1
|
Kaveti R, Jakus MA, Chen H, Jain B, Kennedy DG, Caso EA, Mishra N, Sharma N, Uzunoğlu BE, Han WB, Jang TM, Hwang SW, Theocharidis G, Sumpio BJ, Veves A, Sia SK, Bandodkar AJ. Water-powered, electronics-free dressings that electrically stimulate wounds for rapid wound closure. SCIENCE ADVANCES 2024; 10:eado7538. [PMID: 39110791 PMCID: PMC11305378 DOI: 10.1126/sciadv.ado7538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Chronic wounds affect ~2% of the U.S. population and increase risks of amputation and mortality. Unfortunately, treatments for such wounds are often expensive, complex, and only moderately effective. Electrotherapy represents a cost-effective treatment; however, its reliance on bulky equipment limits its clinical use. Here, we introduce water-powered, electronics-free dressings (WPEDs) that offer a unique solution to this issue. The WPED performs even under harsh conditions-situations wherein many present treatments fail. It uses a flexible, biocompatible magnesium-silver/silver chloride battery and a pair of stimulation electrodes; upon the addition of water, the battery creates a radial electric field. Experiments in diabetic mice confirm the WPED's ability to accelerate wound closure and promote healing by increasing epidermal thickness, modulating inflammation, and promoting angiogenesis. Across preclinical wound models, the WPED-treated group heals faster than the control with wound closure rates comparable to treatments requiring expensive biologics and/or complex electronics. The results demonstrate the WPED's potential as an effective and more practical wound treatment dressing.
Collapse
Affiliation(s)
- Rajaram Kaveti
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Margaret A. Jakus
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Henry Chen
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27606, USA
| | - Bhavya Jain
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Darragh G. Kennedy
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Elizabeth A. Caso
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Navya Mishra
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Nivesh Sharma
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Baha Erim Uzunoğlu
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
| | - Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Georgios Theocharidis
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Brandon J. Sumpio
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Samuel K. Sia
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Amay J. Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC 27606, USA
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27606, USA
| |
Collapse
|
2
|
Chen Q, Wang Y, Shuai J. Current status and future prospects of stomatology research. J Zhejiang Univ Sci B 2023; 24:853-867. [PMID: 37752088 PMCID: PMC10522564 DOI: 10.1631/jzus.b2200702] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/27/2023] [Indexed: 08/08/2023]
Abstract
Research in stomatology (dental medicine) continues to expand globally and is oriented towards solving clinical issues, focusing on clarifying the clinical relevance and potential mechanisms of oral-systemic connections via clinical epidemiology, oral microecological characterization, and the establishment of animal models. Interdisciplinary integration of materials science and tissue engineering with stomatology is expected to lead to the creation of innovative materials and technologies to better resolve the most prevalent and challenging clinical issues such as peri-implantitis, soft and hard tissue defects, and dentin hypersensitivity. With the rapid development of artificial intelligence (AI), 5th generation mobile communication technology (5G), and big data applications, "intelligent stomatology" is emerging to build models for better clinical diagnosis and management, accelerate the reform of education, and support the growth and advancement of scientific research. Here, we summarized the current research status, and listed the future prospects and limitations of these three aspects, aiming to provide a basis for more accurate etiological exploration, novel treatment methods, and abundant big data analysis in stomatology to promote the translation of research achievements into practical applications for both clinicians and the public.
Collapse
Affiliation(s)
- Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| | - Yahui Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Jing Shuai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
3
|
Izadi R, Hejazi SH, Bahramikia S. Injection of stem cells derived from allogeneic adipose tissue, a new strategy for the treatment of diabetic wounds. J Diabetes Complications 2023; 37:108496. [PMID: 37216889 DOI: 10.1016/j.jdiacomp.2023.108496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/26/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023]
Abstract
A diabetic wound is one of the major complications of Diabetes mellitus. Considering the impact of these wounds on the health and quality of life of diabetic patients, the need for a suitable treatment is essential. Adipose-derived stem cells (ASCs) play a role in healing diabetic wounds. The purpose of this study is to examine the effect of ASCs on skin wound healing in diabetic rats. Rats were divided into three groups, diabetics treated with ASCs, non-diabetic, and diabetic (treated with phosphate-buffered saline). Skin wounds and its margin were examined to measure the level of vascular endothelial growth factor (VEGF) and transforming growth factor-beta (TGF-β) and histopathological examinations on three, six, and nine days after wound formation and treatment. As a result, the administration of ASCs can reduce the healing time of skin wounds in diabetic rats by controlling inflammation and increasing angiogenesis.
Collapse
Affiliation(s)
- Rezvan Izadi
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran
| | | | - Seifollah Bahramikia
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran
| |
Collapse
|
4
|
Hu D, Li X, Li J, Tong P, Li Z, Lin G, Sun Y, Wang J. The preclinical and clinical progress of cell sheet engineering in regenerative medicine. Stem Cell Res Ther 2023; 14:112. [PMID: 37106373 PMCID: PMC10136407 DOI: 10.1186/s13287-023-03340-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Cell therapy is an accessible method for curing damaged organs or tissues. Yet, this approach is limited by the delivery efficiency of cell suspension injection. Over recent years, biological scaffolds have emerged as carriers of delivering therapeutic cells to the target sites. Although they can be regarded as revolutionary research output and promote the development of tissue engineering, the defect of biological scaffolds in repairing cell-dense tissues is apparent. Cell sheet engineering (CSE) is a novel technique that supports enzyme-free cell detachment in the shape of a sheet-like structure. Compared with the traditional method of enzymatic digestion, products harvested by this technique retain extracellular matrix (ECM) secreted by cells as well as cell-matrix and intercellular junctions established during in vitro culture. Herein, we discussed the current status and recent progress of CSE in basic research and clinical application by reviewing relevant articles that have been published, hoping to provide a reference for the development of CSE in the field of stem cells and regenerative medicine.
Collapse
Affiliation(s)
- Danping Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- HANGZHOU CHEXMED TECHNOLOGY CO., LTD, Hangzhou, 310000, China
| | - Xinyu Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Jie Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Pei Tong
- Hospital of Hunan Guangxiu, Medical College of Hunan Normal University, Hunan Normal University, Changsha, 410008, China
| | - Zhe Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410008, China
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China
| | - Yi Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China.
- National Engineering and Research Center of Human Stem Cells, Changsha, 410008, China.
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China.
| | - Juan Wang
- Shanghai Biomass Pharmaceutical Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, 200437, China.
| |
Collapse
|
5
|
You Q, Lu M, Li Z, Zhou Y, Tu C. Cell Sheet Technology as an Engineering-Based Approach to Bone Regeneration. Int J Nanomedicine 2022; 17:6491-6511. [PMID: 36573205 PMCID: PMC9789707 DOI: 10.2147/ijn.s382115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/12/2022] [Indexed: 12/24/2022] Open
Abstract
Bone defects that are congenital or the result of infection, malignancy, or trauma represent a challenge to the global healthcare system. To address this issue, multiple research groups have been developing novel cell sheet technology (CST)-based approaches to promote bone regeneration. These methods hold promise for use in regenerative medicine because they preserve cell-cell contacts, cell-extracellular matrix interactions, and the protein makeup of cell membranes. This review introduces the concept and preparation system of the cell sheet (CS), explores the application of CST in bone regeneration, highlights the current states of the bone regeneration via CST, and offers perspectives on the challenges and future research direction of translating current knowledge from the lab to the clinic.
Collapse
Affiliation(s)
- Qi You
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China,Sichuan Model Worker and Craftsman Talent Innovation Research Studio, Chengdu, Sichuan Province, People’s Republic of China
| | - Minxun Lu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China,Sichuan Model Worker and Craftsman Talent Innovation Research Studio, Chengdu, Sichuan Province, People’s Republic of China
| | - Zhuangzhuang Li
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China,Sichuan Model Worker and Craftsman Talent Innovation Research Studio, Chengdu, Sichuan Province, People’s Republic of China
| | - Yong Zhou
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China,Sichuan Model Worker and Craftsman Talent Innovation Research Studio, Chengdu, Sichuan Province, People’s Republic of China
| | - Chongqi Tu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China,Sichuan Model Worker and Craftsman Talent Innovation Research Studio, Chengdu, Sichuan Province, People’s Republic of China,Correspondence: Chongqi Tu; Yong Zhou, Department of Orthopedics, West China Hospital, Sichuan University, No. 37, Guoxuexiang, Chengdu, 610041, Sichuan Province, People’s Republic of China, Email ;
| |
Collapse
|
6
|
Kanta J, Zavadakova A, Sticova E, Dubsky M. Fibronectin in hyperglycaemia and its potential use in the treatment of diabetic foot ulcers: A review. Int Wound J 2022; 20:1750-1761. [PMID: 36537075 PMCID: PMC10088845 DOI: 10.1111/iwj.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolism of fibronectin, the protein that plays a key role in the healing of wounds, is changed in the patients with diabetes mellitus. Fibronectin can interact with other proteins and proteoglycans and organise them to form the extracellular matrix, the basis of the granulation tissue in healing wounds. However, diabetic foot ulcers (DFUs) suffer from inadequate deposition of this protein. Degradation prevails over fibronectin synthesis in the proteolytic inflammatory environment in the ulcers. Because of the lack of fibronectin in the wound bed, the assembly of the extracellular matrix and the deposition of the granulation tissue cannot be started. A number of methods have been designed that prevents fibronectin degradation, replace lacking fibronectin or support its formation in non-healing wounds in animal models of diabetes. The aim of this article is to review the metabolism of fibronectin in DFUs and to emphasise that it would be useful to pay more attention to fibronectin matrix assembly in the ulcers when laboratory methods are translated to clinical practice.
Collapse
Affiliation(s)
- Jiri Kanta
- Faculty of Medicine Charles University Hradec Kralove Czech Republic
| | - Anna Zavadakova
- Biomedical Center, Faculty of Medicine Charles University Pilsen Czech Republic
| | - Eva Sticova
- Diabetes Center Institute for Clinical and Experimental Medicine Prague Czech Republic
- Third Faculty of Medicine Charles University Prague Czech Republic
| | - Michal Dubsky
- Diabetes Center Institute for Clinical and Experimental Medicine Prague Czech Republic
- First Faculty of Medicine Charles University Prague Czech Republic
| |
Collapse
|
7
|
Ren S, Guo S, Yang L, Wang C. Effect of composite biodegradable biomaterials on wound healing in diabetes. Front Bioeng Biotechnol 2022; 10:1060026. [PMID: 36507270 PMCID: PMC9732485 DOI: 10.3389/fbioe.2022.1060026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
The repair of diabetic wounds has always been a job that doctors could not tackle quickly in plastic surgery. To solve this problem, it has become an important direction to use biocompatible biodegradable biomaterials as scaffolds or dressing loaded with a variety of active substances or cells, to construct a wound repair system integrating materials, cells, and growth factors. In terms of wound healing, composite biodegradable biomaterials show strong biocompatibility and the ability to promote wound healing. This review describes the multifaceted integration of biomaterials with drugs, stem cells, and active agents. In wounds, stem cells and their secreted exosomes regulate immune responses and inflammation. They promote angiogenesis, accelerate skin cell proliferation and re-epithelialization, and regulate collagen remodeling that inhibits scar hyperplasia. In the process of continuous combination with new materials, a series of materials that can be well matched with active ingredients such as cells or drugs are derived for precise delivery and controlled release of drugs. The ultimate goal of material development is clinical transformation. At present, the types of materials for clinical application are still relatively single, and the bottleneck is that the functions of emerging materials have not yet reached a stable and effective degree. The development of biomaterials that can be further translated into clinical practice will become the focus of research.
Collapse
Affiliation(s)
- Sihang Ren
- NHC Key Laboratory of Reproductive Health and Medical Genetics (Liaoning Research Institute of Family Planning), The Affiliated Reproductive Hospital of China Medical University, Shenyang, China
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
- The First Clinical College of China Medical UniversityChina Medical University, Shenyang, China
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Shuaichen Guo
- The First Clinical College of China Medical UniversityChina Medical University, Shenyang, China
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (Liaoning Research Institute of Family Planning), The Affiliated Reproductive Hospital of China Medical University, Shenyang, China
| | - Chenchao Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Qu Y, Lu K, Zheng Y, Huang C, Wang G, Zhang Y, Yu Q. Photothermal scaffolds/surfaces for regulation of cell behaviors. Bioact Mater 2022; 8:449-477. [PMID: 34541413 PMCID: PMC8429475 DOI: 10.1016/j.bioactmat.2021.05.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/18/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
Regulation of cell behaviors and even cell fates is of great significance in diverse biomedical applications such as cancer treatment, cell-based therapy, and tissue engineering. During the past decades, diverse methods have been developed to regulate cell behaviors such as applying external stimuli, delivering exogenous molecules into cell interior and changing the physicochemical properties of the substrates where cells adhere. Photothermal scaffolds/surfaces refer to a kind of materials embedded or coated with photothermal agents that can absorb light with proper wavelength (usually in near infrared region) and convert light energy to heat; the generated heat shows great potential for regulation of cell behaviors in different ways. In the current review, we summarize the recent research progress, especially over the past decade, of using photothermal scaffolds/surfaces to regulate cell behaviors, which could be further categorized into three types: (i) killing the tumor cells via hyperthermia or thermal ablation, (ii) engineering cells by intracellular delivery of exogenous molecules via photothermal poration of cell membranes, and (iii) releasing a single cell or an intact cell sheet via modulation of surface physicochemical properties in response to heat. In the end, challenges and perspectives in these areas are commented.
Collapse
Affiliation(s)
- Yangcui Qu
- College of Biomedical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, PR China
| | - Kunyan Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Yanjun Zheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Guannan Wang
- College of Biomedical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, PR China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215006, PR China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| |
Collapse
|
9
|
Kim HJ, Kim B, Auh Y, Kim E. Conjugated Organic Photothermal Films for Spatiotemporal Thermal Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005940. [PMID: 34050686 PMCID: PMC11468520 DOI: 10.1002/adma.202005940] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/19/2020] [Indexed: 06/12/2023]
Abstract
With the growth of photoenergy harvesting and thermal engineering, photothermal materials (PTMs) have attracted substantial interest due to their unique functions such as localized heat generation, spatiotemporal thermal controllability, invisibility, and light harvesting capabilities. In particular, π-conjugated organic PTMs show advantages over inorganic or metallic PTMs in thin film applications due to their large light absorptivity, ease of synthesis and tunability of molecular structures for realizing high NIR absorption, flexibility, and solution processability. This review is intended to provide an overview of organic PTMs, including both molecular and polymeric PTMs. A description of the photothermal (PT) effect and conversion efficiency (ηPT ) for organic films is provided. After that, the chemical structure and optical properties of organic PTMs are discussed. Finally, emerging applications of organic PT films from the perspective of spatiotemporal thermal engineering principles are illustrated.
Collapse
Affiliation(s)
- Hee Jung Kim
- Department of Chemical and Biomolecular EngineeringYonsei University50 Yonsei‐roSeodaemun‐guSeoul03722South Korea
| | - Byeonggwan Kim
- Department of Chemical and Biomolecular EngineeringYonsei University50 Yonsei‐roSeodaemun‐guSeoul03722South Korea
| | - Yanghyun Auh
- Department of Chemical and Biomolecular EngineeringYonsei University50 Yonsei‐roSeodaemun‐guSeoul03722South Korea
| | - Eunkyoung Kim
- Department of Chemical and Biomolecular EngineeringYonsei University50 Yonsei‐roSeodaemun‐guSeoul03722South Korea
| |
Collapse
|
10
|
Ploner C, Rauchenwald T, Connolly CE, Joehrer K, Rainer J, Seifarth C, Hermann M, Nagl M, Lobenwein S, Wilflingseder D, Cappellano G, Morandi EM, Pierer G. Oxidant therapy improves adipogenic differentiation of adipose-derived stem cells in human wound healing. Stem Cell Res Ther 2021; 12:280. [PMID: 33971957 PMCID: PMC8111898 DOI: 10.1186/s13287-021-02336-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Background Adipose-derived stem cells (ASC) and adipocytes are involved in numerous physiological and pathophysiological conditions, which have been extensively described in subcutaneous and visceral fat depots over the past two decades. However, much less is known about ASC and adipocytes outside classical fat tissue depots and their necessity in tissue remodeling after injury. Therefore, we investigated the etiology of adipocytes in human granulation tissue and define their possible role wound healing. Methods Identification of human wound tissue adipocytes was determined by immunohistochemical staining of granulation tissue sections from patients undergoing surgical debridement. Stromal cell fractions from granulation tissue and subcutaneous fat tissue were generated by collagenase type II-based protocols. Pro- and anti-inflammatory wound bed conditions were mimicked by THP1- and CD14+ monocyte-derived macrophage models in vitro. Effects of macrophage secretome on ASC differentiation and metabolism were determined by immunoblotting, flow cytometry, and microscopy assessing early and late adipocyte differentiation states. Functional rescuing experiments were conducted by lentiviral transduction of wildtype PPARG, IL1RA, and N-chlorotaurine (NCT) treatment. Results Single and clustered adipocyte populations were detected in 11 out of 13 granulation tissue specimens and single-cell suspensions from granulation tissue showed adipogenic differentiation potential. Pro-inflammatory signaling by IFNG/LPS-stimulated macrophages (M (IFNG/LPS)) inhibited the maturation of lipid droplets in differentiated ASC. In contrast, anti-inflammatory IL4/IL13-activated macrophages (M (IL4/IL13)) revealed minor effects on adipocyte development. The M (IFNG/LPS)-induced phenotype was associated with a switch from endogenous fatty acid synthesis to glycolysis-dominated cell metabolism and increased pro-inflammatory cytokine production. Impaired adipogenesis was associated with increased, but seemingly non-functional, CEBPB levels, which failed to induce downstream PPARG and CEBPA. Neither transgenic PPARG overexpression, nor inhibition of IL1B was sufficient to rescue the anti-adipogenic effects induced by IFNG/LPS-activated macrophages. Instead, macrophage co-treatment during stimulation with NCT, a mild oxidant produced by activated granulocytes present in human wounds in vivo, significantly attenuated the anti-adipogenic effects. Conclusions In conclusion, the appearance of adipocytes in wound tissue indicates a prevailing anti-inflammatory environment that could be promoted by NCT treatment and may be associated with improved healing outcomes. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02336-3.
Collapse
Affiliation(s)
- Christian Ploner
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Tina Rauchenwald
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Catherine E Connolly
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Karin Joehrer
- Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Johannes Rainer
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Christof Seifarth
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Hermann
- Department of Anesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Nagl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Susanne Lobenwein
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Giuseppe Cappellano
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.,Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Evi M Morandi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Gerhard Pierer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| |
Collapse
|
11
|
Croitoru D, Naderi-Azad S, Sachdeva M, Piguet V, Alavi A. A Wound Care Specialist's Approach to Pyoderma Gangrenosum. Adv Wound Care (New Rochelle) 2020; 9:686-694. [PMID: 32320358 DOI: 10.1089/wound.2020.1168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Significance: Pyoderma gangrenosum (PG) is a rare neutrophilic ulcerative dermatosis that poses a high burden of morbidity due to underdiagnosis, resistance to therapy, and limited therapeutic options. Optimization of wound care strategies and multimodal anti-inflammatory approaches are necessary to mitigate multiple converging pathways of inflammation leading to delayed healing, which is further complicated by additional factors such as pathergy. Recent Advances: PG treatment typically involves reducing inflammation, controlling pain, promoting wound healing, and treating the underlying etiology. Recent advances have been made with regard to targeted therapies for PG with topical, intralesional, and systemic medications. Wound management includes gentle cleansing without sharp debridement, limited topical antibacterial use, and maintenance of a moist environment to promote epithelial migration. Critical Issues: Wound dressings and compression therapy, in particular, introduce a wide variety of therapeutic options. Dressings should aim to target the specific PG wound type, depending on the depth and exudative nature of the wound, as well as local secondary factors. Superficial wounds, eschar, exudative wounds, granulating wounds, and colonized wounds are managed with variable approaches to the same underlying principles of pathergy avoidance, moisture balance, and reduction of immunogenic inflammatory stimuli. The importance of compression therapy to decrease edema and overgranulation fits within this treatment paradigm. Future Directions: As each of these treatment modalities offers a complex mixture of advantages and limitations, development of a systematic treatment algorithm in the future can help direct a more tailored path toward wound healing.
Collapse
Affiliation(s)
- David Croitoru
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Muskaan Sachdeva
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Vincent Piguet
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Women's College Hospital, Division of Dermatology, University of Toronto, Toronto, Ontario, Canada
| | - Afsaneh Alavi
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Women's College Hospital, Division of Dermatology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Enzyme free cell detachment using pH-responsive poly(amino ester) for tissue regeneration. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Jankowski M, Dompe C, Sibiak R, Wąsiatycz G, Mozdziak P, Jaśkowski JM, Antosik P, Kempisty B, Dyszkiewicz-Konwińska M. In Vitro Cultures of Adipose-Derived Stem Cells: An Overview of Methods, Molecular Analyses, and Clinical Applications. Cells 2020; 9:cells9081783. [PMID: 32726947 PMCID: PMC7463427 DOI: 10.3390/cells9081783] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Adipose-derived stem cells (ASCs) exhibiting mesenchymal stem cell (MSC) characteristics, have been extensively studied in recent years. Because they have been shown to differentiate into lineages such as osteogenic, chondrogenic, neurogenic or myogenic, the focus of most of the current research concerns either their potential to replace bone marrow as a readily available and abundant source of MSCs, or to employ them in regenerative and reconstructive medicine. There is close to consensus regarding the methodology used for ASC isolation and culture, whereas a number of molecular analyses implicates them in potential therapies of a number of pathologies. When it comes to clinical application, there is a range of examples of animal trials and clinical studies employing ASCs, further emphasizing the advancement of studies leading to their more widespread use. Nevertheless, in vitro studies will most likely continue to play a significant role in ASC studies, both providing the molecular knowledge of their ex vivo properties and possibly serving as an important step in purification and application of those cells in a clinical setting. Therefore, it is important to consider current methods of ASC isolation, culture, and processing. Furthermore, molecular analyses and cell surface properties of ASCs are essential for animal studies, clinical studies, and therapeutic applications of the MSC properties.
Collapse
Affiliation(s)
- Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (R.S.); (M.D.-K.)
| | - Claudia Dompe
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- The School of Medicine, Medical Sciences and Nutrition, Aberdeen University, Aberdeen AB25 2ZD, UK
| | - Rafał Sibiak
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (R.S.); (M.D.-K.)
| | - Grzegorz Wąsiatycz
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (G.W.); (P.A.)
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jędrzej M. Jaśkowski
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (G.W.); (P.A.)
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (R.S.); (M.D.-K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (G.W.); (P.A.)
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 20 Jihlavská St., 601 77 Brno, Czech Republic
- Correspondence:
| | - Marta Dyszkiewicz-Konwińska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (R.S.); (M.D.-K.)
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| |
Collapse
|
14
|
Hamada T, Matsubara H, Yoshida Y, Ugaji S, Nomura I, Tsuchiya H. Autologous adipose-derived stem cell transplantation enhances healing of wound with exposed bone in a rat model. PLoS One 2019; 14:e0214106. [PMID: 31083652 PMCID: PMC6513073 DOI: 10.1371/journal.pone.0214106] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/30/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Soft tissue wounds with exposed bone often require extended healing times and can be associated with severe complications. We describe the ability of artificial dermis with autogenic adipose-derived stem cells (ADSCs) to promote the healing of wounds with exposed bone in a rat model. METHODS Adipose tissues harvested from the bilateral inguinal regions of Wistar rats were used as ADSCs. Rats were randomly divided into control and ADSC groups to investigate the efficacy of ADSC transplantation for wound healing (n = 20 per group). Soft tissue defects were created on the heads of the rats and were covered with artificial dermis with or without the seeded ADSCs. Specimens from these rats were evaluated using digital image analysis, histology, immunohistochemistry, cell labeling, and real-time reverse-transcription polymerase chain reaction (real-time RT-PCR). RESULTS The average global wound area was significantly smaller in the ADSC group than in the control group on days 3, 7, and 14 after surgery (p<0.05). After 14 days, the blood vessel density in the wound increased by 1.6-fold in the ADSC group compared with that in the control group (p<0.01). Real-time RT-PCR results showed higher Fgfb and Vegf expression levels at all time points, and higher Tgfb1 and Tgfb3 expression levels until 14 days after surgery in the ADSC group than in the control group (p<0.05). CONCLUSIONS In wounds with exposed bone, autogenic ADSCs can promote vascularization and wound healing. Use of this cell source has multiple benefits, including convenient clinical application and lack of ethical concerns.
Collapse
Affiliation(s)
- Tomo Hamada
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hidenori Matsubara
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- * E-mail:
| | - Yasuhisa Yoshida
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shuhei Ugaji
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Issei Nomura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|