1
|
Gunture, Lee TY. Biomass-derived multiatom-doped carbon dots for water sensing based on excited state intraparticle proton transfer in organic solvents. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124841. [PMID: 39089070 DOI: 10.1016/j.saa.2024.124841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 08/03/2024]
Abstract
The presence of trace water impurities in organic solvents can significantly influence chemical reactions and product quality; thus, the accurate detection of water content in these solvents is a critical requirement for industrial applications. Accordingly, an eco-friendly, effective, and economical sensor for detecting trace quantities of miscible water in organic solvents is required for industrial applications. In this study, we synthesized biomass-derived multi-atom-doped carbon dots (MACDs) as fluorescent probes and employed them for the detection of trace amounts of water impurities in several water-miscible organic solvents. The MACDs exhibited stable dual-color fluorescence emission under ultraviolet light irradiation and red and blue emissions in organic solvents and water. The fluorescence quantum yield was approximately 11 %, which indicates an excited intraparticle proton transfer response due to an increase in the water content within a wide response range from 0 % to 100 % (v/v) in organic solvents. The intensity of the red emission signal at 670 nm gradually decreased with an increase in the water content in the organic solvent. The MACDs could detect water with an instant response time of 55 s, a high sensitivity, and low limits of detection of 0.08 %, 1.36 %, 0.03 %, 0.04 %, 0.12 %, and 0.05 % (v/v) in ethanol, acetonitrile, dimethylformamide, methanol, isopropanol, and tetrahydrofuran, respectively. Hence, biomass-derived MACDs can serve as efficient and eco-friendly water sensors in organic solvents.
Collapse
Affiliation(s)
- Gunture
- Department of Biomedical Engineering and Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tae Yoon Lee
- Department of Biomedical Engineering and Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; Department of Technology Education, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
2
|
Kadirvelu L, Sivaramalingam SS, Jothivel D, Chithiraiselvan DD, Karaiyagowder Govindarajan D, Kandaswamy K. A review on antimicrobial strategies in mitigating biofilm-associated infections on medical implants. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100231. [PMID: 38510214 PMCID: PMC10951465 DOI: 10.1016/j.crmicr.2024.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Biomedical implants are crucial in providing support and functionality to patients with missing or defective body parts. However, implants carry an inherent risk of bacterial infections that are biofilm-associated and lead to significant complications. These infections often result in implant failure, requiring replacement by surgical restoration. Given these complications, it is crucial to study the biofilm formation mechanism on various biomedical implants that will help prevent implant failures. Therefore, this comprehensive review explores various types of implants (e.g., dental implant, orthopedic implant, tracheal stent, breast implant, central venous catheter, cochlear implant, urinary catheter, intraocular lens, and heart valve) and medical devices (hemodialyzer and pacemaker) in use. In addition, the mechanism of biofilm formation on those implants, and their pathogenesis were discussed. Furthermore, this article critically reviews various approaches in combating implant-associated infections, with a special emphasis on novel non-antibiotic alternatives to mitigate biofilm infections.
Collapse
Affiliation(s)
- Lohita Kadirvelu
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Sowmiya Sri Sivaramalingam
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Deepsikha Jothivel
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Dhivia Dharshika Chithiraiselvan
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | | | - Kumaravel Kandaswamy
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| |
Collapse
|
3
|
Wu H, Chen X, Kong L, Liu P. Mechanical and Biological Properties of Titanium and Its Alloys for Oral Implant with Preparation Techniques: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6860. [PMID: 37959457 PMCID: PMC10649385 DOI: 10.3390/ma16216860] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Dental implants have revolutionised restorative dentistry, offering patients a natural-looking and durable solution to replace missing or severely damaged teeth. Titanium and its alloys have emerged as the gold standard among the various materials available due to their exceptional properties. One of the critical advantages of titanium and its alloys is their remarkable biocompatibility which ensures minimal adverse reactions within the human body. Furthermore, they exhibit outstanding corrosion resistance ensuring the longevity of the implant. Their mechanical properties, including hardness, tensile strength, yield strength, and fatigue strength, align perfectly with the demanding requirements of dental implants, guaranteeing the restoration's functionality and durability. This narrative review aims to provide a comprehensive understanding of the manufacturing techniques employed for titanium and its alloy dental implants while shedding light on their intrinsic properties. It also presents crucial proof-of-concept examples, offering tangible evidence of these materials' effectiveness in clinical applications. However, despite their numerous advantages, certain limitations still exist necessitating ongoing research and development efforts. This review will briefly touch upon these restrictions and explore the evolving trends likely to shape the future of titanium and its alloy dental implants.
Collapse
Affiliation(s)
| | | | | | - Ping Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.W.); (X.C.); (L.K.)
| |
Collapse
|
4
|
刘 鹏, 樊 博, 邹 磊, 吕 利, 高 秋. [Progress in antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2023; 37:1300-1313. [PMID: 37848328 PMCID: PMC10581867 DOI: 10.7507/1002-1892.202306025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023]
Abstract
Objective To review antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants, so as to provide reference for subsequent research. Methods The related research literature on antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants in recent years was reviewed, and the research progress was summarized based on different kinds of antibacterial substances and osteogenic active substances. Results At present, the antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants includes: ① Combined coating strategy of antibiotics and osteogenic active substances. It is characterized in that antibiotics can be directly released around titanium-based implants, which can improve the bioavailability of drugs and reduce systemic toxicity. ② Combined coating strategy of antimicrobial peptides and osteogenic active substances. The antibacterial peptides have a wide antibacterial spectrum, and bacteria are not easy to produce drug resistance to them. ③ Combined coating strategy of inorganic antibacterial agent and osteogenic active substances. Metal ions or metal nanoparticles antibacterial agents have broad-spectrum antibacterial properties and various antibacterial mechanisms, but their high-dose application usually has cytotoxicity, so they are often combined with substances that osteogenic activity to reduce or eliminate cytotoxicity. In addition, inorganic coatings such as silicon nitride, calcium silicate, and graphene also have good antibacterial and osteogenic properties. ④ Combined coating strategy of metal organic frameworks/osteogenic active substances. The high specific surface area and porosity of metal organic frameworks can effectively package and transport antibacterial substances and bioactive molecules. ⑤ Combined coating strategy of organic substances/osteogenic active substancecs. Quaternary ammonium compounds, polyethylene glycol, N-haloamine, and other organic compounds have good antibacterial properties, and are often combined with hydroxyapatite and other substances that osteogenic activity. Conclusion The factors that affect the antibacterial and osteogenesis properties of titanium-based implants mainly include the structure and types of antibacterial substances, the structure and types of osteogenesis substances, and the coating process. At present, there is a lack of clinical verification of various strategies for antibacterial/osteogenesis dual-functional surface modification of titanium-based implants. The optimal combination, ratio, dose-effect mechanism, and corresponding coating preparation process of antibacterial substances and bone-active substances are needed to be constantly studied and improved.
Collapse
Affiliation(s)
- 鹏 刘
- 甘肃中医药大学第一临床医学院(兰州 730000)First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, P. R. China
- 中国人民解放军联勤保障部队第九四〇医院骨科中心(兰州 730000)Orthopaedic Center, the 940th Hospital of Chinese PLA Joint Logistics Support Force, Lanzhou Gansu, 730000, P. R. China
| | - 博 樊
- 甘肃中医药大学第一临床医学院(兰州 730000)First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, P. R. China
| | - 磊 邹
- 甘肃中医药大学第一临床医学院(兰州 730000)First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, P. R. China
| | - 利军 吕
- 甘肃中医药大学第一临床医学院(兰州 730000)First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, P. R. China
| | - 秋明 高
- 甘肃中医药大学第一临床医学院(兰州 730000)First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, P. R. China
| |
Collapse
|
5
|
Yu Y, Wu T, Dong L. Surface Oxygen Vacancies of Rutile Nanorods Accelerate Biomineralization. ACS OMEGA 2023; 8:20066-20072. [PMID: 37305277 PMCID: PMC10249081 DOI: 10.1021/acsomega.3c02348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023]
Abstract
Titanium dioxide (TiO2) materials have been widely used in biomedical applications of bone tissue engineering. However, the mechanism underlying the induced biomineralization onto the TiO2 surface still remains elusive. In this study, we demonstrated that the surface oxygen vacancy defects of rutile nanorods could be gradually eliminated by the regularly used annealing treatment, which restrained the heterogeneous nucleation of hydroxyapatite (HA) onto rutile nanorods in simulated body fluids (SBFs). Moreover, we also observed that the surface oxygen vacancies upregulated the mineralization of human mesenchymal stromal cells (hMSCs) on rutile TiO2 nanorod substrates. This work therefore emphasized the importance of subtle changes of surface oxygen vacancy defective features of oxidic biomaterials during the regularly used annealing treatment on their bioactive performances and provided new insights into the fundamental understanding of interactions of materials with the biological environment.
Collapse
Affiliation(s)
- Yanwen Yu
- First
People’s Hospital of Linping District, Hangzhou 311100, Zhejiang, China
| | - Tong Wu
- Guangdian
Metrology & Testing (Hangzhou) Co., Ltd., Hangzhou 310018, Zhejiang, China
| | - Lingqing Dong
- Stomatology
Hospital, School of Stomatology, Zhejiang University School of Medicine,
Zhejiang Province Clinical Research Center for Oral Diseases, Key
Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
6
|
Zhao Q, Wu J, Zhang S, Ni X, Wang B, Lu K, Zhang P, Xu R. Preparation and properties of composite manganese/fluorine coatings on metallic titanium. RSC Adv 2023; 13:14863-14877. [PMID: 37197179 PMCID: PMC10184752 DOI: 10.1039/d3ra01632c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023] Open
Abstract
Titanium is widely used in implants because of its good mechanical properties and biocompatibility. However, titanium has no biological activity and is prone to causing implant failure after implantation. In this study, we prepared a manganese- and fluorine-doped titanium dioxide coating on a titanium surface by microarc oxidation technology. The surface characteristics of the coating were evaluated by field emission scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy and profiler, and the corrosion resistance and wear resistance of the coating were also evaluated. The bioactivity of the coating on bone marrow mesenchymal stem cells was evaluated by in vitro cell experiments, and the antibacterial properties of the coating were evaluated by in vitro bacterial experiments. The results confirmed that the manganese- and fluorine-doped titanium dioxide coating was successfully prepared on the titanium surface, and manganese and fluorine were successfully introduced into the coating. The doping of manganese and fluorine did not change the surface morphology of the coating, and the coating had good corrosion resistance and wear resistance. The results of the in vitro cell experiment showed that the titanium dioxide coating with manganese and fluoride could promote the proliferation, differentiation and mineralization of bone marrow mesenchymal stem cells. The results of the bacterial experiment in vitro showed that the coating material could inhibit the propagation of Staphylococcus aureus and had a good antibacterial effect. Conclusion: it is feasible to prepare a manganese- and fluorine-doped titanium dioxide coating on titanium surfaces by microarc oxidation. The coating not only has good surface characteristics but also has good bone-promoting and antibacterial properties and has potential for clinical application.
Collapse
Affiliation(s)
- Quanming Zhao
- Department of Orthopaedics, Guizhou Provincial People's Hospital Guiyang 550002 Guizhou China
| | - Jieshi Wu
- Department of Orthopaedics, Affiliated Hospital of Jiangnan University Wuxi 214000 Jiangsu China
| | - Sujiajun Zhang
- Department of Orthopaedics, Affiliated Hospital of Jiangnan University Wuxi 214000 Jiangsu China
| | - Xiaohui Ni
- Department of Orthopedics, Dafeng People's Hospital Yancheng Jiangsu 224100 China
| | - Bo Wang
- Department of Orthopaedics, Guizhou Provincial People's Hospital Guiyang 550002 Guizhou China
| | - Kaihang Lu
- Department of Orthopaedics, Guizhou Provincial People's Hospital Guiyang 550002 Guizhou China
| | - Pengpeng Zhang
- Department of Orthopaedics, Guizhou Provincial People's Hospital Guiyang 550002 Guizhou China
| | - Ruisheng Xu
- Department of Orthopaedics, Affiliated Hospital of Jiangnan University Wuxi 214000 Jiangsu China
| |
Collapse
|
7
|
Xue R, Deng X, Xu X, Tian Y, Hasan A, Mata A, Zhang L, Liu L. Elastin-like recombinamer-mediated hierarchical mineralization coatings on Zr-16Nb-xTi (x = 4,16 wt%) alloy surfaces improve biocompatibility. BIOMATERIALS ADVANCES 2023; 151:213471. [PMID: 37201355 DOI: 10.1016/j.bioadv.2023.213471] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/21/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
The biocompatibility of biomedical materials is vital to their applicability and functionality. However, modifying surfaces for enhanced biocompatibility using traditional surface treatment techniques is challenging. We employed a mineralizing elastin-like recombinamer (ELR) self-assembling platform to mediate mineralization on Zr-16Nb-xTi (x = 4,16 wt%) alloy surfaces, resulting in the modification of surface morphology and bioactivity while improving the biocompatibility of the material. We modulated the level of nanocrystal organization by adjusting the cross-linker ratio. Nanoindentation tests revealed that the mineralized configuration had nonuniformity with respect to Young's modulus and hardness, with the center areas having higher values (5.626 ± 0.109 GPa and 0.264 ± 0.022 GPa) compared to the edges (4.282 ± 0.327 GPa and 0.143 ± 0.023 GPa). The Scratch test results indicated high bonding strength (2.668 ± 0.117 N) between the mineralized coating and the substrate. Mineralized Zr-16Nb-xTi (x = 4,16 wt%) alloys had higher viability compared to untreated alloys, which exhibited high cell viability (>100 %) after 5 days and high alkaline phosphatase activity after 7 days. Cell proliferation assays indicated that MG 63 cells grew faster on mineralized surfaces than on untreated surfaces. Scanning electron microscopy imaging confirmed that the cells adhered and spread well on mineralized surfaces. Furthermore, hemocompatibility test results revealed that all mineralized samples were non-hemolytic. Our results demonstrate the viability of employing the ELR mineralizing platform to improve alloy biocompatibility.
Collapse
Affiliation(s)
- Renhao Xue
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China
| | - Xinru Deng
- School of Engineering and Materials Science, Queen Mary University of London, London E14NS, UK
| | - Xiaoning Xu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China
| | - Yueyan Tian
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China
| | - Abshar Hasan
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alvaro Mata
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; Department of Chemical & Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ligang Zhang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China.
| | - Libin Liu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China.
| |
Collapse
|
8
|
Costa RC, Nagay BE, Dini C, Borges MHR, Miranda LFB, Cordeiro JM, Souza JGS, Sukotjo C, Cruz NC, Barão VAR. The race for the optimal antimicrobial surface: perspectives and challenges related to plasma electrolytic oxidation coating for titanium-based implants. Adv Colloid Interface Sci 2023; 311:102805. [PMID: 36434916 DOI: 10.1016/j.cis.2022.102805] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/01/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023]
Abstract
Plasma electrolytic oxidation (PEO) is a low-cost, structurally reliable, and environmentally friendly surface modification method for orthopedic and dental implants. This technique is successful for the formation of porous, corrosion-resistant, and bioactive coatings, besides introducing antimicrobial compounds easily. Given the increase in implant-related infections, antimicrobial PEO-treated surfaces have been widely proposed to surmount this public health concern. This review comprehensively discusses antimicrobial implant surfaces currently produced by PEO in terms of their in vitro and in vivo microbiological and biological properties. We present a critical [part I] and evidence-based [part II] review about the plethora of antimicrobial PEO-treated surfaces. The mechanism of microbial accumulation on implanted devices and the principles of PEO technology to ensure antimicrobial functionalization by one- or multi-step processes are outlined. Our systematic literature search showed that particular focus has been placed on the metallic and semi-metallic elements incorporated into PEO surfaces to facilitate antimicrobial properties, which are often dose-dependent, without leading to cytotoxicity in vitro. Meanwhile, there are concerns over the biocompatibility of PEO and its long-term antimicrobial effects in animal models. We clearly highlight the importance of using clinically relevant infection models and in vivo long-term assessments to guarantee the rational design of antimicrobial PEO-treated surfaces to identify the 'finish line' in the race for antimicrobial implant surfaces.
Collapse
Affiliation(s)
- Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Maria H R Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Luís F B Miranda
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Jairo M Cordeiro
- Department of Dentistry, Centro Universitário das Faculdades Associadas de Ensino (UNIFAE), Sāo Joāo da Boa Vista, Sāo Paulo 13870-377, Brazil
| | - Joāo G S Souza
- Dental Research Division, Guarulhos University, Guarulhos, Sāo Paulo 07023-070, Brazil; Dentistry Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais 39401-303, Brazil
| | - Cortino Sukotjo
- Department of Restorative Dentistry, University of Illinois at Chicago College of Dentistry, Chicago, IL 60612, USA
| | - Nilson C Cruz
- Laboratory of Technological Plasmas, Institute of Science and Technology, Sāo Paulo State University (UNESP), Sorocaba, Sāo Paulo 18087-180, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil.
| |
Collapse
|
9
|
Ueno H, Matsubara K, Bou S, Hizume M. Accuracy of patient dose estimation in cone beam computed tomography in breast irradiation by size-specific dose estimates with position correction. J Appl Clin Med Phys 2022; 23:e13851. [PMID: 36448537 PMCID: PMC9797173 DOI: 10.1002/acm2.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/09/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
This study aims to investigate the effects of the position correction of size-specific dose estimates (SSDE) on patient dose estimation in cone beam computed tomography (CBCT). The relationship between the phantom position and absorbed dose in the right breast was studied using optically stimulated luminescence dosimeters and a simulated human body phantom. The effect of position correction for CT dose index (CTDI) on SSDE was investigated in 51 patients who underwent right breast irradiation by comparing the SSDE with position correction and SSDE without position correction. The absorbed dose in the right breast tended to decrease by 10.2% as the phantom was placed away from the center of CBCT. The mean and standard deviation of SSDE were 2.54 ± 0.29 and 2.92 ± 0.30 mGy with and without position correction, respectively. The SSDE with position correction was 13.1% lower than that without position correction (p < 0.05). SSDE was different when the patient's torso center was located at the isocenter of CBCT, and when it was not. The same tendency was seen in the case of the breast. Therefore, if the center of the patient is not at the acquisition center of the CT scanner, position correction is required when estimating SSDE.
Collapse
Affiliation(s)
- Hiroyuki Ueno
- Division of Health SciencesGraduate School of Medical SciencesKanazawa UniversityKanazawaJapan,Department of RadiologyTakaoka City HospitalTakaokaJapan
| | - Kosuke Matsubara
- Division of Health SciencesGraduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Sayuri Bou
- Department of RadiotherapyTakaoka City HospitalTakaokaJapan,Department of RadiologyGraduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Masato Hizume
- Department of RadiologyTakaoka City HospitalTakaokaJapan
| |
Collapse
|
10
|
Zhao Q, Wu J, Li Y, Xu R, Zhu X, Jiao Y, Luo R, Ni X. Promotion of bone formation and antibacterial properties of titanium coated with porous Si/Ag-doped titanium dioxide. Front Bioeng Biotechnol 2022; 10:1001514. [PMID: 36338114 PMCID: PMC9633953 DOI: 10.3389/fbioe.2022.1001514] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/10/2022] [Indexed: 07/30/2023] Open
Abstract
Implant materials are mainly used to repair and replace defects in human hard tissue (bones and teeth). Titanium (Ti) and Ti alloys are widely used as implant materials because of their good mechanical properties and biocompatibilities, but they do not have the ability to induce new bone formation and have no antibacterial properties. Through surface modification, Ti and its alloys have certain osteogenic and antibacterial properties such that Ti implants can meet clinical needs and ensure integration between Ti implants and bone tissue, and this is currently an active research area. In this study, bioactive Si and Ag were introduced onto a Ti surface by plasma oxidation. The surface morphology, structure, elemental composition and valence, surface roughness, hydrophilicity and other physical and chemical properties of the coating were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), a profiler and a contact angle meter (CA). Adhesion and extensions of osteoblasts on the surface of the material were observed by scanning electron microscopy, and mineralization of osteoblasts on the surface of the material were observed by alizarin red staining. The antibacterial properties of the material were tested by culturing Staphylococcus aureus on the surface of the material. The osteogenic properties of Ti implants with porous Si/Ag TiO2 (TCP-SA) coatings were evaluated with in vivo experiments in rats. The results showed that Si and Ag were successfully introduced onto the Ti surface by plasma oxidation, and doping with Si and Ag did not change the surface morphology of the coating. The osteoblasts showed good adhesion and extension on the surfaces of Si/Ag coated samples, and the porous Si/Ag TiO2 coating promoted cell proliferation and mineralization. The bacterial experiments showed that the porous TiO2 coatings containing Si/Ag had certain antibacterial properties. The animal experiments showed that Si/Ag-coated Ti implants promoted integration between the implants and the surrounding bone. It was concluded that the porous Si/Ag TiO2 coating on the Ti surface had good osteogenic and antibacterial properties and provides an optimal strategy for improving the osteogenic and antibacterial properties of Ti implants.
Collapse
Affiliation(s)
- Quanming Zhao
- Department of Orthopedics, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Jieshi Wu
- Department of Orthopaedics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yankun Li
- Department of Orthopedics, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Ruisheng Xu
- Department of Orthopaedics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Xingyuan Zhu
- Department of Orthopedics, Dafeng People’s Hospital, Yancheng, Jiangsu, China
| | - Yang Jiao
- Department of Stomatology, The 7th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Rui Luo
- Department of Orthopedics, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Xiaohui Ni
- Department of Orthopedics, Dafeng People’s Hospital, Yancheng, Jiangsu, China
| |
Collapse
|
11
|
Lai JS, Tan CK, Yusoff K, Cheah SC. Development of semi-quantitative urinary sodium test strip. Biotechnol Appl Biochem 2022; 70:603-612. [PMID: 35830743 DOI: 10.1002/bab.2383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/01/2022] [Indexed: 11/09/2022]
Abstract
Excessive salt consumption has been associated with greater risk of hypertension. Therefore, monitoring of dietary sodium consumption should be prioritized. As sodium is mainly excreted through urine, 24-hours urine sample can be used to estimate individual sodium intake. Thus, a simple and inexpensive semi-quantitative urinary sodium detection test strip was developed based on the enzymatic reaction between β-galactosidase and chlorophenol red-β-D-galactopyranoside. When tested, colour formation was distinguished at 0 M (chartreuse yellow), 0.05 M (sunflower), 0.1-0.15 M (mango tango), and 0.2-0.25 M (persimmon) sodium. Analysis from ImageJ showed a linear result (r2 >0.9), low SD, and significant increase in magenta difference (p<0.01) between 0 M and 0.05-0.25 M sodium. Test strip can detect 0.03 M sodium at minimum but did not last for >2 days in adverse storage conditions (laboratory conditions, ∼80% relative humidity, 40°C, and direct light exposure) when stored in test strip bottles, and even shorter when exposed to the environment. The presence of urinary potassium, urea, and glucose did not affect test strip performance. Test strip produced comparable results to flame photometry with <15% variation when tested on overnight, random spot, and 24-hours urine samples. Overall, the developed test strip can be used to enzymatically semi-quantify 0.05-0.25 M sodium. Test strip was developed by using β-galactosidase and chlorophenol red-β-D-galactopyranoside for the enzymatic detection of urinary sodium. Test strip could perform urinary sodium monitoring by providing colour indicator based on the concentration of sodium tested in the urine sample at a quicker timing in comparison to current quantification methods. The developed test strip could be used by hypertensive and normotensive users conveniently and repeatably wherever and whenever possible without additional equipment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jiong Soon Lai
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Port Dickson, Negeri Sembilan, Malaysia
| | - Chung Keat Tan
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Port Dickson, Negeri Sembilan, Malaysia
| | - Khalid Yusoff
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Port Dickson, Negeri Sembilan, Malaysia
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Port Dickson, Negeri Sembilan, Malaysia
| |
Collapse
|
12
|
Carvelli A, Setti A, Desideri F, Galfrè SG, Biscarini S, Santini T, Colantoni A, Peruzzi G, Marzi MJ, Capauto D, Di Angelantonio S, Ballarino M, Nicassio F, Laneve P, Bozzoni I. A multifunctional locus controls motor neuron differentiation through short and long noncoding RNAs. EMBO J 2022; 41:e108918. [PMID: 35698802 PMCID: PMC9251839 DOI: 10.15252/embj.2021108918] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
The transition from dividing progenitors to postmitotic motor neurons (MNs) is orchestrated by a series of events, which are mainly studied at the transcriptional level by analyzing the activity of specific programming transcription factors. Here, we identify a post‐transcriptional role of a MN‐specific transcriptional unit (MN2) harboring a lncRNA (lncMN2‐203) and two miRNAs (miR‐325‐3p and miR‐384‐5p) in this transition. Through the use of in vitro mESC differentiation and single‐cell sequencing of CRISPR/Cas9 mutants, we demonstrate that lncMN2‐203 affects MN differentiation by sponging miR‐466i‐5p and upregulating its targets, including several factors involved in neuronal differentiation and function. In parallel, miR‐325‐3p and miR‐384‐5p, co‐transcribed with lncMN2‐203, act by repressing proliferation‐related factors. These findings indicate the functional relevance of the MN2 locus and exemplify additional layers of specificity regulation in MN differentiation.
Collapse
Affiliation(s)
- Andrea Carvelli
- Center for Life Nano- & Neuro-Science of Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Adriano Setti
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Fabio Desideri
- Center for Life Nano- & Neuro-Science of Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Silvia Giulia Galfrè
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Silvia Biscarini
- Center for Life Nano- & Neuro-Science of Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Tiziana Santini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Alessio Colantoni
- Center for Life Nano- & Neuro-Science of Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano- & Neuro-Science of Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Matteo Jacopo Marzi
- Center for Genomic Science of Istituto of Italiano di Tecnologia (IIT), Milan, Italy
| | - Davide Capauto
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | | | - Monica Ballarino
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Francesco Nicassio
- Center for Genomic Science of Istituto of Italiano di Tecnologia (IIT), Milan, Italy
| | - Pietro Laneve
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Irene Bozzoni
- Center for Life Nano- & Neuro-Science of Istituto Italiano di Tecnologia (IIT), Rome, Italy.,Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
13
|
Antimicrobial and Antibiofilm Coating of Dental Implants—Past and New Perspectives. Antibiotics (Basel) 2022; 11:antibiotics11020235. [PMID: 35203837 PMCID: PMC8868456 DOI: 10.3390/antibiotics11020235] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Regarded as one of the best solutions to replace missing teeth in the oral cavity, dental implants have been the focus of plenty of studies and research in the past few years. Antimicrobial coatings are a promising solution to control and prevent bacterial infections that compromise the success of dental implants. In the last few years, new materials that prevent biofilm adhesion to the surface of titanium implants have been reported, ranging from improved methods to already established coating surfaces. The purpose of this review is to present the developed antimicrobial and antibiofilm coatings that may have the potential to reduce bacterial infections and improve the success rate of titanium dental implants. All referred coating surfaces showed high antimicrobial properties with effectiveness in biofilm control, while maintaining implant biocompatibility. We expect that by combining the use of oligonucleotide probes as a covering material with novel peri-implant adjuvant therapies, we will be able to avoid the downsides of other covering materials (such as antibiotic resistance), prevent bacterial infections, and raise the success rate of dental implants. The existing knowledge on the optimal coating material for dental implants is limited, and further research is needed before more definitive conclusions can be drawn.
Collapse
|
14
|
Sun Y, Yang Y, Jiang W, Bai H, Liu H, Wang J. In Vivo Antibacterial Efficacy of Nanopatterns on Titanium Implant Surface: A Systematic Review of the Literature. Antibiotics (Basel) 2021; 10:antibiotics10121524. [PMID: 34943736 PMCID: PMC8698789 DOI: 10.3390/antibiotics10121524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Bionic surface nanopatterns of titanium (Ti) materials have excellent antibacterial effects in vitro for infection prevention. To date, there is a lack of knowledge about the in vivo bactericidal outcomes of the nanostructures on the Ti implant surfaces. Methods: A systematic review was performed using the PubMed, Embase, and Cochrane databases to better understand surface nanoscale patterns’ in vivo antibacterial efficacy. The inclusion criteria were preclinical studies (in vivo) reporting the antibacterial activity of nanopatterns on Ti implant surface. Ex vivo studies, studies not evaluating the antibacterial activity of nanopatterns or surfaces not modified with nanopatterns were excluded. Results: A total of five peer-reviewed articles met the inclusion criteria. The included studies suggest that the in vivo antibacterial efficacy of the nanopatterns on Ti implants’ surfaces seems poor. Conclusions: Given the small number of literature results, the variability in experimental designs, and the lack of reporting across studies, concluding the in vivo antibacterial effectiveness of nanopatterns on Ti substrates’ surfaces remains a big challenge. Surface coatings using metallic or antibiotic elements are still practical approaches for this purpose. High-quality preclinical data are still needed to investigate the in vivo antibacterial effects of the nanopatterns on the implant surface.
Collapse
Affiliation(s)
- Yang Sun
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
| | - Yang Yang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
- Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Disease, The Second Hospital of Jilin University, Changchun 130041, China
| | - Weibo Jiang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
| | - Haotian Bai
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
- Correspondence:
| |
Collapse
|
15
|
Fitting pieces into the puzzle: The impact of titanium-based dental implant surface modifications on bacterial accumulation and polymicrobial infections. Adv Colloid Interface Sci 2021; 298:102551. [PMID: 34757285 DOI: 10.1016/j.cis.2021.102551] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/09/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
Polymicrobial infection is the main cause of dental implant failure. Although numerous studies have reported the ability of titanium (Ti) surface modifications to inhibit microbial adhesion and biofilm accumulation, the majority of solutions for the utilization of Ti antibacterial surfaces have been testedin in vitro and animal models, with only a few developed surfaces progressing into clinical research. Motivated by this huge gap, we critically reviewed the scientific literature on the existing antibacterial Ti surfaces to help understand these surfaces' impact on the "puzzle" of undesirable dental implant-related infections. This manuscript comprises three main sections: (i) a narrative review on topics related to oral biofilm formation, bacterial-implant surface interactions, and on how implant-surface modifications can influence microbial accumulation; (ii) a critical evidence-based review to summarize pre-clinical and clinical studies in an attempt to "fit pieces into the puzzle" to unveil the best way to reduce microbial loads and control polymicrobial infection around dental implants showed by the current in vivo evidence; and (iii) discussion and recommendations for future research testing emerging antibacterial implant surfaces, connecting basic science and the requirements for future clinical translation. The findings of the present review suggest no consensus regarding the best available Ti surface to reduce bacterial colonization on dental implants. Smart release or on-demand activation surface coatings are a "new piece of the puzzle", which may be the most effective alternative for reducing microbial colonization on Ti surfaces, and future studies should focus on these technologies.
Collapse
|
16
|
Nam Y, Kim HC, Kim YC, Jang SH, Lee KY, Lee SY, Lee SH, Lee SY, Yoon SH, Ryu JS, Jang TW, Chang YS, Kim SJ, Park CK, Lee JE, Jung CY, Choi CM. Clinical impact of rebiopsy among patients with epidermal growth factor receptor-mutant lung adenocarcinoma in a real-world clinical setting. Thorac Cancer 2021; 12:890-898. [PMID: 33529490 PMCID: PMC7952806 DOI: 10.1111/1759-7714.13857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
Background In this study, we investigated the risk factors of acquired T790M mutation among patients with lung adenocarcinoma with epidermal growth factor receptor (EGFR) tyrosine mutation who were treated with EGFR‐tyrosine kinase inhibitors (TKIs). The aim was to identify the clinical impact of rebiopsy. Methods This multicenter, retrospective cohort study was conducted in South Korea from January 2007 to June 2017. Patients with adenocarcinoma with EGFR mutation who underwent rebiopsy and were treated with EGFR‐TKIs were included. Results Of a total of 352 patients, T790M mutation was identified in 156 (41.9%) at the time of rebiopsy. The median duration from initial biopsy to rebiopsy was 17 months. Univariate logistic regression analysis revealed associations of exon 19 deletion (odds ratio [OR], 1.643; p = 0.026), absence of L858R (OR, 0.627; p = 0.042), and previous EGFR‐TKI treatment duration (OR, 1.039; p < 0.001) with T790M mutation. Previous EGFR‐TKI treatment duration (OR, 3.580; p < 0.001) was independently associated with T790M mutation. A multivariate Cox proportional hazard model revealed that brain metastasis at initial diagnosis (hazard ratio, 1.390; p = 0.050) tended to be associated with T790M mutation. Among the patients with T790M mutation at rebiopsy, the osimertinib user group (n = 90) had a better one‐year survival (68.7 vs. 58.3%, p = 0.048) than the osimertinib nonuser group (n = 66). Conclusions Rebiopsy might affect the clinical course of patients with EGFR‐mutant adenocarcinoma who receive EGFR‐TKIs.
Collapse
Affiliation(s)
- Yunha Nam
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ho Cheol Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young-Chul Kim
- Department of Internal Medicine, Chonnam National University Medical School, and Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Seung Hun Jang
- Department of Pulmonary, Allergy and Critical Care Medicine, Hallym University Sacred Heart Hospital, Anyang, South Korea
| | - Kye Young Lee
- Department of Pulmonary Medicine, Konkuk University School of Medicine, Seoul, South Korea
| | - Shin Yup Lee
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, South Korea
| | - Sang Hoon Lee
- Division of Pulmonology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Yong Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Seong Hoon Yoon
- Department of Pulmonology and Allergy, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Jeong-Seon Ryu
- Department of Internal Medicine, Inha University Hospital, Incheon, South Korea
| | - Tae Won Jang
- Department of Internal Medicine, Kosin University Medical College, Pusan, South Korea
| | - Yoon Soo Chang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Joon Kim
- Division of Pulmonology, Department of Internal Medicine, The Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chan Kwon Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jeong Eun Lee
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Chi Young Jung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Daegu Catholic University Medical Center, Daegu, South Korea
| | - Chang-Min Choi
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
17
|
Cheng Y, Huang Y, Liu K, Pan S, Qin Z, Wu T, Xu X. Cardamine hupingshanensis aqueous extract improves intestinal redox status and gut microbiota in Se-deficient rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:989-996. [PMID: 32761836 DOI: 10.1002/jsfa.10707] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/06/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND As an essential trace element for mammalian species, selenium (Se) possesses powerful antioxidant properties and is a potential regulator of intestinal microbiota. However, effects of Cardamine hupingshanensis aqueous extract (CE), rich in Se, on balancing the intestinal redox status and regulating gut microbiota have been neglected. RESULTS An Se-deficient rat model was established by feeding a low-Se diet (LD) for 5 weeks and CE was then supplemented to LD or normal-Se-diet (ND) rats. Antioxidant enzyme activities and short-chain fatty acids (SCFA) concentration were increased by CE in both LD and ND rats. CE improved the intestinal morphology of LD rats impaired by deficient Se. Intestinal microbiota demonstrated various changes; for example, Butyrivibrio was increased in LD rats, while Bacteroides, Christensenellaceae, Clostridiaceae and Blautia were enhanced in ND rats. CONCLUSION Our findings provide evidence that CE shows potential in improving intestinal redox status and regulating gut microbiota. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuxin Cheng
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Yuting Huang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Kunyuan Liu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Zhiguo Qin
- Enshi Institute of Natural Plant Selenium, Enshi, China
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
18
|
Ro HS, Park HJ, Seo YK. Fluorine-incorporated TiO 2 nanotopography enhances adhesion and differentiation through ERK/CREB pathway. J Biomed Mater Res A 2020; 109:1406-1417. [PMID: 33253478 PMCID: PMC8247403 DOI: 10.1002/jbm.a.37132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/25/2022]
Abstract
This study compared the topography of different titanium surface structures (TiO2 nanotube and grain) with similar elemental compositions (TiO2 and fluorine [F]) on the Ti surface. High magnification indicated that the surfaces of the control and etching groups were similar to each other in a flat, smooth form. The group anodized for 1 h was observed with TiO2 nanotubes organized very neatly and regularly. In the group anodized for 30 min after etching, uneven wave and nanopore structures were observed. In addition, MTT assay showed that the F of the surface did not adversely affect cell viability, and the initial cell adhesion was increased in the 2.8% F‐incorporated TiO2 nanograin. At the edge of adherent cells, filopodia were observed in spreading form on the surfaces of the anodizing and two‐step processing groups, and they were observed in a branch shape in the control and etching groups. Moreover, cell adhesion molecule and osteogenesis marker expression was increased at the F‐incorporated TiO2 nanostructure. In addition, it was found that the expression of p‐extracellular signal‐regulated kinase (ERK) and p‐cAMP response element‐binding protein (CREB) increased in the TiO2 nanograin with the nanopore surface compared to the micro rough and nanotube surfaces relative to the osteogenic‐related gene expression patterns. As a result, this study confirmed that the topographic structure of the surface is more affected by osteogenic differentiation than the pore size and that differentiation by specific surface composition components is by CREB. Thus, the synergy effect of osteogenic differentiation was confirmed by the simultaneous activation of CREB/ERK.
Collapse
Affiliation(s)
- Hyang-Seon Ro
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, South Korea
| | - Hee-Jung Park
- Department of Medical Biotechnology (BK21 Plus team), Dongguk University, Gyeonggi-do, South Korea
| | - Young-Kwon Seo
- Department of Medical Biotechnology (BK21 Plus team), Dongguk University, Gyeonggi-do, South Korea
| |
Collapse
|
19
|
Tang B, Shen X, Yang Y, Xu Z, Yi J, Yao Y, Cao M, Zhang Y, Xia H. Enhanced cellular osteogenic differentiation on CoFe 2O 4/P(VDF-TrFE) nanocomposite coatings under static magnetic field. Colloids Surf B Biointerfaces 2020; 198:111473. [PMID: 33250417 DOI: 10.1016/j.colsurfb.2020.111473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 01/15/2023]
Abstract
Cellular responses can be regulated and manipulated through combining stimuli-responsive biomaterial with external stimulus. In this present, the magneto-responsive CoFe2O4/P(VDF-TrFE) nanocomposite coatings were designed to understand cell behaviors of preosteoblasts, as well as get insight into the underlying mechanism of osteogenic differentiation under static magnetic field (SMF). CoFe2O4/P(VDF-TrFE) nanocomposite coatings with differential magnetic property (low, medium and high magnetization) were prepared by incorporation of different mass fraction of CoFe2O4 nanoparticles (6%, 13 %, 20 %) into P(VDF-TrFE) matrix. Cell experiments indicated that all nanocomposite coatings with the assistance of SMF could promote the cell attachment, proliferation and osteogenic differentiation of MC3T3-E1 cells. Among different nanocomposite coatings, low magnetization coating (6%) showed a higher ALP activity and gene expression of Runx2, Col-I, OCN. Molecular biology assays demonstrated that the combination of nanocomposite coatings and SMF could significantly up-regulate the expression level of α2β1 integrin and p-ERK. Whereas, the addition of inhibitor U0126 down-regulated sharply the expression level of p-ERK, which indicated that cellular osteogenic differentiation of MC3T3-E1 cells was governed through α2β1 integrin-mediated MEK/ERK signaling pathways during CoFe2O4/P(VDF-TrFE) nanocomposite coatings were combined with SMF. This work provided a promising strategy to enhance cellular osteogenic differentiation through a remote-control manner, which exhibited great potential in the application of bone tissue repair and regeneration.
Collapse
Affiliation(s)
- Bolin Tang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China.
| | - Xiaojun Shen
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Yaru Yang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Zhi Xu
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China.
| | - Jie Yi
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Yongbo Yao
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Miao Cao
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China; Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Yalin Zhang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Hongqin Xia
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| |
Collapse
|
20
|
Tang B, Shen X, Ye G, Yang Y, Jiang Y, Xia H, Chen X. Magnetic-Field-Assisted Cellular Osteogenic Differentiation on Magnetic Zinc Ferrite Coatings via MEK/ERK Signaling Pathways. ACS Biomater Sci Eng 2020; 6:6864-6873. [PMID: 33320603 DOI: 10.1021/acsbiomaterials.0c01087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Combining an external stimulus and stimuli-responsive biomaterials can regulate cellular behaviors. In this paper, a magneto-responsive zinc ferrite (ZnFe2O4) coating was designed to gain insight into the preosteoblasts behaviors and osteogenic differentiation mechanism under a static magnetic field (SMF). ZnFe2O4 coatings with distinct magnetization (low, medium, and high magnetizations) were prepared by being annealed at different temperatures. Cellular biology experiments indicated that all ZnFe2O4 coatings with the assistance of SMF could promote the early proliferation (3 days) and osteogenic differentiation of MC3T3-E1 cells. Among different ZnFe2O4 samples, low and medium magnetization of ZnFe2O4 showed a higher osteogenesis-related gene expression (Runx2, Col-I, OCN) than that of high magnetization ZnFe2O4 under SMF, while cellular adhesion and proliferation cultured on different ZnFe2O4 samples presented insignificant differences. Molecular biology tests showed that the combination of ferromagnetic ZnFe2O4 and SMF could significantly improve the expression level of α2β1 integrin and p-ERK. However, the addition of the inhibitor U0126 sharply reduced the expression level of p-ERK, which indicated that α2β1 integrin-mediated MEK/ERK signaling pathways play a key role in SMF-assisted cellular osteogenic differentiation over ZnFe2O4 coatings. This work provides an attractive strategy to enhance cellular osteogenic differentiation in a remote-control way, which exhibited enormous potential in the field of bone tissue repair and regeneration.
Collapse
Affiliation(s)
- Bolin Tang
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Xiaojun Shen
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Guanchen Ye
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,China Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
| | - Yaru Yang
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Yang Jiang
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Hongqin Xia
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Xiaoyi Chen
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,China Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
| |
Collapse
|
21
|
Jiao Y, Ni X, Zou G, Ren L, Yi L, Zhao Q. Microstructure and biological activity of silicon‐doped composite coatings fabricated by micro‐arc oxidation on magnesium alloy. SURF INTERFACE ANAL 2020. [DOI: 10.1002/sia.6913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yang Jiao
- Department of Stomatology, the 7th Medical Center Chinese PLA General Hospital Beijing China
| | - Xiao‐hui Ni
- Department of Orthopedics Dafeng People's Hospital Yancheng China
| | - Guo‐you Zou
- Department of Orthopedics Dafeng People's Hospital Yancheng China
| | - Liu‐bao Ren
- Department of Orthopedics Dafeng People's Hospital Yancheng China
| | - Lei Yi
- Department of Burn, Ruijin Hospital, School of Medicine Shanghai Jiao Tong University Shanghai China
| | - Quan‐ming Zhao
- Department of Orthopedics Dafeng People's Hospital Yancheng China
| |
Collapse
|
22
|
Malviya N, Rajput M, Mobin SM, Mukhopadhyay S. Amino‐Acid‐Derived Emerging Sensor for Detection of S
2−
Ion and MeOH Percentage in MeOH‐H
2
O Mixture. ChemistrySelect 2020. [DOI: 10.1002/slct.202002690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Novina Malviya
- Discipline of Chemistry School of Basic Sciences Indian Institute of Technology Indore Simrol 453552 India
| | - Mahima Rajput
- Discipline of Chemistry School of Basic Sciences Indian Institute of Technology Indore Simrol 453552 India
| | - Shaikh M. Mobin
- Discipline of Chemistry School of Basic Sciences Indian Institute of Technology Indore Simrol 453552 India
| | - Suman Mukhopadhyay
- Discipline of Chemistry School of Basic Sciences Indian Institute of Technology Indore Simrol 453552 India
- Discipline of Biosciences and Biomedical Engineering, School of Engineering, Indian Institut Discipline of Biosciences and Biomedical Engineering School of Engineering Indian Institute of Technology Indore Simrol 453552 India
| |
Collapse
|
23
|
Shimabukuro M. Antibacterial Property and Biocompatibility of Silver, Copper, and Zinc in Titanium Dioxide Layers Incorporated by One-Step Micro-Arc Oxidation: A Review. Antibiotics (Basel) 2020; 9:E716. [PMID: 33092058 PMCID: PMC7589568 DOI: 10.3390/antibiotics9100716] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Titanium (Ti) and its alloys are commonly used in medical devices. However, biomaterial-associated infections such as peri-implantitis and prosthetic joint infections are devastating and threatening complications for patients, dentists, and orthopedists and are easily developed on titanium surfaces. Therefore, this review focuses on the formation of biofilms on implant surfaces, which is the main cause of infections, and one-step micro-arc oxidation (MAO) as a coating technology that can be expected to prevent infections due to the implant. Many researchers have provided sufficient data to prove the efficacy of MAO for preventing the initial stages of biofilm formation on implant surfaces. Silver (Ag), copper (Cu), and zinc (Zn) are well used and are incorporated into the Ti surface by MAO. In this review, the antibacterial properties, cytotoxicity, and durability of these elements on the Ti surface incorporated by one-step MAO will be summarized. This review is aimed at enhancing the importance of the quantitative control of Ag, Cu, and Zn for their use in implant surfaces and the significance of the biodegradation behavior of these elements for the development of antibacterial properties.
Collapse
Affiliation(s)
- Masaya Shimabukuro
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
24
|
Ye J, Li B, Li M, Zheng Y, Wu S, Han Y. ROS induced bactericidal activity of amorphous Zn-doped titanium oxide coatings and enhanced osseointegration in bacteria-infected rat tibias. Acta Biomater 2020; 107:313-324. [PMID: 32126308 DOI: 10.1016/j.actbio.2020.02.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 10/24/2022]
Abstract
Titanium-based endosseous implants with high antibacterial and osseointegration activities are extremely required in clinics. To achieve this line, herein the doped coatings with three kinds of Zn doses were micro-arc oxidized (MAOed) on Ti. They were examined to reveal a bilayered structure, in which the outer layer consisted completely of the amorphism comprising elements of Ti, O and Zn with Zn doped in the form of weaken Zn-O bonds, and the underlying layer was partially crystallized with nanocrystalline TiO2 and Zn2TiO4 to embed an amorphous matrix. While the Zn doped doses of the surface amorphous layers increased with elevating the MAOed voltages, the weaken Zn-O bonds in the amorphism were identified to act as both the contributor of Zn2+ controllable release and the generator of reactive oxide species (ROS) on the coatings. The enhanced HO• and O2-• formation on the elevated voltage MAOed coatings caused serious break of the cell walls and plasma membranes of S. aureus. In parallel, the enhanced Zn2+ release and extracellular H2O2 formation led to the enhanced intracellular ROS level of S. aureus, further aggravating the damage of plasma membrane, resulting in bacteria death. On contrary to the overdose of Zn doped coating, the moderate doses of Zn doped coatings did not induce additional intracellular ROS and attenuate viability and proliferation of osteoblasts in vitro, and promoted osseointegration in both S. aureus-uninfected and infected rat tibias, which ascribed to the strong antibacterial activity and un-attenuated cell function of the coatings in the infected case. STATEMENT OF SIGNIFICANCE: (1) The Zn-doped coatings revealed a bilayered structure of the surface layer comprising the Ti, O and Zn constructed amorphism with Zn in the form of weaken Zn-O bonds, and the underlying layer comprising nanocrystalline TiO2 and Zn2TiO4 to embed amorphous matrix. (2) The weaken Zn-O bonds in the amorphism were identified to act as both the contributor of Zn2+ controllable release and the generator of ROS on the coatings. (3) The enhanced Zn2+ release and ROS formation on the coatings killed S. aureus by inducing serious break of their cell walls and plasma membranes. This effect in combination of un-attenuated osteoblast proliferation endowed the moderate Zn doped coatings with enhanced osseointegration in S. aureus-infected rat tibias.
Collapse
|
25
|
Yang L, Chen C, Hu Y, Wei F, Cui J, Zhao Y, Xu X, Chen X, Sun D. Three-dimensional bacterial cellulose/polydopamine/TiO2 nanocomposite membrane with enhanced adsorption and photocatalytic degradation for dyes under ultraviolet-visible irradiation. J Colloid Interface Sci 2020; 562:21-28. [DOI: 10.1016/j.jcis.2019.12.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022]
|
26
|
Antibacterial, angiogenic, and osteogenic activities of Ca, P, Co, F, and Sr compound doped titania coatings with different Sr content. Sci Rep 2019; 9:14203. [PMID: 31578429 PMCID: PMC6775141 DOI: 10.1038/s41598-019-50496-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/12/2019] [Indexed: 02/02/2023] Open
Abstract
Titanium implants are often combined with microporous titania coatings simultaneously doped with various elements to enhance their antibacterial, angiogenic and osteogenic activities. To evaluate how Sr doping levels affect properties of titania coatings simultaneously doped with Ca, P, Co and F (TiCPCF coatings), we prepared coatings with Sr contents equal to 6, 11 and 18 wt% (TiCPCF-S6, TiCPCF-S11 and TiCPCF-S18, respectively) using micro-arc oxidation of titanium. Sr presence in TiCPCF coatings did not affect their phase compositions, microstructure, surface wettability, roughness, and adhesion to titanium. Antibacterial, angio- and osteo-genic activities of all the coatings were evaluated. Sr incorporation improved mesenchymal stem cell proliferation, osteogenic differentiation and implant osseointegration. TiCPCF-S11 showed the most optimum Sr content judging by its enhanced osteogenic activity. While Sr incorporation did not weaken angiogenic and antibacterial abilities of TiCPCF. Thus TiCPCF-S11 coating is a very strong candidate to be used as a next-generation bone implant material.
Collapse
|