, USA
- Correspondence: ; Tel.: +1-(412)-692-6795
| | - Huabo Wang
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
| |
Collapse
|
17
|
Roberts JL, Liu G, Darby TM, Fernandes LM, Diaz-Hernandez ME, Jones RM, Drissi H. Bifidobacterium adolescentis supplementation attenuates fracture-induced systemic sequelae. Biomed Pharmacother 2020; 132:110831. [PMID: 33022534 PMCID: PMC9979243 DOI: 10.1016/j.biopha.2020.110831] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota is an important contributor to both health and disease. While previous studies have reported on the beneficial influences of the gut microbiota and probiotic supplementation on bone health, their role in recovery from skeletal injury and resultant systemic sequelae remains unexplored. This study aimed to determine the extent to which probiotics could modulate bone repair by dampening fracture-induced systemic inflammation. Our findings demonstrate that femur fracture induced an increase in gut permeability lasting up to 7 days after trauma before returning to basal levels. Strikingly, dietary supplementation with Bifidobacterium adolescentis augmented the tightening of the intestinal barrier, dampened the systemic inflammatory response to fracture, accelerated fracture callus cartilage remodeling, and elicited enhanced protection of the intact skeleton following fracture. Together, these data outline a mechanism whereby dietary supplementation with beneficial bacteria can be therapeutically targeted to prevent the systemic pathologies induced by femur fracture.
Collapse
Affiliation(s)
- Joseph L. Roberts
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA,Nutrition and Health Sciences Program, Emory University, Atlanta, GA, USA
| | - Guanglu Liu
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Trevor M. Darby
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Lorenzo M. Fernandes
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Rheinallt M. Jones
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA; Nutrition and Health Sciences Program, Emory University, Atlanta, GA, USA.
| |
Collapse
|
18
|
Simmen FA, Alhallak I, Simmen RCM. Malic enzyme 1 (ME1) in the biology of cancer: it is not just intermediary metabolism. J Mol Endocrinol 2020; 65:R77-R90. [PMID: 33064660 PMCID: PMC7577320 DOI: 10.1530/jme-20-0176] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/11/2020] [Indexed: 12/25/2022]
Abstract
Malic enzyme 1 (ME1) is a cytosolic protein that catalyzes the conversion of malate to pyruvate while concomitantly generating NADPH from NADP. Early studies identified ME1 as a mediator of intermediary metabolism primarily through its participatory roles in lipid and cholesterol biosynthesis. ME1 was one of the first identified insulin-regulated genes in liver and adipose and is a transcriptional target of thyroxine. Multiple studies have since documented that ME1 is pro-oncogenic in numerous epithelial cancers. In tumor cells, the reduction of ME1 gene expression or the inhibition of its activity resulted in decreases in proliferation, epithelial-to-mesenchymal transition and in vitro migration, and conversely, in promotion of oxidative stress, apoptosis and/or cellular senescence. Here, we integrate recent findings to highlight ME1's role in oncogenesis, provide a rationale for its nexus with metabolic syndrome and diabetes, and raise the prospects of targeting the cytosolic NADPH network to improve therapeutic approaches against multiple cancers.
Collapse
Affiliation(s)
- Frank A Simmen
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Iad Alhallak
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Rosalia C M Simmen
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
19
|
NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications. Signal Transduct Target Ther 2020; 5:231. [PMID: 33028807 PMCID: PMC7542157 DOI: 10.1038/s41392-020-00326-0] [Citation(s) in RCA: 288] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/09/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) is an essential electron donor in all organisms, and provides the reducing power for anabolic reactions and redox balance. NADPH homeostasis is regulated by varied signaling pathways and several metabolic enzymes that undergo adaptive alteration in cancer cells. The metabolic reprogramming of NADPH renders cancer cells both highly dependent on this metabolic network for antioxidant capacity and more susceptible to oxidative stress. Modulating the unique NADPH homeostasis of cancer cells might be an effective strategy to eliminate these cells. In this review, we summarize the current existing literatures on NADPH homeostasis, including its biological functions, regulatory mechanisms and the corresponding therapeutic interventions in human cancers, providing insights into therapeutic implications of targeting NADPH metabolism and the associated mechanism for cancer therapy.
Collapse
|
20
|
Take Advantage of Glutamine Anaplerosis, the Kernel of the Metabolic Rewiring in Malignant Gliomas. Biomolecules 2020; 10:biom10101370. [PMID: 32993063 PMCID: PMC7599606 DOI: 10.3390/biom10101370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Glutamine is a non-essential amino acid that plays a key role in the metabolism of proliferating cells including neoplastic cells. In the central nervous system (CNS), glutamine metabolism is particularly relevant, because the glutamine-glutamate cycle is a way of controlling the production of glutamate-derived neurotransmitters by tightly regulating the bioavailability of the amino acids in a neuron-astrocyte metabolic symbiosis-dependent manner. Glutamine-related metabolic adjustments have been reported in several CNS malignancies including malignant gliomas that are considered ‘glutamine addicted’. In these tumors, glutamine becomes an essential amino acid preferentially used in energy and biomass production including glutathione (GSH) generation, which is crucial in oxidative stress control. Therefore, in this review, we will highlight the metabolic remodeling that gliomas undergo, focusing on glutamine metabolism. We will address some therapeutic regimens including novel research attempts to target glutamine metabolism and a brief update of diagnosis strategies that take advantage of this altered profile. A better understanding of malignant glioma cell metabolism will help in the identification of new molecular targets and the design of new therapies.
Collapse
|
21
|
Fernandes LM, Khan NM, Trochez CM, Duan M, Diaz-Hernandez ME, Presciutti SM, Gibson G, Drissi H. Single-cell RNA-seq identifies unique transcriptional landscapes of human nucleus pulposus and annulus fibrosus cells. Sci Rep 2020; 10:15263. [PMID: 32943704 PMCID: PMC7499307 DOI: 10.1038/s41598-020-72261-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/19/2020] [Indexed: 12/29/2022] Open
Abstract
Intervertebral disc (IVD) disease (IDD) is a complex, multifactorial disease. While various aspects of IDD progression have been reported, the underlying molecular pathways and transcriptional networks that govern the maintenance of healthy nucleus pulposus (NP) and annulus fibrosus (AF) have not been fully elucidated. We defined the transcriptome map of healthy human IVD by performing single-cell RNA-sequencing (scRNA-seq) in primary AF and NP cells isolated from non-degenerated lumbar disc. Our systematic and comprehensive analyses revealed distinct genetic architecture of human NP and AF compartments and identified 2,196 differentially expressed genes. Gene enrichment analysis showed that SFRP1, BIRC5, CYTL1, ESM1 and CCNB2 genes were highly expressed in the AF cells; whereas, COL2A1, DSC3, COL9A3, COL11A1, and ANGPTL7 were mostly expressed in the NP cells. Further, functional annotation clustering analysis revealed the enrichment of receptor signaling pathways genes in AF cells, while NP cells showed high expression of genes related to the protein synthesis machinery. Subsequent interaction network analysis revealed a structured network of extracellular matrix genes in NP compartments. Our regulatory network analysis identified FOXM1 and KDM4E as signature transcription factor of AF and NP respectively, which might be involved in the regulation of core genes of AF and NP transcriptome.
Collapse
Affiliation(s)
- Lorenzo M Fernandes
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30033, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Nazir M Khan
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30033, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Camila M Trochez
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Meixue Duan
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Martha E Diaz-Hernandez
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30033, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Steven M Presciutti
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30033, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Greg Gibson
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30033, USA. .,Atlanta VA Medical Center, Decatur, GA, USA.
| |
Collapse
|
22
|
Bhardwaj V, He J. Reactive Oxygen Species, Metabolic Plasticity, and Drug Resistance in Cancer. Int J Mol Sci 2020; 21:ijms21103412. [PMID: 32408513 PMCID: PMC7279373 DOI: 10.3390/ijms21103412] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 01/29/2023] Open
Abstract
The metabolic abnormality observed in tumors is characterized by the dependence of cancer cells on glycolysis for their energy requirements. Cancer cells also exhibit a high level of reactive oxygen species (ROS), largely due to the alteration of cellular bioenergetics. A highly coordinated interplay between tumor energetics and ROS generates a powerful phenotype that provides the tumor cells with proliferative, antiapoptotic, and overall aggressive characteristics. In this review article, we summarize the literature on how ROS impacts energy metabolism by regulating key metabolic enzymes and how metabolic pathways e.g., glycolysis, PPP, and the TCA cycle reciprocally affect the generation and maintenance of ROS homeostasis. Lastly, we discuss how metabolic adaptation in cancer influences the tumor’s response to chemotherapeutic drugs. Though attempts of targeting tumor energetics have shown promising preclinical outcomes, the clinical benefits are yet to be fully achieved. A better understanding of the interaction between metabolic abnormalities and involvement of ROS under the chemo-induced stress will help develop new strategies and personalized approaches to improve the therapeutic efficiency in cancer patients.
Collapse
Affiliation(s)
- Vikas Bhardwaj
- College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Jun He
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Correspondence:
| |
Collapse
|
23
|
Serpa J. Metabolic Remodeling as a Way of Adapting to Tumor Microenvironment (TME), a Job of Several Holders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:1-34. [PMID: 32130691 DOI: 10.1007/978-3-030-34025-4_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The microenvironment depends and generates dependence on all the cells and structures that share the same niche, the biotope. The contemporaneous view of the tumor microenvironment (TME) agrees with this idea. The cells that make up the tumor, whether malignant or not, behave similarly to classes of elements within a living community. These elements inhabit, modify and benefit from all the facilities the microenvironment has to offer and that will contribute to the survival and growth of the tumor and the progression of the disease.The metabolic adaptation to microenvironment is a crucial process conducting to an established tumor able to grow locally, invade and metastasized. The metastatic cancer cells are reasonable more plastic than non-metastatic cancer cells, because the previous ones must survive in the microenvironment where the primary tumor develops and in addition, they must prosper in the microenvironment in the metastasized organ.The metabolic remodeling requires not only the adjustment of metabolic pathways per se but also the readjustment of signaling pathways that will receive and obey to the extracellular instructions, commanding the metabolic adaptation. Many diverse players are pivotal in cancer metabolic fitness from the initial signaling stimuli, going through the activation or repression of genes, until the phenotype display. The new phenotype will permit the import and consumption of organic compounds, useful for energy and biomass production, and the export of metabolic products that are useless or must be secreted for a further recycling or controlled uptake. In the metabolic network, three subsets of players are pivotal: (1) the organic compounds; (2) the transmembrane transporters, and (3) the enzymes.This chapter will present the "Pharaonic" intent of diagraming the interplay between these three elements in an attempt of simplifying and, at the same time, of showing the complex sight of cancer metabolism, addressing the orchestrating role of microenvironment and highlighting the influence of non-cancerous cells.
Collapse
Affiliation(s)
- Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal.
| |
Collapse
|
24
|
Zhu Y, Gu L, Lin X, Liu C, Lu B, Cui K, Zhou F, Zhao Q, Prochownik EV, Fan C, Li Y. Dynamic Regulation of ME1 Phosphorylation and Acetylation Affects Lipid Metabolism and Colorectal Tumorigenesis. Mol Cell 2019; 77:138-149.e5. [PMID: 31735643 DOI: 10.1016/j.molcel.2019.10.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/14/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
PGAM5 is a mitochondrial serine/threonine phosphatase that regulates multiple metabolic pathways and contributes to tumorigenesis in a poorly understood manner. We show here that PGAM5 inhibition attenuates lipid metabolism and colorectal tumorigenesis in mice. PGAM5-mediated dephosphorylation of malic enzyme 1 (ME1) at S336 allows increased ACAT1-mediated K337 acetylation, leading to ME1 dimerization and activation, both of which are reversed by NEK1 kinase-mediated S336 phosphorylation. SIRT6 deacetylase antagonizes ACAT1 function in a manner that involves mutually exclusive ME1 S336 phosphorylation and K337 acetylation. ME1 also promotes nicotinamide adenine dinucleotide phosphate (NADPH) production, lipogenesis, and colorectal cancers in which ME1 transcripts are upregulated and ME1 protein is hypophosphorylated at S336 and hyperacetylated at K337. PGAM5 and ME1 upregulation occur via direct transcriptional activation mediated by β-catenin/TCF1. Thus, the balance between PGAM5-mediated dephosphorylation of ME1 S336 and ACAT1-mediated acetylation of K337 strongly influences NADPH generation, lipid metabolism, and the susceptibility to colorectal tumorigenesis.
Collapse
Affiliation(s)
- Yahui Zhu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Li Gu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Xi Lin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Cheng Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Bingjun Lu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Kaisa Cui
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Feng Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University School of Medicine, Wuhan 430071 China; Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University School of Medicine, Wuhan 430071 China; Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Edward V Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, The Department of Microbiology and Molecular Genetics, The Pittsburgh Liver Research Center and The Hillman Cancer Center of UPMC, The University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Chengpeng Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Youjun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
25
|
Shi Y, Zhou S, Wang P, Guo Y, Xie B, Ding S. Malic enzyme 1 (ME1) is a potential oncogene in gastric cancer cells and is associated with poor survival of gastric cancer patients. Onco Targets Ther 2019; 12:5589-5599. [PMID: 31371996 PMCID: PMC6628973 DOI: 10.2147/ott.s203228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/17/2019] [Indexed: 12/24/2022] Open
Abstract
Background and objective Gastric cancer is one of the most common cancers worldwide. However, the mechanisms associated with this disease are still not clear. Malic enzyme 1 (ME1) is a metabolic enzyme that is overexpressed in various cancers. Here, we examined whether it is involved in gastric cancer. Methods ME1 expression was knocked down in the gastric cancer cell line SGC7901. Cell growth and migration were measured using a real-time microelectronic cell sensor system. Cell invasion was measured using a Transwell assay. Cell cycle analysis was also performed to examine cell cycle arrest. A gastric cancer tissue microarray of gastric cancer was stained using immunohistochemistry. ME1 expression levels were also statistically analysed. Results ME1 knockdown in gastric cancer SGC7901 cells significantly inhibited cell proliferation, migration, and invasion. Cell cycle arrest was induced in the G2 phase. Further, ME1 expression was significantly correlated with gastric cancer patient prognosis based on both univariable and multivariable survival analysis. No significant difference was found between ME1 expression in gastric cancer tissues and that in adjacent tissues. Conclusion Our results provide evidence that ME1 is a key factor for gastric cancer. ME1 might be pro-oncogenic during both the development and migration of gastric cancer; it also might be related to gastric cancer patient survival.
Collapse
Affiliation(s)
- Yanyan Shi
- Peking University Third Hospital, Research Center of Clinical Epidemiology, Beijing 100191, People's Republic of China
| | - Siliang Zhou
- Peking University Health Science Center, School of Public Health, Beijing 100191, People's Republic of China
| | - Pan Wang
- Peking University Third Hospital, Department of Obstetrics and Gynecology, Beijing 100191, People's Republic of China
| | - Yanlei Guo
- Peking University Third Hospital, Department of Gastroenterology, Beijing 100191, People's Republic of China
| | - Bingteng Xie
- Peking University Third Hospital, Department of Obstetrics and Gynecology, Beijing 100191, People's Republic of China
| | - Shigang Ding
- Peking University Third Hospital, Department of Gastroenterology, Beijing 100191, People's Republic of China
| |
Collapse
|