1
|
Nishimura R, Kutsuna T, Kinoshita T, Kono K, Mashima N, Takao M. Immune-related Adverse Event with Checkpoint Inhibitors Might Be an Emerging Underlying Disease of Steroid-related Osteonecrosis of the Femoral Head: A Case Report. J Orthop Case Rep 2024; 14:36-41. [PMID: 39157500 PMCID: PMC11327667 DOI: 10.13107/jocr.2024.v14.i08.4638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/14/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Immune checkpoint inhibitors (ICIs) are increasingly being used in the treatment of advanced metastatic and immunogenic cancers. However, these therapies could cause immune-related adverse events (irAEs), which require high-dose glucocorticoid administration. Case Report A 52-year-old man with metastatic renal cell carcinoma received ICI therapy. Two weeks later, he suffered from severe irAEs and received glucocorticoid therapy for 13 months. Twenty-one months after the initiation of glucocorticoid administration, he presented to us with bilateral hip pain and was diagnosed with bilateral osteonecrosis of the femoral head (ONFH). Conclusion IrAEs associated with ICI therapy might be an emerging underlying disease of ONFH.
Collapse
Affiliation(s)
- Ryosuke Nishimura
- Department of Orthopaedic Surgery, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Tatsuhiko Kutsuna
- Department of Orthopaedic Surgery, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Tomofumi Kinoshita
- Department of Orthopaedic Surgery, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Kohei Kono
- Department of Orthopaedic Surgery, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Naohiko Mashima
- Department of Orthopaedic Surgery, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Masaki Takao
- Department of Orthopaedic Surgery, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
2
|
Guo Y, Li W, Cao Y, Feng X, Shen C, Gong S, Hou F, Yang Z, Chen X, Song J. Analysis of the potential biological mechanisms of Danyu Gukang Pill against osteonecrosis of the femoral head based on network pharmacology. BMC Complement Med Ther 2023; 23:28. [PMID: 36721211 PMCID: PMC9887900 DOI: 10.1186/s12906-023-03843-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/12/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Osteonecrosis of the femoral head (ONFH) is still a challenge for orthopedists worldwide and can lead to disability if patients are not treated effectively. Danyu Gukang Pill (DGP), a traditional Chinese medicine (TCM) formulation, is recognized to be effective against ONFH. Nevertheless, its molecular mechanisms remain to be clarified. METHODS The active ingredients of DGP were collected from the online databases according to oral bioavailability (OB) and drug-likeness (DL). The potential targets of DGP were retrieved from the TCMSP database, while the potential targets of ONFH were obtained from the GeneCards and NCBI databases. The functions and signaling pathways of the common targets of DGP and ONFH were enriched by GO and KEGG analyses. Subsequently, molecular docking and in vitro cell experiments were performed to further validate our findings. RESULTS In total, 244 active ingredients of DGP and their corresponding 317 targets were obtained, and 40 ONFH-related targets were predicted. Afterwards, 19 common targets of DGP and ONFH were obtained and used as potential targets for the treatment of ONFH. Finally, combined with network pharmacology analysis, molecular docking and in vitro cell experiments, our study first demonstrated that the treatment effect of DGP on ONFH might be closely related to the two targets, HIF1A (HIF-1α) and VEGFA, and the HIF-1 signaling pathway. CONCLUSIONS This study is the first to investigate the molecular mechanisms of DGP in the treatment of ONFH based on network pharmacology. The results showed that DGP might up-regulate the expression of HIF-1α and VEGFA by participating in the HIF-1 signaling pathway, thus playing an anti-ONFH role.
Collapse
Affiliation(s)
- Yongchang Guo
- Department of Orthopedics, Zhengzhou Traditional Chinese Hospital of Orthopaedics, Zhengzhou, 450000 Henan China
| | - Wenxi Li
- Department of Pharmacy, Zhengzhou Traditional Chinese Hospital of Orthopaedics, Zhengzhou, 450000 Henan China
| | - Yuju Cao
- Department of Orthopedics, Zhengzhou Traditional Chinese Hospital of Orthopaedics, Zhengzhou, 450000 Henan China
| | - Xiaoyan Feng
- Department of Orthopedics, Zhengzhou Traditional Chinese Hospital of Orthopaedics, Zhengzhou, 450000 Henan China
| | - Caihong Shen
- Department of Pharmacy, Zhengzhou Traditional Chinese Hospital of Orthopaedics, Zhengzhou, 450000 Henan China
| | - Shunguo Gong
- Department of Orthopedics, Zhengzhou Traditional Chinese Hospital of Orthopaedics, Zhengzhou, 450000 Henan China
| | - Fengzhi Hou
- Department of Orthopedics, Zhengzhou Traditional Chinese Hospital of Orthopaedics, Zhengzhou, 450000 Henan China
| | - Zhimin Yang
- Department of Orthopedics, Zhengzhou Traditional Chinese Hospital of Orthopaedics, Zhengzhou, 450000 Henan China
| | - Xifeng Chen
- Department of Orthopedics, Zhengzhou Traditional Chinese Hospital of Orthopaedics, Zhengzhou, 450000 Henan China
| | - Jingbo Song
- Department of Orthopedics, Zhengzhou Traditional Chinese Hospital of Orthopaedics, Zhengzhou, 450000 Henan China
| |
Collapse
|
3
|
Che Z, Song Y, Zhu L, Liu T, Li X, Huang L. Emerging roles of growth factors in osteonecrosis of the femoral head. Front Genet 2022; 13:1037190. [PMID: 36452155 PMCID: PMC9702520 DOI: 10.3389/fgene.2022.1037190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/24/2022] [Indexed: 12/20/2023] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a potentially disabling orthopedic condition that requires total hip arthroplasty in most late-stage cases. However, mechanisms underlying the development of ONFH remain unknown, and the therapeutic strategies remain limited. Growth factors play a crucial role in different physiological processes, including cell proliferation, invasion, metabolism, apoptosis, and stem cell differentiation. Recent studies have reported that polymorphisms of growth factor-related genes are involved in the pathogenesis of ONFH. Tissue and genetic engineering are attractive strategies for treating early-stage ONFH. In this review, we summarized dysregulated growth factor-related genes and their role in the occurrence and development of ONFH. In addition, we discussed their potential clinical applications in tissue and genetic engineering for the treatment of ONFH.
Collapse
Affiliation(s)
- Zhenjia Che
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yang Song
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Liwei Zhu
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Tengyue Liu
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xudong Li
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Lanfeng Huang
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Kumar P, Rathod PM, Aggarwal S, Patel S, Kumar V, Jindal K. Association of Specific Genetic Polymorphisms with Atraumatic Osteonecrosis of the Femoral Head: A Narrative Review. Indian J Orthop 2022; 56:771-784. [PMID: 35547337 PMCID: PMC9043172 DOI: 10.1007/s43465-021-00583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/25/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Atraumatic ONFH is one of the leading cause of hip morbidity in the working-age group. It is a multi-factorial disease whose root cause can be attributed to single-nucleotide polymorphism. Identifying such polymorphisms could pave the way for new modalities of treatment for ONFH. METHODOLOGY Two databases were electronically searched for relevant articles. The articles were screened through titles, abstract and full texts to include the relevant studies. A secondary search was done through the reference list of selected articles. RESULTS A total of 52 studies were included among the 181 hits. All 181 were case-control studies. Summary of these studies identifies multiple SNPs which can cause ONFH. There were 117 SNPs in all 181 studies, of which 92 were associated with the causation of ONFH and 25 were protective against ONFH. CONCLUSION SNPs play an essential role in causing atraumatic ONFH. Identification of SNP that contribute to causing ONFH may help reduce the disease burden by early identification, diagnosis and treatment, including targeted gene therapy.
Collapse
Affiliation(s)
- Prasoon Kumar
- Department of Orthopaedics, PGIMER, Chandigarh, 160012 India
| | | | - Sameer Aggarwal
- Department of Orthopaedics, PGIMER, Chandigarh, 160012 India
| | - Sandeep Patel
- Department of Orthopaedics, PGIMER, Chandigarh, 160012 India
| | - Vishal Kumar
- Department of Orthopaedics, PGIMER, Chandigarh, 160012 India
| | - Karan Jindal
- Department of Orthopaedics, PGIMER, Chandigarh, 160012 India
| |
Collapse
|
5
|
Suetsugu H, Kim K, Yamamoto T, Bang SY, Sakamoto Y, Shin JM, Sugano N, Kim JS, Mukai M, Lee YK, Ohmura K, Park DJ, Takahashi D, Ahn GY, Karino K, Kwon YC, Miyamura T, Kim J, Nakamura J, Motomura G, Kuroda T, Niiro H, Miyamoto T, Takeuchi T, Ikari K, Amano K, Tada Y, Yamaji K, Shimizu M, Atsumi T, Seki T, Tanaka Y, Kubo T, Hisada R, Yoshioka T, Yamazaki M, Kabata T, Kajino T, Ohta Y, Okawa T, Naito Y, Kaneuji A, Yasunaga Y, Ohzono K, Tomizuka K, Koido M, Matsuda K, Okada Y, Suzuki A, Kim BJ, Kochi Y, Lee HS, Ikegawa S, Bae SC, Terao C. Novel susceptibility loci for steroid-associated osteonecrosis of the femoral head in systemic lupus erythematosus. Hum Mol Genet 2021; 31:1082-1095. [PMID: 34850884 DOI: 10.1093/hmg/ddab306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Osteonecrosis of the femoral head (ONFH) involves necrosis of bone and bone marrow of the femoral head caused by ischemia with unknown etiology. Previous genetic studies on ONFH failed to produce consistent results, presumably because ONFH has various causes with different genetic backgrounds and the underlying diseases confounded the associations. Steroid-associated ONFH (S-ONFH) accounts for one-half of all ONFH, and systemic lupus erythematosus (SLE) is a representative disease underlying S-ONFH. We performed a genome-wide association study (GWAS) to identify genetic risk factors for S-ONFH in patients with SLE. METHODS We conducted a two-staged GWAS on 636 SLE patients with S-ONFH and 95 588 non-SLE controls. Among the novel loci identified, we determined S-ONFH specific loci by comparing allele frequencies between SLE patients without S-ONFH and non-SLE controls. We also used Korean datasets comprising 148 S-ONFH cases and 37 015 controls to assess overall significance. We evaluated the functional annotations of significant variants by in-silico analyses. RESULTS The Japanese GWAS identified four significant loci together with 12 known SLE susceptibility loci. The four significant variants showed comparable effect sizes on S-ONFH compared with SLE controls and non-SLE controls. Three of the four loci, MIR4293/MIR1265 (OR = 1.99, P-value = 1.1 × 10-9), TRIM49/NAALAD2 (OR = 1.65, P-value = 4.8 × 10-8) and MYO16 (OR = 3.91, P-value = 4.9 × 10-10), showed significant associations in the meta-analysis with Korean datasets. Bioinformatics analyses identified MIR4293, NAALAD2 and MYO16 as candidate causal genes. MIR4293 regulates a PPARG-related adipogenesis pathway relevant to S-ONFH. CONCLUSIONS We identified three novel susceptibility loci for S-ONFH in SLE.
Collapse
Affiliation(s)
- Hiroyuki Suetsugu
- Laboratory for Bone and Joint Diseases, RIKEN Center for Medical Sciences, Tokyo, Japan.,Laboratory for Statistical and Translational Genetics Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.,Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kwangwoo Kim
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| | - Takuaki Yamamoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea.,Hanyang University Institute for Rheumatology Research, Seoul, Korea
| | | | - Jung-Min Shin
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Nobuhiko Sugano
- Department of Orthopaedic Medical Engineering, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ji Soong Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Masaya Mukai
- Department of Rheumatology & Clinical Immunology, Sapporo City General Hospital, Hokkaido, Japan
| | - Yeon-Kyung Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Koichiro Ohmura
- Department of Rheumatology and Clinical immunology, Kyoto University Graduate school of Medicine
| | - Dae Jin Park
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Daisuke Takahashi
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Ga-Young Ahn
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Kohei Karino
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Young-Chang Kwon
- Hanyang University Institute for Rheumatology Research, Seoul, Korea
| | - Tomoya Miyamura
- Department of Internal Medicine and Rheumatology, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Jihye Kim
- Hanyang University Institute for Rheumatology Research, Seoul, Korea
| | - Junichi Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Goro Motomura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Kuroda
- Niigata University Health Administration Center, Niigata, Japan
| | - Hiroaki Niiro
- Department of Medical Education, Kyushu University Graduate School of Medical Sciences
| | - Takeshi Miyamoto
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Katsunori Ikari
- Institute of Rheumatology, Tokyo Women's Medical University, Tokyo, Japan
| | - Koichi Amano
- Departmentof Rheumatology & Clinical Immunology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Yoshifumi Tada
- Department of Rheumatology, Faculty of Medicine, Saga University, Saga, Japan
| | - Ken Yamaji
- Juntendo University School of Medicine, Department of Internal Medicine and Rheumatology, Tokyo, Japan
| | - Masato Shimizu
- Hokkaido Medical Center for Rheumatic Diseases, Hokkaido, Japan
| | - Takashi Atsumi
- Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Taisuke Seki
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, University of Occupational and Environmental Health, School of Medicine, Fukuoka, Japan
| | - Toshikazu Kubo
- Graduate School of Medical Science Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Tomokazu Yoshioka
- Division of Regenerative Medicine for Musculoskeletal System, Faculty of Medicine, Univertsity of Tsukuba, Ibaraki, Japan
| | | | - Tamon Kabata
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tomomichi Kajino
- Tonan hospital, Department of orhopaedic surgery, Hokkaido, Japan
| | - Yoichi Ohta
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Okawa
- Orthopedis and Joint Surgery Center, Kurume Univ. Medical Center, Fukuoka, Japan
| | - Yohei Naito
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Ayumi Kaneuji
- Department of Orthopaedic Surgery, Kanazawa Medical University, Ishikawa, Japan
| | - Yuji Yasunaga
- Hiroshima Prefectural Rehabilitation Center, Hiroshima, Japan
| | - Kenji Ohzono
- Department of Orthopaedic Surgery, Amagasaki Chuo Hospital, Hyogo, Japan
| | - Kohei Tomizuka
- Laboratory for Statistical and Translational Genetics Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Masaru Koido
- Laboratory for Statistical and Translational Genetics Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.,Division of Molecular Pathology, Department of Cancer Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koichi Matsuda
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan.,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPi-iFReC), Osaka University, Osaka, Japan
| | - Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Bong-Jo Kim
- Division of Genome Research, Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Cheongju, Korea
| | - Yuta Kochi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hye-Soon Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea.,Hanyang University Institute for Rheumatology Research, Seoul, Korea
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Medical Sciences, Tokyo, Japan
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea.,Hanyang University Institute for Rheumatology Research, Seoul, Korea
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.,Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan.,The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
6
|
A Network Pharmacology and Molecular Docking Strategy to Explore Potential Targets and Mechanisms Underlying the Effect of Curcumin on Osteonecrosis of the Femoral Head in Systemic Lupus Erythematosus. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5538643. [PMID: 34557547 PMCID: PMC8455200 DOI: 10.1155/2021/5538643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/06/2021] [Indexed: 11/25/2022]
Abstract
Background Systemic lupus erythematosus (SLE) is a refractory immune disease, which is often complicated with osteonecrosis of the femoral head (ONFH). Curcumin, the most active ingredient of Curcuma longa with a variety of biological activities, has wide effects on the body system. The study is aimed at exploring the potential therapeutic targets underlying the effect of curcumin on SLE-ONFH by utilizing a network pharmacology approach and molecular docking strategy. Methods Curcumin and its drug targets were identified using network analysis. First, the Swiss target prediction, GeneCards, and OMIM databases were mined for information relevant to the prediction of curcumin targets and SLE-ONFH-related targets. Second, the curcumin target gene, SLE-ONFH shared gene, and curcumin-SLE-ONFH target gene networks were created in Cytoscape software followed by collecting the candidate targets of each component by R software. Third, the targets and enriched pathways were examined by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Eventually, a gene-pathway network was constructed and visualized by Cytoscape software; key potential central targets were verified and checked by molecular docking and literature review. Results 201 potential targets of curcumin and 170 related targets involved in SLE-ONFH were subjected to network analysis, and the 36 intersection targets indicated the potential targets of curcumin for the treatment of SLE-ONFH. Additionally, for getting more comprehensive and accurate candidate genes, the 36 potential targets were determined to be analyzed by network topology and 285 candidate genes were obtained finally. The top 20 biological processes, cellular components, and molecular functions were identified, when corrected by a P value ≤ 0.05. 20 related signaling pathways were identified by KEGG analysis, when corrected according to a Bonferroni P value ≤ 0.05. Molecular docking showed that the top three genes (TP53, IL6, VEGFA) have good binding force with curcumin; combined with literature review, some other genes such as TNF, CCND1, CASP3, and MMP9 were also identified. Conclusion The present study explored the potential targets and signaling pathways of curcumin against SLE-ONFH, which could provide a better understanding of its effects in terms of regulating cell cycle, angiogenesis, immunosuppression, inflammation, and bone destruction.
Collapse
|
7
|
Sun M, Cao Y, Wang T, Liu T, An F, Wu H, Wang J. Association between LINC-PINT and LINC00599 gene polymorphism and the risk of steroid-induced osteonecrosis of the femoral head in the population of northern China. Steroids 2021; 173:108886. [PMID: 34245766 DOI: 10.1016/j.steroids.2021.108886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/26/2021] [Accepted: 06/26/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND Steroid-induced osteonecrosis of the femoral head (ONFH) is a complex disease affected by genetics. LncRNA LINC-PINT and LINC00599 have been proved to be associated with susceptibility to a variety of diseases, however it is not clear whether they are related to steroid-induced ONFH. Therefore, this study was aimed at investigating the correlation between the polymorphisms of LINC-PINT and LINC00599 genes and steroid-induced ONFH in the population of northern China. METHODS A case-control study including 199 patients and 725 controls was designed. The Agena MassARRAY platform was used for the detection of single nucleotide polymorphisms (SNPs) in LINC-PINT and LINC00599 genes. Chi-square test and logistic regression were used to evaluate the association between the above SNPs and steroid-induced ONFH in allelic and genetic models. Besides, one-way ANOVA was used to study the relationship between these SNPs and partial lipid levels. RESULTS In the LINC00599 gene, two sites are related to steroid-induced ONFH. Among them, rs2272026 increased the risk of the disease in co-dominant (heterozygous) and dominant models. And rs1962430 is a risk factor for this disease in the allelic, co-dominance (heterozygous), dominant and additive model. whereas in women with steroid-induced ONFH, three sites in the LINC-PINT gene are related to the disease. Thereinto, rs157916 reduces the risk of the disease in allelic, co-dominant (homozygous), recessive and additive models. Rs16873842 is related to the reduced risk of the disease in allele, dominant and additive models. And rs7781295 is a protective factor for steroid-induced ONFH in the allelic and additive model. CONCLUSION Our study suggests that the polymorphisms of LINC-PINT and LINC00599 genes are related to the susceptibility of steroid-induced ONFH in Chinese Han population.
Collapse
Affiliation(s)
- Menghu Sun
- Department of Orthopedics and Traumatology, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, China; Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Yuju Cao
- Zhengzhou Traditional Chinese Medicine (TCM) Traumatology Hospital, Zhengzhou, Henan Province 450016, China
| | - Tiantian Wang
- Department of Orthopedics and Traumatology, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, China; Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Tingting Liu
- Department of Orthopedics and Traumatology, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, China; Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Feimeng An
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, Inner Mongolia 010110, China
| | - Huiqiang Wu
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, Inner Mongolia 010110, China.
| | - Jianzhong Wang
- Department of Orthopedics and Traumatology, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, China.
| |
Collapse
|
8
|
Sun M, Cao Y, Yang X, An F, Wu H, Wang J. DNA methylation in the OPG/RANK/RANKL pathway is associated with steroid-induced osteonecrosis of the femoral head. BMC Musculoskelet Disord 2021; 22:599. [PMID: 34187427 PMCID: PMC8240366 DOI: 10.1186/s12891-021-04472-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 06/10/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Dysregulation of the OPG/RANK/RANKL signalling pathway is a key step in the occurrence of steroid-induced osteonecrosis of the femoral head (ONFH). This study aims to understand the degree of methylation of the OPG, RANK, and RANKL genes in steroid-related ONFH. METHODS A case-control study was designed, including 50 patients (25 males and 25 females) and 50 matched controls. The European Molecular Biology Open Software Suite (EMBOSS) was used to predict the existence and location of CpG islands in the OPG, RANK, and RANKL genes. The Agena MassARRAY platform was used to detect the methylation status of the above genes in the blood of subjects. The relationship between the methylation level of CpG sites in each gene and steroid-related ONFH was analysed by the chi-square test, logistic regression analysis, and other statistical methods. RESULTS In the CpG islands of the OPG, RANK, and RANKL genes in patients with steroid-related ONFH, several CpG sites with high methylation rates and high methylation levels were found. Some hypermethylated CpG sites increase the risk of steroid-related ONFH. In addition, a few hypermethylated CpG sites have predictive value for the early diagnosis of steroid-related ONFH. CONCLUSION Methylation of certain sites in the OPG/RANK/RANKL signalling pathway increases the risk of steroid-related ONFH. Some hypermethylated CpG sites may be used as early prediction and diagnostic targets for steroid-related ONFH.
Collapse
Affiliation(s)
- Menghu Sun
- Department of Orthopedics and Traumatology, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, Inner Mongolia, China
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Yuju Cao
- Zhengzhou Traditional Chinese Medicine (TCM) Traumatology Hospital, Zhengzhou, 450016, Henan Province, China
| | - Xiaolong Yang
- Department of Orthopedics and Traumatology, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, Inner Mongolia, China
| | - Feimeng An
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010110, Inner Mongolia, China
| | - Huiqiang Wu
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010110, Inner Mongolia, China
| | - Jianzhong Wang
- Department of Orthopedics and Traumatology, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, Inner Mongolia, China.
| |
Collapse
|
9
|
Yin BH, Chen HC, Zhang W, Li TZ, Gao QM, Liu JW. Effects of hypoxia environment on osteonecrosis of the femoral head in Sprague-Dawley rats. J Bone Miner Metab 2020; 38:780-793. [PMID: 32533328 DOI: 10.1007/s00774-020-01114-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Osteonecrosis of the femoral head (ONFH) is a disease in which the blood supply of the femoral head is interrupted or damaged, resulting in joint dysfunction. Hypoxic environments increase the expression of EPO, VEGF, and HIF causes vascular proliferation and increases the blood supply. It also causes the organism to be in a state of hypercoagulability and increases thrombosis. Therefore, the purpose of this study was to explore the occurrence of ONFH after the use of glucocorticoids (GCs) under conditions of hypoxia tolerance for a long time. MATERIALS AND METHODS Sprague-Dawley rats were fed in a hypobaric hypoxic chamber at an altitude of 4000 m, the whole blood viscosity, and plasma viscosity were determined to analyze the blood flow and hemagglutination. Western blotting, polymerase chain reaction, and immunohistochemistry were used to detect EPO, VEGF, CD31, and osteogenesis related proteins. Femoral head angiography was used to examine the local blood supply and micro-CT scanning was used to detect the structure of the bone trabecula. RESULTS Under hypoxic environments, the expression of EPO and VEGF increased, which increased the local blood supply of the femoral head, but due to more severe thrombosis, the local blood supply of the femoral head decreased. CONCLUSIONS Hypoxic environments can aggravate ONFH in SD rats; this aggravation may be related to the hypercoagulable state of the blood. We suggest that long-term hypoxia should be regarded as one of the risk factors of ONFH and we need to conduct a more extensive epidemiological investigation on the occurrence of ONFH in hypoxic populations.
Collapse
Affiliation(s)
- Bo-Hao Yin
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Hong-Chi Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Wei Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China.
| | - Tan-Zhu Li
- Department of Orthopedic Surgery, Xigaze People's Hospital, 5 Shanghai Road, Xigazê, Tibet Autonomous Region, People's Republic of China
| | - Qiu-Ming Gao
- Department of Orthopedic Surgery, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, Gansu, People's Republic of China
| | - Jing-Wen Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| |
Collapse
|
10
|
Mechanisms and Molecular Targets of the Tao-Hong-Si-Wu-Tang Formula for Treatment of Osteonecrosis of Femoral Head: A Network Pharmacology Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7130105. [PMID: 32963569 PMCID: PMC7499271 DOI: 10.1155/2020/7130105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 01/11/2023]
Abstract
The Tao-Hong-Si-Wu-Tang (THSWT) formula, a classic prescription of traditional Chinese medicine, has long been used for the treatment of osteonecrosis of femoral head (ONFH). However, its mechanisms of action and molecular targets are not comprehensively clear. In the present study, the Traditional Chinese Medicine System Pharmacology (TCMSP) database was employed to retrieve the active compounds of each herb included in the THSWT formula. After identifying the drug targets of active compounds and disease targets of ONFH, intersection analysis was conducted to screen out the shared targets. The protein-protein network of the shared targets was built for further topological analysis. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis were then carried out. A gene pathway network was constructed to screen the core target genes. We identified 61 active compounds, 155 drug targets, and 5443 disease targets. However, intersection analysis only screened out 37 shared targets. Kaempferol, luteolin, and baicalein regulated the greatest number of targets associated with ONFH. The THSWT formula may regulate osteocyte function through specific biological processes, including responses to toxic substances and oxidative stress. The regulated pathways included the relaxin, focal adhesion, nuclear factor-κB, toll-like receptor, and AGE/RAGE signaling pathways. RELA, VEGFA, and STAT1 were the important target genes in the gene network associated with the THSWT formula for the treatment of ONFH. Therefore, the present study suggested that the THSWT formula has an action mechanism involving multiple compounds and network targets for the treatment of ONFH.
Collapse
|
11
|
An F, Zhang L, Gao H, Wang J, Liu C, Tian Y, Ma C, Zhao J, Wang K, Wang J. Variants in RETN gene are associated with steroid-induced osteonecrosis of the femoral head risk among Han Chinese people. J Orthop Surg Res 2020; 15:96. [PMID: 32143662 PMCID: PMC7060642 DOI: 10.1186/s13018-020-1557-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Background Gene polymorphism has an important influence on RETN gene expression level, and the increased level of resistin encoded in RETN will lead to metabolic disorder, especially lipid metabolism. Moreover, steroid-induced osteonecrosis of the femoral head (steroid-induced ONFH) is closely related to lipid metabolism level, so this study is intended to explore the relationship of RETN polymorphisms with susceptibility to steroid-induced ONFH in the Chinese Han population. Methods In this case-control study, eight single-nucleotide polymorphisms (SNPs) of RETN were genotyped by the Agena MassARRAY system in 199 steroid-induced ONFH patients and 200 healthy controls. The relationship between RETN polymorphisms and steroid-induced ONFH risk was assessed using genetic models and haplotype analyses. Odds ratio (OR) and 95% confidence intervals (CIs) were obtained by logistic regression adjusted for age. Results We found significant differences in the distribution of HDL-C, TG/HDL-C, and LDL-C/HDL-C between the patients and the control group (p < 0.05). In allele model and genotype model analysis, rs34861192, rs3219175, rs3745368, and rs1477341 could reduce the risk of steroid-induced ONFH. Further stratified analysis showed that rs3745367 was related to the clinical stage of patients, and rs1477341 was significantly correlated with an increased TG level and a decreased TC/HDL-C level. The linkage analysis showed that two SNPs (rs34861192 and rs3219175) in RETN even significant linkage disequilibrium. Conclusions Our results provide the firstly evidence that RETN gene polymorphisms were associated with a reduced risk of steroid-induced ONFH in Chinese Han population.
Collapse
Affiliation(s)
- Feimeng An
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China.,Department of Trauma Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, Inner Mongolia, China
| | - Litian Zhang
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China.,Department of Trauma Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, Inner Mongolia, China
| | - Hongyan Gao
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China.,Department of Trauma Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, Inner Mongolia, China
| | - Jiaqi Wang
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China.,Department of Trauma Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, Inner Mongolia, China
| | - Chang Liu
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China.,Department of Trauma Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, Inner Mongolia, China
| | - Ye Tian
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China.,Department of Trauma Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, Inner Mongolia, China
| | - Chao Ma
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China.,Department of Trauma Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, Inner Mongolia, China
| | - Jian Zhao
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China.,Department of Trauma Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, Inner Mongolia, China
| | - Kunzheng Wang
- The Second Affiliated Hospital of Xi'an Jiaotong University, #157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, China.
| | - Jianzhong Wang
- Department of Trauma Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, Inner Mongolia, China.
| |
Collapse
|
12
|
Vascular endothelial growth factor polymorphism rs2010963 status does not affect patent ductus arteriosus incidence or cyclooxygenase inhibitor treatment success in preterm infants. Cardiol Young 2019; 29:893-897. [PMID: 31218973 DOI: 10.1017/s1047951119001033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Vascular endothelial growth factor is critically involved in ductus arteriosus closure. Polymorphisms in the vascular endothelial growth factor gene have been associated with several diseases in neonates and adults. AIM Herein, we investigated if vascular endothelial growth factor polymorphism rs2010963 status is associated with patent ductus arteriosus incidence and/or pharmacological treatment success. METHODS We assessed rs2010963 status in 814 preterm infants (<1500 g birth weight) by means of restriction fragment length polymorphism analysis. DNA samples were obtained from dry-spot cards used for the German national newborn screening program. Clinical data were obtained by retrospective chart review. RESULTS We could not find any statistically significant difference in the incidence of patent ductus arteriosus depending on vascular endothelial growth factor rs2010963 polymorphism status. Furthermore, no statistically significant associations between vascular endothelial growth factor polymorphism rs2010963 status and cyclooxygenase inhibitor treatment success were observed. CONCLUSION Our results indicate that there is no association between vascular endothelial growth factor polymorphism rs2010963 status and the occurrence of patent ductus arteriosus or the response to cyclooxygenase inhibitor treatment in a large cohort of preterm infants. Additional studies are needed to determine the role of genetic factors on patent ductus arteriosus incidence and treatment response.
Collapse
|