1
|
Dong H, Huang D, Zhang J, Xu D, Jiao X, Wang W. Exploring the innate immune system of Urechis unicinctus: Insights from full-length transcriptome analysis. Gene 2024; 928:148784. [PMID: 39047957 DOI: 10.1016/j.gene.2024.148784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The Echiura worm Urechis unicinctus refers to a common benthic invertebrate found in the intertidal zone of Huanghai as well as Bohai Bay. U. unicinctus is known to contain various physiologically active substances, making it highly valuable in terms of its edibility, medicinal properties, and economic potential. Nonetheless, the limited study on the immune system of U. unicinctus poses difficulties for its aquaculture and artificial reproduction. Marine invertebrates, including shellfish and U. unicinctus, are thought to primarily depend on their innate immune system for disease protection, owing to the severalinnate immune molecules they possess. Herein, we employed PacBio single-molecule real-time (SMRT) sequencing technology to perform the full-length transcriptome analysis of U. unicinctus individuals under five different conditions (room temperature (RT), low temperature (LT), high temperature (HT), without water (DRY), ultraviolet irradiation (UV)). Concequently, we identified 59,371 unigenes that had a 2,779 bp average length, 2,613 long non-coding RNAs (lncRNAs), 59,190 coding sequences (CDSs), 35,166 simple sequence repeats (SSRs), and 1,733 transcription factors (TFs), successfully annotating 90.58 % (53,778) of the unigenes. Subsequently, key factors associated with immune-related processes, such as non-self-recognition, cellular immune defenses, and humoral immune defenses, were searched. Our study also identified pattern recognition receptors (PRRs) that included 17 peptidoglycan recognition proteins (PGRPs), 13 Gram-negative binding proteins (GNBPs), 18 scavenger receptors (SRs), 74 toll-like receptors (TLRs), and 89 C-type lectins (CLTs). Altogether, the high-quality transcriptome obtained data will offer valuable insights for further investigations into U. unicinctus innate immune response, laying the foundation for subsequent molecular biology studies and aquaculture.
Collapse
Affiliation(s)
- Haomiao Dong
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Huang
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jian Zhang
- School of Ocean, Yantai University, Yantai 264005, China
| | - Dong Xu
- Shandong Blue Ocean Technology Co., Ltd, Yantai 261400, China
| | - Xudong Jiao
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weizhong Wang
- Shandong Blue Ocean Technology Co., Ltd, Yantai 261400, China.
| |
Collapse
|
2
|
Bhassu S, Shama M, Tiruvayipati S, Soo TCC, Ahmed N, Yusoff K. Microbes and pathogens associated with shrimps - implications and review of possible control strategies. FRONTIERS IN MARINE SCIENCE 2024; 11:1397708. [PMID: 39498300 PMCID: PMC11534305 DOI: 10.3389/fmars.2024.1397708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Shrimp aquaculture has been growing rapidly over the last three decades. However, high-density aquaculture together with environmental degradation has led to increased incidence of shrimp infections. Thus, devising and implementing effective strategies to predict, diagnose and control the spread of infections of shrimps are crucial, also to ensure biosecurity and sustainability of the food industry. With the recent advancements in biotechnology, more attention has been given to develop novel promising therapeutic tools with potential to prevent disease occurrence and better manage shrimp health. Furthermore, owing to the advent of the next-generation sequencing (NGS) platforms, it has become possible to analyze the genetic basis of susceptibility or resistance of different stocks of shrimps to infections and how sustainable aquaculture could be made free of shrimp diseases.
Collapse
Affiliation(s)
- Subha Bhassu
- Animal Genetics and Genome Evolutionary Lab (AGAGEL), Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
- Malaysian Genome Vaccine Institute, National Institute Biotechnology Malaysia, Bangi, Selangor, Malaysia
| | - Maryam Shama
- Animal Genetics and Genome Evolutionary Lab (AGAGEL), Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Suma Tiruvayipati
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tze Chiew Christie Soo
- Animal Genetics and Genome Evolutionary Lab (AGAGEL), Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Niyaz Ahmed
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, India
| | - Khatijah Yusoff
- Malaysian Genome Vaccine Institute, National Institute Biotechnology Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
3
|
Chen M, Wang Z, He H, He W, Zhang Z, Sun S, Wang W. Multi-Omics Analysis Reveals the Regulatory Mechanism of Different Probiotics on Growth Performance and Intestinal Health of Salmo trutta ( S. trutta). Microorganisms 2024; 12:1410. [PMID: 39065178 PMCID: PMC11278557 DOI: 10.3390/microorganisms12071410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Probiotics play an important role in animal production, providing health benefits to the host by improving intestinal microbial balance. In this study, we added three different probiotics, Saccharomyces cerevisiae (SC), Bacillus licheniformis (BL), and lactic acid bacteria (LAB), and compared them with the control group (CON), to investigate the effects of probiotic supplementation on growth performance, gut microbiology, and gut flora of S. trutta. Our results showed that feeding probiotics improved the survival, growth, development, and fattening of S. trutta. Additionally, probiotic treatment causes changes in the gut probiotic community, and the gut flora microorganisms that cause significant changes vary among the probiotic treatments. However, in all three groups, the abundance of Pseudomonas, Acinetobacter, and Rhizophagus bacterial genera was similar to that in the top three comparative controls. Furthermore, differences in the composition of intestinal microbiota among feed types were directly associated with significant changes in the metabolomic landscape, including lipids and lipid-like molecules, organic acids and derivatives, and organoheterocyclic compounds. The probiotic treatment altered the gut microbiome, gut metabolome, and growth performance of S. trutta. Using a multi-omics approach, we discovered that the addition of probiotics altered the composition of gut microbiota, potentially leading to modifications in gut function and host phenotype. Overall, our results highlight the importance of probiotics as a key factor in animal health and productivity, enabling us to better evaluate the functional potential of probiotics.
Collapse
Affiliation(s)
- Mengjuan Chen
- Institute of Fisheries Science, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China; (M.C.); (Z.W.); (H.H.); (W.H.); (Z.Z.); (S.S.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhitong Wang
- Institute of Fisheries Science, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China; (M.C.); (Z.W.); (H.H.); (W.H.); (Z.Z.); (S.S.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Hui He
- Institute of Fisheries Science, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China; (M.C.); (Z.W.); (H.H.); (W.H.); (Z.Z.); (S.S.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Wenjia He
- Institute of Fisheries Science, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China; (M.C.); (Z.W.); (H.H.); (W.H.); (Z.Z.); (S.S.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zihao Zhang
- Institute of Fisheries Science, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China; (M.C.); (Z.W.); (H.H.); (W.H.); (Z.Z.); (S.S.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Shuaijie Sun
- Institute of Fisheries Science, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China; (M.C.); (Z.W.); (H.H.); (W.H.); (Z.Z.); (S.S.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Wanliang Wang
- Institute of Fisheries Science, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China; (M.C.); (Z.W.); (H.H.); (W.H.); (Z.Z.); (S.S.)
- Indigenous Fish Breeding and Utilization Engineering Research Center of Xizang, Lhasa 850032, China
- Key Laboratory of Fishery and Germplasm Resources Utilization of Xizang Autonomous Region, Lhasa 850032, China
| |
Collapse
|
4
|
Yang YC, Chu PY, Chen CC, Yang WC, Hsu TH, Gong HY, Liao IC, Huang CW. Transcriptomic Insights and the Development of Microsatellite Markers to Assess Genetic Diversity in the Broodstock Management of Litopenaeus stylirostris. Animals (Basel) 2024; 14:1685. [PMID: 38891732 PMCID: PMC11171113 DOI: 10.3390/ani14111685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
The Pacific blue shrimp (Litopenaeus stylirostris) is a premium product in the international seafood market. However, intensified farming has increased disease incidence and reduced genetic diversity. In this study, we developed a transcriptome database for L. stylirostris and mined microsatellite markers to analyze their genetic diversity. Using the Illumina HiSeq 4000 platform, we identified 53,263 unigenes from muscle, hepatopancreas, the intestine, and lymphoid tissues. Microsatellite analysis identified 36,415 markers from 18,657 unigenes, predominantly dinucleotide repeats. Functional annotation highlighted key disease resistance pathways and enriched categories. The screening and PCR testing of 42 transcriptome-based and 58 literature-based markers identified 40 with successful amplification. The genotyping of 200 broodstock samples revealed that Na, Ho, He, PIC, and FIS values were 3, 0.54 ± 0.05, 0.43 ± 0.09, 0.41 ± 0.22, and 0.17 ± 0.27, respectively, indicating moderate genetic variability and significant inbreeding. Four universal microsatellite markers (CL1472.Contig13, CL517.Contig2, Unigene5692, and Unigene7147) were identified for precise diversity analysis in Pacific blue, Pacific white (Litopenaeus vannamei), and black tiger shrimps (Penaeus monodon). The transcriptome database supports the development of markers and functional gene analysis for selective breeding programs. Our findings underscore the need for an appropriate genetic management system to mitigate inbreeding depression, reduce disease susceptibility, and preserve genetic diversity in farmed shrimp populations.
Collapse
Affiliation(s)
- Ya-Chi Yang
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan; (Y.-C.Y.); (P.-Y.C.); (C.-C.C.); (T.-H.H.); (H.-Y.G.)
| | - Pei-Yun Chu
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan; (Y.-C.Y.); (P.-Y.C.); (C.-C.C.); (T.-H.H.); (H.-Y.G.)
| | - Che-Chun Chen
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan; (Y.-C.Y.); (P.-Y.C.); (C.-C.C.); (T.-H.H.); (H.-Y.G.)
| | - Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Academia Sinica Road, Sec. 2, Nankang, Taipei 11529, Taiwan;
| | - Te-Hua Hsu
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan; (Y.-C.Y.); (P.-Y.C.); (C.-C.C.); (T.-H.H.); (H.-Y.G.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan;
| | - Hong-Yi Gong
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan; (Y.-C.Y.); (P.-Y.C.); (C.-C.C.); (T.-H.H.); (H.-Y.G.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan;
| | - I Chiu Liao
- Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan;
| | - Chang-Wen Huang
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan; (Y.-C.Y.); (P.-Y.C.); (C.-C.C.); (T.-H.H.); (H.-Y.G.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan;
| |
Collapse
|
5
|
Xing K, Li H, Wang X, Sun Y, Zhang J. A Full-Length Transcriptome and Analysis of the NHL-1 Gene Family in Neocaridina denticulata sinensis. BIOLOGY 2024; 13:366. [PMID: 38927246 PMCID: PMC11200715 DOI: 10.3390/biology13060366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Neocaridina denticulata sinensis has emerged as a promising model organism for basic studies in Decapod. However, the current transcriptome information on this species is based on next-generation sequencing technologies, which are limited by a short read length. Therefore, the present study aimed to generate a full-length transcriptome assembly of N. denticulata sinensis utilizing the PacBio Sequel Ⅱ platform. The resulting transcriptome assembly comprised 5831 transcripts with an N50 value of 3697 bp. Remarkably, 90.5% of these transcripts represented novel isoforms of known genes. The transcripts were further searched against the NR, SwissProt, KEGG, KOG, GO, NT, and Pfam databases. A total of 24.8% of the transcripts can be annotated across all seven databases. Additionally, 1236 alternative splicing events, 344 transcription factors, and 124 long non-coding RNAs (LncRNAs) were predicted. Based on the alternative splicing annotation results, a RING finger protein NHL-1 gene from N. denticulata sinensis (NdNHL-1) was identified. There are 15 transcripts in NdNHL-1. The longest transcript is 4995 bp in length and encodes a putative protein of 1665 amino acids. A phylogenetic analysis showed its close relationship with NHL-1 from other crustacean species. This report represents the full-length transcriptome of N. denticulata sinensis and will facilitate research on functional genomics and environmental adaptation in this species.
Collapse
Affiliation(s)
- Kefan Xing
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; (K.X.); (H.L.); (X.W.)
| | - Huimin Li
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; (K.X.); (H.L.); (X.W.)
| | - Xiongfei Wang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; (K.X.); (H.L.); (X.W.)
| | - Yuying Sun
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; (K.X.); (H.L.); (X.W.)
- Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Jiquan Zhang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; (K.X.); (H.L.); (X.W.)
- Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
6
|
Chen X, Peng M, Yang C, Li Q, Feng P, Zhu W, Zhang Y, Zeng D, Zhao Y. Genome-wide QTL and eQTL mapping reveal genes associated with growth rate trait of the Pacific white shrimp (Litopenaeus vannamei). BMC Genomics 2024; 25:414. [PMID: 38671371 PMCID: PMC11046935 DOI: 10.1186/s12864-024-10328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Growth rate is a crucial economic trait for farmed animals, but the genetic regulation of this trait is largely unknown in non-model organisms such as shrimp. RESULTS In this study, we performed genome-wide phenotypic quantitative trait loci (QTL) and expression quantitative trait loci (eQTL) mapping analyses to identify genes affecting the growth rate of Pacific white shrimp (Litopenaeus vannamei), which is the most commercially-farmed crustacean worldwide. We used RNA-sequencing of 268 individuals in a mapping population, and subsequently validated our findings through gene silencing and shrimp growth experiments. We constructed a high-density genetic linkage map comprising 5533 markers spanning 44 linkage groups, with a total distance of 6205.75 cM and an average marker interval of 1.12 cM. Our analyses identified 11 QTLs significantly correlated with growth rate, and 117,525 eQTLs. By integrating QTL and eQTL data, we identified a gene (metalloreductase STEAP4) highly associated with shrimp growth rate. RNA interference (RNAi) analysis and growth experiments confirmed that STEAP4 was significantly correlated with growth rate in L. vannamei. CONCLUSIONS Our results indicate that the comprehensive analysis of QTL and eQTL can effectively identify genes involved in complex animal traits. This is important for marker-assisted selection (MAS) of animals. Our work contributes to the development of shrimp breeding and available genetic resources.
Collapse
Affiliation(s)
- Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Min Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Chunling Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Qiangyong Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Pengfei Feng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Weilin Zhu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Yongde Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Digang Zeng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| |
Collapse
|
7
|
Bronchain O, Ducos B, Putzer H, Delagrange M, Laalami S, Philippe-Caraty L, Saroul K, Ciapa B. Natural antisense transcription of presenilin in sea urchin reveals a possible role for natural antisense transcription in the general control of gene expression during development. J Cell Sci 2023; 136:jcs261284. [PMID: 37345489 DOI: 10.1242/jcs.261284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023] Open
Abstract
One presenilin gene (PSEN) is expressed in the sea urchin embryo, in the vegetal pole of the gastrula and then mainly in cilia cells located around the digestive system of the pluteus, as we recently have reported. PSEN expression must be accurately regulated for correct execution of these two steps of development. While investigating PSEN expression changes in embryos after expansion of endoderm with LiCl or of ectoderm with Zn2+ by whole-mount in situ hybridization (WISH) and quantitative PCR (qPCR), we detected natural antisense transcription of PSEN. We then found that Endo16 and Wnt5, markers of endo-mesoderm, and of Hnf6 and Gsc, markers of ectoderm, are also sense and antisense transcribed. We discuss that general gene expression could depend on both sense and antisense transcription. This mechanism, together with the PSEN gene, should be included in gene regulatory networks (GRNs) that theorize diverse processes in this species. We suggest that it would also be relevant to investigate natural antisense transcription of PSEN in the field of Alzheimer's disease (AD) where the role of human PSEN1 and PSEN2 is well known.
Collapse
Affiliation(s)
- Odile Bronchain
- Paris-Saclay Institute of Neuroscience, CNRS, UMR CNRS 9197, Université Paris-Saclay, 75005 Paris, France
| | - Bertrand Ducos
- High Throughput qPCR Core Facility of the ENS, Université PSL, IBENS, Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Harald Putzer
- CNRS, Université Paris Cité, Expression Génétique Microbienne, IBPC, 75005 Paris, France
| | - Marine Delagrange
- High Throughput qPCR Core Facility of the ENS, Université PSL, IBENS, Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Soumaya Laalami
- CNRS, Université Paris Cité, Expression Génétique Microbienne, IBPC, 75005 Paris, France
| | - Laetitia Philippe-Caraty
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Krystel Saroul
- Institut CURIE, Université Paris-Saclay, INSERM U932, Immunité et Cancer, 91400 Orsay, France
| | - Brigitte Ciapa
- Paris-Saclay Institute of Neuroscience, CNRS, UMR CNRS 9197, Université Paris-Saclay, 75005 Paris, France
| |
Collapse
|
8
|
Cruz-Moreno DG, Valenzuela-Soto EM, Peregrino-Uriarte AB, Leyva-Carrillo L, Soñanez-Organis JG, Yepiz-Plascencia G. The pyruvate kinase of the whiteleg shrimp Litopenaeus vannamei: Gene structure and responses to short term hypoxia. Comp Biochem Physiol A Mol Integr Physiol 2023:111468. [PMID: 37355162 DOI: 10.1016/j.cbpa.2023.111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/29/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
The shrimp Litopenaeus vannamei is the main farmed crustaceans worldwide. This crustacean suffers environmental changes in oxygen availability that affect its energy metabolism. Pyruvate kinase (PK) catalyzes the last reaction of glycolysis and is key for the regulation of glycolysis and gluconeogenesis. There is ample knowledge about mammalian PK, but in crustaceans, the information is very scarce. In this study, we analyzed in silico the structures of the PK gene and protein. Also, the effects of hypoxia on gene expression, enzymatic activity, glucose, and lactate in hepatopancreas and muscle were analyzed. The PK gene is 15,103 bp and contains 11 exons and 10 introns, producing four mRNA variants by alternative splicing and named PK1, PK2, PK3 and PK4, and two proteins with longer C-terminus and two with a 12 bp insertion. The promoter contains putative binding sites for transcription factors (TF) that are typically involved in stress responses. The deduced amino acid sequences contain the classic domains, binding sites for allosteric effectors and potential reversible phosphorylation residues. Protein modeling indicates a homotetramer with highly conserved structure. The effect of hypoxia for 6 and 12 h showed tissue-specific patterns, with higher expression, enzyme activity and lactate in muscle, but higher glucose in hepatopancreas. Changes in response to hypoxia were detected at 12 h in expression with induction in muscle and reduction in hepatopancreas, while enzyme activity was maintained, and glucose and lactate decreased. These results show rapid changes in expression and metabolites, while enzyme activity was maintained to cope with short-term hypoxia.
Collapse
Affiliation(s)
- Dalia G Cruz-Moreno
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique, Astiazarán Rosas, No. 46, Col. La Victoria, CP. 83304 Hermosillo, Sonora, Mexico
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique, Astiazarán Rosas, No. 46, Col. La Victoria, CP. 83304 Hermosillo, Sonora, Mexico
| | - Alma B Peregrino-Uriarte
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique, Astiazarán Rosas, No. 46, Col. La Victoria, CP. 83304 Hermosillo, Sonora, Mexico
| | - Lilia Leyva-Carrillo
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique, Astiazarán Rosas, No. 46, Col. La Victoria, CP. 83304 Hermosillo, Sonora, Mexico
| | - Jose G Soñanez-Organis
- Universidad de Sonora Unidad Regional Sur, Departamento de Ciencias Químico-Biológicas y Agropecuarias, Navojoa, Sonora CP. 85880, Mexico
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique, Astiazarán Rosas, No. 46, Col. La Victoria, CP. 83304 Hermosillo, Sonora, Mexico.
| |
Collapse
|
9
|
Hou L, Wang M, Zhu L, Ning M, Bi J, Du J, Kong X, Gu W, Meng Q. Full-length transcriptome sequencing and comparative transcriptome analysis of Eriocheir sinensis in response to infection by the microsporidian Hepatospora eriocheir. Front Cell Infect Microbiol 2022; 12:997574. [PMID: 36530442 PMCID: PMC9754153 DOI: 10.3389/fcimb.2022.997574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022] Open
Abstract
As a new generation of high-throughput sequencing technology, PacBio Iso-Seq technology (Iso-Seq) provides a better alternative sequencing method for the acquisition of full-length unigenes. In this study, a total of 22.27 gigabyte (Gb) subread bases and 128,614 non-redundant unigenes (mean length: 2,324 bp) were obtained from six main tissues of Eriocheir sinensis including the heart, nerve, intestine, muscle, gills and hepatopancreas. In addition, 74,732 unigenes were mapped to at least one of the following databases: Non-Redundant Protein Sequence Database (NR), Gene Ontology (GO), Kyoto Encyclopaedia of Genes and Genomes (KEGG), KEGG Orthology (KO) and Protein family (Pfam). In addition, 6696 transcription factors (TFs), 28,458 long non-coding RNAs (lncRNAs) and 94,230 mRNA-miRNA pairs were identified. Hepatospora eriocheir is the primary pathogen of E. sinensis and can cause hepatopancreatic necrosis disease (HPND); the intestine is the main target tissue. Here, we attempted to identify the key genes related to H. eriocheir infection in the intestines of E. sinensis. By combining Iso-Seq and Illumina RNA-seq analysis, we identified a total of 12,708 differentially expressed unigenes (DEUs; 6,696 upregulated and 6,012 downregulated) in the crab intestine following infection with H. eriocheir. Based on the biological analysis of these DEUs, several key processes were identified, including energy metabolism-related pathways, cell apoptosis and innate immune-related pathways. Twelve selected genes from these DEUs were subsequently verified by quantitative real-time PCR (qRT-PCR) analysis. Our findings enhance our understanding of the E. sinensis transcriptome and the specific association between E. sinensis and H. eriocheir infection.
Collapse
Affiliation(s)
- Libo Hou
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
| | - Mengdi Wang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
| | - Mingxiao Ning
- Institution of Quality Standard and Testing Technology for Agro-product, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Jingxiu Bi
- Institution of Quality Standard and Testing Technology for Agro-product, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Jie Du
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu, China,*Correspondence: Qingguo Meng,
| |
Collapse
|
10
|
Zhang Y, Lou F, Chen J, Han Z, Yang T, Gao T, Song N. Single-molecule Real-time (SMRT) Sequencing Facilitates Transcriptome Research and Genome Annotation of the Fish Sillago sinica. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:1002-1013. [PMID: 36083383 DOI: 10.1007/s10126-022-10163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
As a newly described Sillaginidae species, Chinese sillago (Sillago sinica) needs a better understanding of gene annotation information. In this study, we reported the first full-length transcriptome data of S. sinica using the PacBio isoform sequencing Iso-seq and a description of transcriptome structure analysis. A total of 454,979 high-quality full-length transcripts were obtained by single-molecule real-time (SMRT) sequencing, which was corrected by Illumina sequencing data. After that, 66,948 non-redundant full-length transcripts were generated after mapping to the reference genome of S. sinica, including 49 fusion isoforms and 9,250 novel isoforms. 63,459 isoforms were successfully annotated by one of the Nr, Nt, SwissProt, Pfam, KOG, GO, and KEGG databases. Additionally, 30,987 alternative polyadenylation (APA) sites, 451,867 alternative splicing (AS) events, 21,928 long non-coding RNAs (lncRNAs) and 12,911 transcription factors (TFs) were identified. The full-length transcripts of S. sinica would provide a precious resource for characterizing the transcriptome of S. sinica and for the further study of gene function and regulatory mechanism of this species.
Collapse
Affiliation(s)
- Yuan Zhang
- Fishery College, Ocean University of China, Qingdao, 266003, China
| | - Fangrui Lou
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Jianwei Chen
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tianyan Yang
- Fishery College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Na Song
- Fishery College, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
11
|
Liu T, Liu Y, Fu G, Chen J, Lv T, Su D, Wang Y, Hu X, Su X, Harris AJ. Identification of genes involved in drought tolerance in seedlings of the desert grass, Psammochloa villosa (Poaceae), based on full-length isoform sequencing and de novo assembly from short reads. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153630. [PMID: 35193087 DOI: 10.1016/j.jplph.2022.153630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Psammochloa villosa is a perennial herbaceous plant that is dominant within arid regions of the Inner Mongolian Plateau and the Qinghai-Tibet Plateau in China, where it is an endemic species and exhibits strong drought tolerance and wind resistance. To study drought tolerance in P. villosa and determine its molecular basis, we simulated high and moderate drought stress in a controlled environment and then analyzed transcriptome sequences by combining long-read sequences from a representative, wild-grown individual with short reads from the treatment groups. We obtained 184,076 high-quality isoforms as a reference and 168,650 genes (91.6%), which we were able to annotate according to public databases. Ultimately, we obtained 119,005 unigenes representing the transcriptome of P. villosa under drought stress and, among these, we identified 3089 differentially expressed genes and 1484 transcription factors. Physiologically, P. villosa that was exposed to high and moderate drought stress had reduced germination rates and shorter buds but generated more chlorophyll, which is atypical under drought stress and possibly reflects an adaptation of these plants to their arid environment. We inferred that significantly upregulated genes were annotated as 'Chlorophyll a-b binding protein' and 'Light-harvesting chlorophyll-protein' among drought and control groups. Broadly, our analyses revealed that drought stress triggered many genome-level responses, especially related to mitigation of radical oxygen species (ROS), which increase in concentration under drought stress. In particular, in the high drought stress group compared with the control, GO enrichment analysis revealed a significant enrichment of upregulated genes (n = 10) involved in mitigation of oxidative stress. Similarly, using KEGG we found significant enrichment of genes in the phenylpropanoid biosynthesis pathway (11 genes), which yields phenols that scavenge ROS. We also inferred that many genes involved in metabolism of arginine and proline, which may serve as both scavengers of ROS and osmoprotectants that interact with stress response genes based on our protein-protein interaction network analysis. We verified the relative expression levels of eight genes associated with mitigation of ROS, DNA repair, and transmembrane transporter activity using qRT-PCR, and the results were consistent with our inferences from transcriptomes. This study provides insights into the genomic and physiological basis of drought tolerance in P. villosa and represents a resource for development of the species as a forage crop via molecular breeding within arid lands.
Collapse
Affiliation(s)
- Tao Liu
- School of Geography, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China
| | - Yuping Liu
- School of Life Sciences, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China
| | - Gui Fu
- School of Geography, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China
| | - Jinyuan Chen
- School of Life Sciences, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China
| | - Ting Lv
- School of Geography, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China
| | - Dandan Su
- School of Life Sciences, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China
| | - Yanan Wang
- School of Life Sciences, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China
| | - Xiayu Hu
- School of Life Sciences, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China
| | - Xu Su
- School of Life Sciences, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China; Academy of Plateau Science and Sustainability, Xueyuan Road, Xining, 810016, China; Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, No. 38 Wusixi Road, Xining, 810008, China; Key Laboratory of Education Ministry of Earth Surface Processes and Ecological Conservation of the Qinghai-Tibet Plateau, Qinghai Normal University, No. 38 Wusixi Road, Xining, Xining, 810008, China.
| | - A J Harris
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
12
|
Huang T, Gu W, Liu E, Zhang L, Dong F, He X, Jiao W, Li C, Wang B, Xu G. Screening and Validation of p38 MAPK Involved in Ovarian Development of Brachymystax lenok. Front Vet Sci 2022; 9:752521. [PMID: 35252414 PMCID: PMC8889577 DOI: 10.3389/fvets.2022.752521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
Brachymystax lenok (lenok) is a rare cold-water fish native to China that is of high meat quality. Its wild population has declined sharply in recent years, and therefore, exploring the molecular mechanisms underlying the development and reproduction of lenoks for the purposes of artificial breeding and genetic improvement is necessary. The lenok comparative transcriptome was analyzed by combining single molecule, real-time, and next generation sequencing (NGS) technology. Differentially expressed genes (DEGs) were identified in five tissues (head kidney, spleen, liver, muscle, and gonad) between immature [300 days post-hatching (dph)] and mature [three years post-hatching (ph)] lenoks. In total, 234,124 and 229,008 full-length non-chimeric reads were obtained from the immature and mature sequencing data, respectively. After NGS correction, 61,405 and 59,372 non-redundant transcripts were obtained for the expression level and pathway enrichment analyses, respectively. Compared with the mature group, 719 genes with significantly increased expression and 1,727 genes with significantly decreased expression in all five tissues were found in the immature group. Furthermore, DEGs and pathways involved in the endocrine system and gonadal development were identified, and p38 mitogen-activated protein kinases (MAPKs) were identified as potentially regulating gonadal development in lenok. Inhibiting the activity of p38 MAPKs resulted in abnormal levels of gonadotropin-releasing hormone, follicle-stimulating hormone, and estradiol, and affected follicular development. The full-length transcriptome data obtained in this study may provide a valuable reference for the study of gene function, gene expression, and evolutionary relationships in B. lenok and may illustrate the basic regulatory mechanism of ovarian development in teleosts.
Collapse
Affiliation(s)
- Tianqing Huang
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Wei Gu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Enhui Liu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Lanlan Zhang
- Heilongjiang Province General Station of Aquatic Technology Promotion, Harbin, China
| | - Fulin Dong
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Xianchen He
- Heilongjiang Aquatic Animal Resource Conservation Center, Harbin, China
| | - Wenlong Jiao
- Gansu Fisheries Research Institute, Lanzhou, China
| | - Chunyu Li
- Xinjiang Tianyun Organic Agriculture Co., Yili Group, Hohhot, China
| | - Bingqian Wang
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- *Correspondence: Bingqian Wang
| | - Gefeng Xu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Gefeng Xu
| |
Collapse
|
13
|
Huang Y, Zhang L, Huang S, Wang G. Full-length transcriptome sequencing of Heliocidaris crassispina using PacBio single-molecule real-time sequencing. FISH & SHELLFISH IMMUNOLOGY 2022; 120:507-514. [PMID: 34920131 DOI: 10.1016/j.fsi.2021.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The lack of high-throughput sequencing data makes the research progress of Heliocidaris crassispina slow. Therefore, we used PacBio single-molecule real-time sequencing to generate the first full-length transcriptome. Here, 31,181 isoforms were obtained, with an average length of 2383.20 and a N50 length of 2732 bp. Meanwhile, 764 alternative splicing (AS) events, 5098 long-noncoding RNAs (LncRNAs), 6978 simple sequence repeats (SSRs), and 950 hypothetical transcript factors (TFs) were identified. Moreover, five key innate immune pattern recognition receptors (PRRs), including toll-like receptor (TLR), NACHT domain and leucine-rich repeat (NLR), scavenger receptor cysteine-rich (SRCR), peptidoglycan recognition proteins (PGRP), and gram-negative binding proteins (GNBP), were searched in the transcriptome. In addition, 37 isoforms enriched in KEGG and GO immune systems were also detected. The study provid abundant data support for the current research on H. crassispina.
Collapse
Affiliation(s)
- Yongyu Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Lili Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Shiyu Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Guodong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
14
|
Kawato S, Nishitsuji K, Arimoto A, Hisata K, Kawamitsu M, Nozaki R, Kondo H, Shinzato C, Ohira T, Satoh N, Shoguchi E, Hirono I. Genome and transcriptome assemblies of the kuruma shrimp, Marsupenaeus japonicus. G3 (BETHESDA, MD.) 2021; 11:jkab268. [PMID: 34515781 PMCID: PMC8527471 DOI: 10.1093/g3journal/jkab268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/18/2021] [Indexed: 11/25/2022]
Abstract
The kuruma shrimp Marsupenaeus japonicus (order Decapoda, family Penaeidae) is an economically important crustacean that occurs in shallow, warm seas across the Indo-Pacific. Here, using a combination of Illumina and Oxford Nanopore Technologies platforms, we produced a draft genome assembly of M. japonicus (1.70 Gbp; 18,210 scaffolds; scaffold N50 = 234.9 kbp; 34.38% GC, 93.4% BUSCO completeness) and a complete mitochondrial genome sequence (15,969 bp). As with other penaeid shrimp genomes, the M. japonicus genome is extremely rich in simple repeats, which occupies 27.4% of the assembly. A total of 26,381 protein-coding gene models (94.7% BUSCO completeness) were predicted, of which 18,005 genes (68.2%) were assigned functional description by at least one method. We also produced an Illumina-based transcriptome shotgun assembly (40,991 entries; 93.0% BUSCO completeness) and a PacBio Iso-Seq transcriptome assembly (25,415 entries; 67.5% BUSCO completeness). We envision that the M. japonicus genome and transcriptome assemblies will serve as useful resources for the basic research, fisheries management, and breeding programs of M. japonicus.
Collapse
Affiliation(s)
- Satoshi Kawato
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Koki Nishitsuji
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Asuka Arimoto
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Mayumi Kawamitsu
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Reiko Nozaki
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-0882, Japan
| | - Tsuyoshi Ohira
- Faculty of Science, Department of Biological Sciences, Kanagawa University, Kanagawa 221-8686, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| |
Collapse
|
15
|
Comparative Analysis of PacBio and Oxford Nanopore Sequencing Technologies for Transcriptomic Landscape Identification of Penaeus monodon. Life (Basel) 2021; 11:life11080862. [PMID: 34440606 PMCID: PMC8399832 DOI: 10.3390/life11080862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/07/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022] Open
Abstract
With the advantages that long-read sequencing platforms such as Pacific Biosciences (Menlo Park, CA, USA) (PacBio) and Oxford Nanopore Technologies (Oxford, UK) (ONT) can offer, various research fields such as genomics and transcriptomics can exploit their benefits. Selecting an appropriate sequencing platform is undoubtedly crucial for the success of the research outcome, thus there is a need to compare these long-read sequencing platforms and evaluate them for specific research questions. This study aims to compare the performance of PacBio and ONT platforms for transcriptomic analysis by utilizing transcriptome data from three different tissues (hepatopancreas, intestine, and gonads) of the juvenile black tiger shrimp, Penaeus monodon. We compared three important features: (i) main characteristics of the sequencing libraries and their alignment with the reference genome, (ii) transcript assembly features and isoform identification, and (iii) correlation of the quantification of gene expression levels for both platforms. Our analyses suggest that read-length bias and differences in sequencing throughput are highly influential factors when using long reads in transcriptome studies. These comparisons can provide a guideline when designing a transcriptome study utilizing these two long-read sequencing technologies.
Collapse
|
16
|
Novikova EL, Kulakova MA. There and Back Again: Hox Clusters Use Both DNA Strands. J Dev Biol 2021; 9:28. [PMID: 34287306 PMCID: PMC8293171 DOI: 10.3390/jdb9030028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
Bilaterian animals operate the clusters of Hox genes through a rich repertoire of diverse mechanisms. In this review, we will summarize and analyze the accumulated data concerning long non-coding RNAs (lncRNAs) that are transcribed from sense (coding) DNA strands of Hox clusters. It was shown that antisense regulatory RNAs control the work of Hox genes in cis and trans, participate in the establishment and maintenance of the epigenetic code of Hox loci, and can even serve as a source of regulatory peptides that switch cellular energetic metabolism. Moreover, these molecules can be considered as a force that consolidates the cluster into a single whole. We will discuss the examples of antisense transcription of Hox genes in well-studied systems (cell cultures, morphogenesis of vertebrates) and bear upon some interesting examples of antisense Hox RNAs in non-model Protostomia.
Collapse
Affiliation(s)
- Elena L. Novikova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7–9, 199034 Saint Petersburg, Russia;
- Laboratory of Evolutionary Morphology, Zoological Institute RAS, Universitetskaya nab. 1, 199034 Saint Petersburg, Russia
| | - Milana A. Kulakova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7–9, 199034 Saint Petersburg, Russia;
- Laboratory of Evolutionary Morphology, Zoological Institute RAS, Universitetskaya nab. 1, 199034 Saint Petersburg, Russia
| |
Collapse
|
17
|
Full-length SMRT transcriptome sequencing and microsatellite characterization in Paulownia catalpifolia. Sci Rep 2021; 11:8734. [PMID: 33888729 PMCID: PMC8062547 DOI: 10.1038/s41598-021-87538-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/22/2021] [Indexed: 01/22/2023] Open
Abstract
Paulownia catalpifolia is an important, fast-growing timber species known for its high density, color and texture. However, few transcriptomic and genetic studies have been conducted in P. catalpifolia. In this study, single-molecule real-time sequencing technology was applied to obtain the full-length transcriptome of P. catalpifolia leaves treated with varying degrees of drought stress. The sequencing data were then used to search for microsatellites, or simple sequence repeats (SSRs). A total of 28.83 Gb data were generated, 25,969 high-quality (HQ) transcripts with an average length of 1624 bp were acquired after removing the redundant reads, and 25,602 HQ transcripts (98.59%) were annotated using public databases. Among the HQ transcripts, 16,722 intact coding sequences, 149 long non-coding RNAs and 179 alternative splicing events were predicted, respectively. A total of 7367 SSR loci were distributed throughout 6293 HQ transcripts, of which 763 complex SSRs and 6604 complete SSRs. The SSR appearance frequency was 28.37%, and the average distribution distance was 5.59 kb. Among the 6604 complete SSR loci, 1-3 nucleotide repeats were dominant, occupying 97.85% of the total SSR loci, of which mono-, di- and tri-nucleotide repeats were 44.68%, 33.86% and 19.31%, respectively. We detected 112 repeat motifs, of which A/T (42.64%), AG/CT (12.22%), GA/TC (9.63%), GAA/TTC (1.57%) and CCA/TGG (1.54%) were most common in mono-, di- and tri-nucleotide repeats, respectively. The length of the repeat SSR motifs was 10-88 bp, and 4997 (75.67%) were ≤ 20 bp. This study provides a novel full-length transcriptome reference for P. catalpifolia and will facilitate the identification of germplasm resources and breeding of new drought-resistant P. catalpifolia varieties.
Collapse
|
18
|
Lin X, Zhou D, Zhang X, Li G, Zhang Y, Huang C, Zhang Z, Tian C. A First Insight into the Gonad Transcriptome of Hong Kong Catfish ( Clarias fuscus). Animals (Basel) 2021; 11:1131. [PMID: 33920938 PMCID: PMC8071282 DOI: 10.3390/ani11041131] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Hong Kong catfish (Clarias fuscus) exhibit sexual dimorphism, particularly in body size. Due to the fast growth rate of males, the sexual size dimorphism of Hong Kong catfish has become an economically important trait. However, limited knowledge is known about the molecular mechanisms of sex determination and sex differentiation in this species. In this study, a first de novo transcriptome sequencing analysis of testes and ovaries was performed to identify sex-biased genes in Hong Kong catfish. The results showed that a total of 290,291 circular consensus sequences (CCSs) were obtained, from which 248,408 full-length non-chimeric (FLNC) reads were generated. After non-redundant analysis, a total of 37,305 unigenes were predicted, in which 34,342 unigenes were annotated with multiple public databases. Comparative transcriptomic analysis identified 5750 testis-biased differentially expressed genes (DEGs) and 6991 ovary-biased DEGs. The enrichment analysis showed that DEGs were classified into 783 Gene Ontology (GO) terms and 16 Kyoto Encyclopedia of Gene and Genome (KEGG) pathways. Many DEGs were involved with sex-related GO terms and KEGG pathways, such as oocyte maturation, androgen secretion, gonadal development and steroid biosynthesis pathways. In addition, the expression levels of 23 unigenes were confirmed to validate the transcriptomic data by quantitative real-time polymerase chain reaction (qRT-PCR). This is the first investigation into the transcriptome of Hong Kong catfish testes and ovaries. This study provides an important molecular basis for the sex determination and sex control breeding of Hong Kong catfish.
Collapse
Affiliation(s)
- Xinghua Lin
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.L.); (X.Z.); (G.L.); (Y.Z.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dayan Zhou
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China; (D.Z.); (C.H.); (Z.Z.)
| | - Xiaomin Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.L.); (X.Z.); (G.L.); (Y.Z.)
| | - Guangli Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.L.); (X.Z.); (G.L.); (Y.Z.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| | - Yulei Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.L.); (X.Z.); (G.L.); (Y.Z.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, China
| | - Cailin Huang
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China; (D.Z.); (C.H.); (Z.Z.)
| | - Zhixin Zhang
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China; (D.Z.); (C.H.); (Z.Z.)
| | - Changxu Tian
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.L.); (X.Z.); (G.L.); (Y.Z.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| |
Collapse
|
19
|
Single-Molecule Long-Read Sequencing of Purslane (Portulaca oleracea) and Differential Gene Expression Related with Biosynthesis of Unsaturated Fatty Acids. PLANTS 2021; 10:plants10040655. [PMID: 33808162 PMCID: PMC8066459 DOI: 10.3390/plants10040655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/09/2021] [Accepted: 03/24/2021] [Indexed: 11/22/2022]
Abstract
This study aimed to obtain the full-length transcriptome of purslane (Portulaca oleracea); assorted plant samples were used for single-molecule real-time (SMRT) sequencing. Based on SMRT, functional annotation of transcripts, transcript factors (TFs) analysis, simple sequence repeat analysis and long non-coding RNAs (LncRNAs) prediction were accomplished. Total 15.33-GB reads were produced; with 9,350,222 subreads and the average length of subreads, 1640 bp was counted. With 99.99% accuracy, after clustering, 132,536 transcripts and 78,559 genes were detected. All unique SMART transcripts were annotated in seven functional databases. 4180 TFs (including transcript regulators) and 7289 LncRNAs were predicted. The results of RNA-seq were confirmed with qRT–PCR analysis. Illumina sequencing of leaves and roots of two purslane genotypes was carried out. Amounts of differential expression genes and related KEGG pathways were found. The expression profiles of related genes in the biosynthesis of unsaturated fatty acids pathway in leaves and roots of two genotypes of purslane were analyzed. Differential expression of genes in this pathway built the foundation of ω-3 fatty acid accumulation in different organs and genotypes of purslane. The aforementioned results provide sequence information and may be a valuable resource for whole-genome sequencing of purslane in the future.
Collapse
|
20
|
Combined Transcriptome Analysis Reveals the Ovule Abortion Regulatory Mechanisms in the Female Sterile Line of Pinus tabuliformis Carr. Int J Mol Sci 2021; 22:ijms22063138. [PMID: 33808669 PMCID: PMC8003466 DOI: 10.3390/ijms22063138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 11/17/2022] Open
Abstract
Ovule abortion is a common phenomenon in plants that has an impact on seed production. Previous studies of ovule and female gametophyte (FG) development have mainly focused on angiosperms, especially in Arabidopsis thaliana. However, because it is difficult to acquire information about ovule development in gymnosperms, this remains unclear. Here, we investigated the transcriptomic data of natural ovule abortion mutants (female sterile line, STE) and the wild type (female fertile line, FER) of Pinus tabuliformis Carr. to evaluate the mechanism of ovule abortion during the process of free nuclear mitosis (FNM). Using single-molecule real-time (SMRT) sequencing and next-generation sequencing (NGS), 18 cDNA libraries via Illumina and two normalized libraries via PacBio, with a total of almost 400,000 reads, were obtained. Our analysis showed that the numbers of isoforms and alternative splicing (AS) patterns were significantly variable between FER and STE. The functional annotation results demonstrate that genes involved in the auxin response, energy metabolism, signal transduction, cell division, and stress response were differentially expressed in different lines. In particular, AUX/IAA, ARF2, SUS, and CYCB had significantly lower expression in STE, showing that auxin might be insufficient in STE, thus hindering nuclear division and influencing metabolism. Apoptosis in STE might also have affected the expression levels of these genes. To confirm the transcriptomic analysis results, nine pairs were confirmed by quantitative real-time PCR. Taken together, these results provide new insights into ovule abortion in gymnosperms and further reveal the regulatory mechanisms of ovule development.
Collapse
|
21
|
Wang L, Zhu P, Mo Q, Luo W, Du Z, Jiang J, Yang S, Zhao L, Gong Q, Wang Y. Comprehensive analysis of full-length transcriptomes of Schizothorax prenanti by single-molecule long-read sequencing. Genomics 2021; 114:456-464. [PMID: 33516848 DOI: 10.1016/j.ygeno.2021.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 01/01/2023]
Abstract
Schizothorax prenanti (S. prenanti) is one of the most important aquaculture species in the southwest of China. However, information of the full-length transcripts in S. prenanti remains unknown. In this study, single-molecule real-time (SMRT) sequencing was performed to generate full-length transcriptomes of S.prenanti. In total, 23.26 Gb of clean reads were generated. A total of 312,587 circular consensus sequences (CCS) were obtained with average lengths of 2634 bp and 84.16% (270,662) of CCS were full-length non-chimeric reads. After being corrected with Illumina library sequencing, 18,005 contigs were obtained, with 17,797 (98.81%) successfully annotated in eight public databases, including 15,839 complete open reading frames (ORFs) with an average length of 1330 bp. Furthermore, a total of 4152 alternative splicing (AS) events and 250 long non-coding RNA (lncRNA) transcripts were detected. Additionally, a total of 1129 putative transcription factors (TFs) members from 56 TF families and 11,660 simple sequence repeats (SSRs) were identified. This study provided a valuable resource of full-length transcripts for further research on S. prenanti.
Collapse
Affiliation(s)
- Linjie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Peng Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Qilang Mo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Quan Gong
- Fisheries institute, Sichuan Academy of Agricultural Sciences, Chengdu 611713, Sichuan, PR China
| | - Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China.
| |
Collapse
|
22
|
Zheng J, Wang P, Mao Y, Su Y, Wang J. Full-length transcriptome analysis provides new insights into the innate immune system of Marsupenaeus japonicus. FISH & SHELLFISH IMMUNOLOGY 2020; 106:283-295. [PMID: 32755684 DOI: 10.1016/j.fsi.2020.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
As invertebrates, shrimp are generally thought to solely rely on their innate immune system to combat invading pathogens. Recently, an increasing number of studies have revealed that the innate immune response of invertebrates exhibits diversity and specificity based on their diverse immune molecules. Herein, a full-length transcriptome analysis of several immune-related tissues (hepatopancreas, gill, hemocytes, stomach and intestine) in the kuruma shrimp (Marsupenaeus japonicus) was conducted to identify immune-related molecules with a focus on transcript variations. In total, 11,222 nonredundant full-length transcripts with an N50 length of 5174 were obtained, and most of these transcripts (94.84%) were successfully annotated. In addition, a total of 147 long noncoding RNAs (lncRNAs) were also predicted. Importantly, transcript variants of several vital immune-related genes were observed, including twenty-five alpha-2-macroglobulins (α2-Ms), ten Toll-like receptors (TLRs), six C-type lectins (CTLs), five M-type lectins (MTLs) and three Down syndrome cell adhesion molecules (Dscams). Furthermore, 509 nonredundant full-length transcripts were predicted to be generated from alternative splicing (AS) events, which contribute to the diversity of immune molecules. Overall, our study provides valuable data on the full-length transcripts of M. japonicus, which will facilitate the exploration of immune molecules in this species. Moreover, numerous transcript variants of immune molecules detected in this study provide clues for further investigating the diversity and specificity of the innate immune response in shrimp.
Collapse
Affiliation(s)
- Jinbin Zheng
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Panpan Wang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102, China.
| | - Yongquan Su
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Jun Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
23
|
Pan C, Wang Y, Tao L, Zhang H, Deng Q, Yang Z, Chi Z, Yang Y. Single-molecule real-time sequencing of the full-length transcriptome of loquat under low-temperature stress. PLoS One 2020; 15:e0238942. [PMID: 32915882 PMCID: PMC7485763 DOI: 10.1371/journal.pone.0238942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/26/2020] [Indexed: 01/01/2023] Open
Abstract
In this study, third-generation full-length (FL) transcriptome sequencing was performed of loquat using single-molecule real-time(SMRT) sequencing from the pooled cDNA of embryos of young loquat fruit under different low temperatures (three biological replicates for treatments of 1°C, -1°C, and -3°C, for 12 h or 24 h) and the control group(three biological replicates for treatments of room temperature), Illumina sequencing was used to correct FL transcriptome sequences. A total of 3 PacBio Iso-Seq libraries (1–2 kb, 2–3 kb and 3–6 kb) and 21 Illumina transcriptome libraries were constructed, a total of 13.41 Gb of clean reads were generated, which included 215,636 reads of insert (ROIs) and 121,654 FL, non-chimaric (FLNC) reads. Transcript clustering analysis of the FLNC reads revealed 76,586 consensus isoforms, and a total of 12,520 high-quality transcript sequences corrected with non-FL sequences were used for subsequent analysis. After the redundant reads were removed, 38,435 transcripts were obtained. A total of 27,905 coding DNA sequences (CDSs) were identified, and 407 long non-coding RNAs (lncRNAs) were ultimately predicted. Additionally, 24,832 simple sequence repeats (SSRs) were identified, and a total of 1,295 alternative splicing (AS) events were predicted. Furthermore, 37,993 transcripts were annotated in eight functional databases. This is the first study to perform SMRT sequencing of the FL transcriptome of loquat. The obtained transcriptomic data are conducive for further exploration of the mechanism of loquat freezing injury and thus serve as an important theoretical basis for generating new loquat material and for identifying new ways to improve loquat cold resistance.
Collapse
Affiliation(s)
- Cuiping Pan
- College of Horticulture, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Yongqing Wang
- College of Horticulture, Sichuan Agricultural University, Wenjiang, Sichuan, China
- * E-mail:
| | - Lian Tao
- Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Hui Zhang
- College of Horticulture, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Zhiwu Yang
- College of Horticulture, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Zhuoheng Chi
- College of Horticulture, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Yunmiao Yang
- College of Horticulture, Sichuan Agricultural University, Wenjiang, Sichuan, China
| |
Collapse
|
24
|
Chen J, Yu Y, Kang K, Zhang D. SMRT sequencing of the full-length transcriptome of the white-backed planthopper Sogatella furcifera. PeerJ 2020; 8:e9320. [PMID: 32551204 PMCID: PMC7292024 DOI: 10.7717/peerj.9320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/18/2020] [Indexed: 12/28/2022] Open
Abstract
The white-backed planthopper Sogatella furcifera is an economically important rice pest distributed throughout Asia. It damages rice crops by sucking phloem sap, resulting in stunted growth and plant virus transmission. We aimed to obtain the full-length transcriptome data of S. furcifera using PacBio single-molecule real-time (SMRT) sequencing. Total RNA extracted from S. furcifera at various developmental stages (egg, larval, and adult stages) was mixed and used to generate a full-length transcriptome for SMRT sequencing. Long non-coding RNA (lncRNA) identification, full-length coding sequence prediction, full-length non-chimeric (FLNC) read detection, simple sequence repeat (SSR) analysis, transcription factor detection, and transcript functional annotation were performed. A total of 12,514,449 subreads (15.64 Gbp, clean reads) were generated, including 630,447 circular consensus sequences and 388,348 FLNC reads. Transcript cluster analysis of the FLNC reads revealed 251,109 consensus reads including 29,700 high-quality reads. Additionally, 100,360 SSRs and 121,395 coding sequences were identified using SSR analysis and ANGEL software, respectively. Furthermore, 44,324 lncRNAs were annotated using four tools and 1,288 transcription factors were identified. In total, 95,495 transcripts were functionally annotated based on searches of seven different databases. To the best of our knowledge, this is the first study of the full-length transcriptome of the white-backed planthopper obtained using SMRT sequencing. The acquired transcriptome data can facilitate further studies on the ecological and viral-host interactions of this agricultural pest.
Collapse
Affiliation(s)
- Jing Chen
- College of Basic Medical Science, Zunyi Medical University, Zunyi, China
| | - Yaya Yu
- College of Basic Medical Science, Zunyi Medical University, Zunyi, China
| | - Kui Kang
- School of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, China
| | - Daowei Zhang
- School of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, China
| |
Collapse
|
25
|
Luo H, Liu H, Zhang J, Hu B, Zhou C, Xiang M, Yang Y, Zhou M, Jing T, Li Z, Zhou X, Lv G, He W, Zeng B, Xiao S, Li Q, Ye H. Full-length transcript sequencing accelerates the transcriptome research of Gymnocypris namensis, an iconic fish of the Tibetan Plateau. Sci Rep 2020; 10:9668. [PMID: 32541658 PMCID: PMC7296019 DOI: 10.1038/s41598-020-66582-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Gymnocypris namensis, the only commercial fish in Namtso Lake of Tibet in China, is rated as nearly threatened species in the Red List of China's Vertebrates. As one of the highest-altitude schizothorax fish in China, G. namensis has strong adaptability to the plateau harsh environment. Although being an indigenous economic fish with high value in research, the biological characterization, genetic diversity, and plateau adaptability of G. namensis are still unclear. Here, we used Pacific Biosciences single molecular real time long read sequencing technology to generate full-length transcripts of G. namensis. Sequences clustering analysis and error correction with Illumina-produced short reads to obtain 319,044 polished isoforms. After removing redundant reads, 125,396 non-redundant isoforms were obtained. Among all transcripts, 103,286 were annotated to public databases. Natural selection has acted on 42 genes for G. namensis, which were enriched on the functions of mismatch repair and Glutathione metabolism. Total 89,736 open reading frames, 95,947 microsatellites, and 21,360 long non-coding RNAs were identified across all transcripts. This is the first study of transcriptome in G. namensis by using PacBio Iso-seq. The acquisition of full-length transcript isoforms might accelerate the transcriptome research of G. namensis and provide basis for further research.
Collapse
Affiliation(s)
- Hui Luo
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Haiping Liu
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Jie Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
| | - Bingjie Hu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
| | - Chaowei Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Mengbin Xiang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
| | - Yuejing Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Mingrui Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Tingsen Jing
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Zhe Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
| | - Xinghua Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Guangjun Lv
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Wenping He
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Benhe Zeng
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Shijun Xiao
- Department of Computer Science, Wuhan University of Technology, Wuhan, 430070, China.
| | - Qinglu Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China.
| | - Hua Ye
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China.
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China.
| |
Collapse
|
26
|
Jia X, Tang L, Mei X, Liu H, Luo H, Deng Y, Su J. Single-molecule long-read sequencing of the full-length transcriptome of Rhododendron lapponicum L. Sci Rep 2020; 10:6755. [PMID: 32317724 PMCID: PMC7174332 DOI: 10.1038/s41598-020-63814-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/06/2020] [Indexed: 12/17/2022] Open
Abstract
Rhododendron lapponicum L. is a familiar ornamental plant worldwide with important ornamental and economic value. However, a full-length R. lapponicum transcriptome is still lacking. In the present study, we used the Pacific Biosciences single-molecule real-time sequencing technology to generate the R. lapponicum transcriptome. A total of 346,270 full-length non-chimeric reads were generated, from which we obtained 75,002 high-quality full-length transcripts. We identified 55,255 complete open reading frames, 7,140 alternative splicing events and 2,011 long non-coding RNAs. In gene annotation analyses, 71,155, 33,653, 30,359 and 31,749 transcripts were assigned to the Nr, GO, COG and KEGG databases, respectively. Additionally, 3,150 transcription factors were detected. KEGG pathway analysis showed that 96 transcripts were identified coding for the enzymes associated with anthocyanin synthesis. Furthermore, we identified 64,327 simple sequence repeats from 45,319 sequences, and 150 pairs of primers were randomly selected to develop SSR markers. This study provides a large number of full-length transcripts, which will facilitate the further study of the genetics of R. lapponicum.
Collapse
Affiliation(s)
- Xinping Jia
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China.
| | - Ling Tang
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Xueying Mei
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Huazhou Liu
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Hairong Luo
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Yanming Deng
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Jiale Su
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| |
Collapse
|
27
|
Wan H, Jia X, Zou P, Zhang Z, Wang Y. The Single-molecule long-read sequencing of Scylla paramamosain. Sci Rep 2019; 9:12401. [PMID: 31455827 PMCID: PMC6711964 DOI: 10.1038/s41598-019-48824-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
Scylla paramamosain is an important aquaculture crab, which has great economical and nutritional value. To the best of our knowledge, few full-length crab transcriptomes are available. In this study, a library composed of 12 different tissues including gill, hepatopancreas, muscle, cerebral ganglion, eyestalk, thoracic ganglia, intestine, heart, testis, ovary, sperm reservoir, and hemocyte was constructed and sequenced using Pacific Biosciences single-molecule real-time (SMRT) long-read sequencing technology. A total of 284803 full-length non-chimeric reads were obtained, from which 79005 high-quality unique transcripts were obtained after error correction and sequence clustering and redundant. Additionally, a total of 52544 transcripts were annotated against protein database (NCBI nonredundant, Swiss-Prot, KOG, and KEGG database). A total of 23644 long non-coding RNAs (lncRNAs) and 131561 simple sequence repeats (SSRs) were identified. Meanwhile, the isoforms of many genes were also identified in this study. Our study provides a rich set of full-length cDNA sequences for S. paramamosain, which will greatly facilitate S. paramamosain research.
Collapse
Affiliation(s)
- Haifu Wan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, P.R. China
| | - Xiwei Jia
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, P.R. China
| | - Pengfei Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, P.R. China
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China.
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, P.R. China.
| |
Collapse
|