1
|
Yuan YG, Liu SZ, Farhab M, Lv MY, Zhang T, Cao SX. Genome editing: An insight into disease resistance, production efficiency, and biomedical applications in livestock. Funct Integr Genomics 2024; 24:81. [PMID: 38709433 DOI: 10.1007/s10142-024-01364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
One of the primary concerns for the survival of the human species is the growing demand for food brought on by an increasing global population. New developments in genome-editing technology present promising opportunities for the growth of wholesome and prolific farm animals. Genome editing in large animals is used for a variety of purposes, including biotechnology to improve food production, animal health, and pest management, as well as the development of animal models for fundamental research and biomedicine. Genome editing entails modifying genetic material by removing, adding, or manipulating particular DNA sequences from a particular locus in a way that does not happen naturally. The three primary genome editors are CRISPR/Cas 9, TALENs, and ZFNs. Each of these enzymes is capable of precisely severing nuclear DNA at a predetermined location. One of the most effective inventions is base editing, which enables single base conversions without the requirement for a DNA double-strand break (DSB). As reliable methods for precise genome editing in studies involving animals, cytosine and adenine base editing are now well-established. Effective zygote editing with both cytosine and adenine base editors (ABE) has resulted in the production of animal models. Both base editors produced comparable outcomes for the precise editing of point mutations in somatic cells, advancing the field of gene therapy. This review focused on the principles, methods, recent developments, outstanding applications, the advantages and disadvantages of ZFNs, TALENs, and CRISPR/Cas9 base editors, and prime editing in diverse lab and farm animals. Additionally, we address the methodologies that can be used for gene regulation, base editing, and epigenetic alterations, as well as the significance of genome editing in animal models to better reflect real disease. We also look at methods designed to increase the effectiveness and precision of gene editing tools. Genome editing in large animals is used for a variety of purposes, including biotechnology to improve food production, animal health, and pest management, as well as the development of animal models for fundamental research and biomedicine. This review is an overview of the existing knowledge of the principles, methods, recent developments, outstanding applications, the advantages and disadvantages of zinc finger nucleases (ZFNs), transcription-activator-like endonucleases (TALENs), and clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR/Cas 9), base editors and prime editing in diverse lab and farm animals, which will offer better and healthier products for the entire human race.
Collapse
Affiliation(s)
- Yu-Guo Yuan
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Song-Zi Liu
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Muhammad Farhab
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Mei-Yun Lv
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Ting Zhang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212499, China
| | - Shao-Xiao Cao
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- Jiangsu Provincial Engineering Research Center for Precision animal Breeding, Nanjing, 210014, China
| |
Collapse
|
2
|
Sánchez Rivera FJ, Dow LE. How CRISPR Is Revolutionizing the Generation of New Models for Cancer Research. Cold Spring Harb Perspect Med 2024; 14:a041384. [PMID: 37487630 PMCID: PMC11065179 DOI: 10.1101/cshperspect.a041384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Cancers arise through acquisition of mutations in genes that regulate core biological processes like cell proliferation and cell death. Decades of cancer research have led to the identification of genes and mutations causally involved in disease development and evolution, yet defining their precise function across different cancer types and how they influence therapy responses has been challenging. Mouse models have helped define the in vivo function of cancer-associated alterations, and genome-editing approaches using CRISPR have dramatically accelerated the pace at which these models are developed and studied. Here, we highlight how CRISPR technologies have impacted the development and use of mouse models for cancer research and discuss the many ways in which these rapidly evolving platforms will continue to transform our understanding of this disease.
Collapse
Affiliation(s)
- Francisco J Sánchez Rivera
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10065, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, New York 10065, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York 10065, USA
| |
Collapse
|
3
|
Lee HK, Willi M, Liu C, Hennighausen L. Cell-specific and shared regulatory elements control a multigene locus active in mammary and salivary glands. Nat Commun 2023; 14:4992. [PMID: 37591874 PMCID: PMC10435465 DOI: 10.1038/s41467-023-40712-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023] Open
Abstract
Regulation of high-density loci harboring genes with different cell-specificities remains a puzzle. Here we investigate a locus that evolved through gene duplication and contains eight genes and 20 candidate regulatory elements, including one super-enhancer. Casein genes (Csn1s1, Csn2, Csn1s2a, Csn1s2b, Csn3) are expressed in mammary glands, induced 10,000-fold during pregnancy and account for 50% of mRNAs during lactation, Prr27 and Fdcsp are salivary-specific and Odam has dual specificity. We probed the function of 12 candidate regulatory elements, individually and in combination, in the mouse genome. The super-enhancer is essential for the expression of Csn3, Csn1s2b, Odam and Fdcsp but largely dispensable for Csn1s1, Csn2 and Csn1s2a. Csn3 activation also requires its own local enhancer. Synergism between local enhancers and cytokine-responsive promoter elements facilitates activation of Csn2 during pregnancy. Our work identifies the regulatory complexity of a multigene locus with an ancestral super-enhancer active in mammary and salivary tissue and local enhancers and promoter elements unique to mammary tissue.
Collapse
Affiliation(s)
- Hye Kyung Lee
- Section of Genetics and Physiology, Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, 20892, USA.
| | - Michaela Willi
- Section of Genetics and Physiology, Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Lothar Hennighausen
- Section of Genetics and Physiology, Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
4
|
Abstract
Genome editing by programmable RNA-dependent Cas endonucleases has revolutionised the field of genome engineering, achieving targeted genomic change at unprecedented efficiencies with considerable application in laboratory animal research. Despite its ease of use and wide application, there remain concerns about the precision of this technology and a number of unpredictable consequences have been reported, mostly resulting from the DNA double-strand break (DSB) that conventional CRISPR editing induces. In order to improve editing precision, several iterations of the technology been developed over the years. Base editing is one of most successful developments, allowing for single base conversions but without the need for a DSB. Cytosine and adenine base editing are now established as reliable methods to achieve precise genome editing in animal research studies. Both cytosine and adenine base editors have been applied successfully to the editing of zygotes, resulting in the generation of animal models. Similarly, both base editors have achieved precise editing of point mutations in somatic cells, facilitating the development of gene therapy approaches. Despite rapid progress in optimising these tools, base editing can address only a subset of possible base conversions within a relatively narrow window and larger genomic manipulations are not possible. The recent development of prime editing, originally defined as a simple 'search and replace' editing tool, may help address these limitations and could widen the range of genome manipulations possible. Preliminary reports of prime editing in animals are being published, and this new technology may allow significant advancements for laboratory animal research.
Collapse
Affiliation(s)
- Federico Caso
- Wellcome Centre for Human Genetics, University of Oxford, UK
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, UK
| |
Collapse
|
5
|
Lee HK, Oh Y, Hong J, Lee SH, Hur JK. Development of CRISPR technology for precise single-base genome editing: a brief review. BMB Rep 2021. [PMID: 33298245 PMCID: PMC7907742 DOI: 10.5483/bmbrep.2021.54.2.217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) system is a family of DNA sequences originally discovered as a type of acquired immunity in prokaryotes such as bacteria and archaea. In many CRISPR systems, the functional ribonucleoproteins (RNPs) are composed of CRISPR protein and guide RNAs. They selectively bind and cleave specific target DNAs or RNAs, based on sequences complementary to the guide RNA. The specific targeted cleavage of the nucleic acids by CRISPR has been broadly utilized in genome editing methods. In the process of genome editing of eukaryotic cells, CRISPR-mediated DNA double-strand breaks (DSB) at specific genomic loci activate the endogenous DNA repair systems and induce mutations at the target sites with high efficiencies. Two of the major endogenous DNA repair machineries are non-homologous end joining (NHEJ) and homology-directed repair (HDR). In case of DSB, the two repair pathways operate in competition, resulting in several possible outcomes including deletions, insertions, and substitutions. Due to the inherent stochasticity of DSB-based genome editing methods, it was difficult to achieve defined single-base changes without unanticipated random mutation patterns. In order to overcome the heterogeneity in DSB-mediated genome editing, novel methods have been developed to incorporate precise single-base level changes without inducing DSB. The approaches utilized catalytically compromised CRISPR in conjunction with base-modifying enzymes and DNA polymerases, to accomplish highly efficient and precise genome editing of single and multiple bases. In this review, we introduce some of the advances in single-base level CRISPR genome editing methods and their applications.
Collapse
Affiliation(s)
- Hyomin K Lee
- Department of Medicine, Graduate School, Hanyang University, Seoul 04763, Korea
| | - Yeounsun Oh
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 28116, Korea
| | - Juyoung Hong
- Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul 04763, Korea
| | - Seung Hwan Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Junho K Hur
- Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul 04763; Department of Genetics, College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
6
|
Chenouard V, Remy S, Tesson L, Ménoret S, Ouisse LH, Cherifi Y, Anegon I. Advances in Genome Editing and Application to the Generation of Genetically Modified Rat Models. Front Genet 2021; 12:615491. [PMID: 33959146 PMCID: PMC8093876 DOI: 10.3389/fgene.2021.615491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
The rat has been extensively used as a small animal model. Many genetically engineered rat models have emerged in the last two decades, and the advent of gene-specific nucleases has accelerated their generation in recent years. This review covers the techniques and advances used to generate genetically engineered rat lines and their application to the development of rat models more broadly, such as conditional knockouts and reporter gene strains. In addition, genome-editing techniques that remain to be explored in the rat are discussed. The review also focuses more particularly on two areas in which extensive work has been done: human genetic diseases and immune system analysis. Models are thoroughly described in these two areas and highlight the competitive advantages of rat models over available corresponding mouse versions. The objective of this review is to provide a comprehensive description of the advantages and potential of rat models for addressing specific scientific questions and to characterize the best genome-engineering tools for developing new projects.
Collapse
Affiliation(s)
- Vanessa Chenouard
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- genOway, Lyon, France
| | - Séverine Remy
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Laurent Tesson
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Séverine Ménoret
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes Université, Nantes, France
| | - Laure-Hélène Ouisse
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | | | - Ignacio Anegon
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| |
Collapse
|
7
|
Gao P, Lyu Q, Ghanam AR, Lazzarotto CR, Newby GA, Zhang W, Choi M, Slivano OJ, Holden K, Walker JA, Kadina AP, Munroe RJ, Abratte CM, Schimenti JC, Liu DR, Tsai SQ, Long X, Miano JM. Prime editing in mice reveals the essentiality of a single base in driving tissue-specific gene expression. Genome Biol 2021; 22:83. [PMID: 33722289 PMCID: PMC7962346 DOI: 10.1186/s13059-021-02304-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Most single nucleotide variants (SNVs) occur in noncoding sequence where millions of transcription factor binding sites (TFBS) reside. Here, a comparative analysis of CRISPR-mediated homology-directed repair (HDR) versus the recently reported prime editing 2 (PE2) system was carried out in mice over a TFBS called a CArG box in the Tspan2 promoter. RESULTS Quantitative RT-PCR showed loss of Tspan2 mRNA in aorta and bladder, but not heart or brain, of mice homozygous for an HDR-mediated three base pair substitution in the Tspan2 CArG box. Using the same protospacer, mice homozygous for a PE2-mediated single-base substitution in the Tspan2 CArG box displayed similar cell-specific loss of Tspan2 mRNA; expression of an overlapping long noncoding RNA was also nearly abolished in aorta and bladder. Immuno-RNA fluorescence in situ hybridization validated loss of Tspan2 in vascular smooth muscle cells of HDR and PE2 CArG box mutant mice. Targeted sequencing demonstrated variable frequencies of on-target editing in all PE2 and HDR founders. However, whereas no on-target indels were detected in any of the PE2 founders, all HDR founders showed varying levels of on-target indels. Off-target analysis by targeted sequencing revealed mutations in many HDR founders, but none in PE2 founders. CONCLUSIONS PE2 directs high-fidelity editing of a single base in a TFBS leading to cell-specific loss in expression of an mRNA/long noncoding RNA gene pair. The PE2 platform expands the genome editing toolbox for modeling and correcting relevant noncoding SNVs in the mouse.
Collapse
Affiliation(s)
- Pan Gao
- Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912 USA
| | - Qing Lyu
- Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912 USA
| | - Amr R. Ghanam
- Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912 USA
| | - Cicera R. Lazzarotto
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38195 USA
| | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138 USA
| | - Wei Zhang
- Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912 USA
| | - Mihyun Choi
- Department of Physiology, Albany Medical College, Albany, NY 12208 USA
| | - Orazio J. Slivano
- Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912 USA
| | - Kevin Holden
- Synthego Corporation, Redwood City, CA 94025 USA
| | | | | | - Rob J. Munroe
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853 USA
| | | | - John C. Schimenti
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853 USA
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138 USA
| | - Shengdar Q. Tsai
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38195 USA
| | - Xiaochun Long
- Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912 USA
| | - Joseph M. Miano
- Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912 USA
| |
Collapse
|
8
|
Huang TP, Newby GA, Liu DR. Precision genome editing using cytosine and adenine base editors in mammalian cells. Nat Protoc 2021; 16:1089-1128. [PMID: 33462442 DOI: 10.1038/s41596-020-00450-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/20/2020] [Indexed: 01/29/2023]
Abstract
Genome editing has transformed the life sciences and has exciting prospects for use in treating genetic diseases. Our laboratory developed base editing to enable precise and efficient genome editing while minimizing undesired byproducts and toxicity associated with double-stranded DNA breaks. Adenine and cytosine base editors mediate targeted A•T-to-G•C or C•G-to-T•A base pair changes, respectively, which can theoretically address most human disease-associated single-nucleotide polymorphisms. Current base editors can achieve high editing efficiencies-for example, approaching 100% in cultured mammalian cells or 70% in adult mouse neurons in vivo. Since their initial description, a large set of base editor variants have been developed with different on-target and off-target editing characteristics. Here, we describe a protocol for using base editing in cultured mammalian cells. We provide guidelines for choosing target sites, appropriate base editor variants and delivery strategies to best suit a desired application. We further describe standard base-editing experiments in HEK293T cells, along with computational analysis of base-editing outcomes using CRISPResso2. Beginning with target DNA site selection, base-editing experiments in mammalian cells can typically be completed within 1-3 weeks and require only standard molecular biology techniques and readily available plasmid constructs.
Collapse
Affiliation(s)
- Tony P Huang
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
9
|
Antao AM, Karapurkar JK, Lee DR, Kim KS, Ramakrishna S. Disease modeling and stem cell immunoengineering in regenerative medicine using CRISPR/Cas9 systems. Comput Struct Biotechnol J 2020; 18:3649-3665. [PMID: 33304462 PMCID: PMC7710510 DOI: 10.1016/j.csbj.2020.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
CRISPR/Cas systems are popular genome editing tools that belong to a class of programmable nucleases and have enabled tremendous progress in the field of regenerative medicine. We here outline the structural and molecular frameworks of the well-characterized type II CRISPR system and several computational tools intended to facilitate experimental designs. The use of CRISPR tools to generate disease models has advanced research into the molecular aspects of disease conditions, including unraveling the molecular basis of immune rejection. Advances in regenerative medicine have been hindered by major histocompatibility complex-human leukocyte antigen (HLA) genes, which pose a major barrier to cell- or tissue-based transplantation. Based on progress in CRISPR, including in recent clinical trials, we hypothesize that the generation of universal donor immune-engineered stem cells is now a realistic approach to tackling a multitude of disease conditions.
Collapse
Affiliation(s)
- Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | | | - Dong Ryul Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, South Korea
- CHA Stem Cell Institute, CHA University, Seoul, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
- College of Medicine, Hanyang University, Seoul, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
- College of Medicine, Hanyang University, Seoul, South Korea
| |
Collapse
|
10
|
Tang J, Lee T, Sun T. Single-nucleotide editing: From principle, optimization to application. Hum Mutat 2019; 40:2171-2183. [PMID: 31131955 DOI: 10.1002/humu.23819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/30/2019] [Accepted: 05/23/2019] [Indexed: 12/26/2022]
Abstract
Cytosine base editors (CBEs) and adenine base editors (ABEs), which are generally composed of an engineered deaminase and a catalytically impaired CRISPR-Cas9 variant, are new favorite tools for single base substitution in cells and organisms. In this review, we summarize the principle of base-editing systems and elaborate on the evolution of different platforms of CBEs and ABEs, including their deaminase, Cas9 variants, and editing outcomes. Moreover, we highlight their applications in mouse and human cells and discuss the challenges and prospects of base editors. The ABE- and CBE systems have been used in gene silencing, pathogenic gene correction, and functional genetic screening. Single base editing is becoming a new promising genetic tool in biomedical research and gene therapy.
Collapse
Affiliation(s)
- Jinling Tang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Trevor Lee
- Department of Cell and Developmental Biology, Weill Medical College, Cornell University, New York, New York
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| |
Collapse
|
11
|
Miano JM, Long X, Lyu Q. CRISPR links to long noncoding RNA function in mice: A practical approach. Vascul Pharmacol 2019; 114:1-12. [PMID: 30822570 PMCID: PMC6435418 DOI: 10.1016/j.vph.2019.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/29/2022]
Abstract
Next generation sequencing has uncovered a trove of short noncoding RNAs (e.g., microRNAs) and long noncoding RNAs (lncRNAs) that act as molecular rheostats in the control of diverse homeostatic processes. Meanwhile, the tsunamic emergence of clustered regularly interspaced short palindromic repeats (CRISPR) editing has transformed our influence over all DNA-carrying entities, heralding global CRISPRization. This is evident in biomedical research where the ease and low-cost of CRISPR editing has made it the preferred method of manipulating the mouse genome, facilitating rapid discovery of genome function in an in vivo context. Here, CRISPR genome editing components are updated for elucidating lncRNA function in mice. Various strategies are highlighted for understanding the function of lncRNAs residing in intergenic sequence space, as host genes that harbor microRNAs or other genes, and as natural antisense, overlapping or intronic genes. Also discussed is CRISPR editing of mice carrying human lncRNAs as well as the editing of competing endogenous RNAs. The information described herein should assist labs in the rigorous design of experiments that interrogate lncRNA function in mice where complex disease processes can be modeled thus accelerating translational discovery.
Collapse
Affiliation(s)
- Joseph M Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America.
| | - Xiaochun Long
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States of America
| | - Qing Lyu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| |
Collapse
|