1
|
Yang L, Ding X, Zhang S, Wu T. Impact of expectancy on fatigue by exposure to the fifth generation of mobile communication signals. Electromagn Biol Med 2025:1-12. [PMID: 40269539 DOI: 10.1080/15368378.2025.2496151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
There is a long-standing debate about the relationship between Radio Frequency Electromagnetic Field (RF-EMF) exposure and fatigue. Past studies primarily rely on self-report scales to assess fatigue, but these methods are often susceptible to personal biases. Notably, the role of psychological factors in the fatigue response induce by RF-EMF exposure remains unclear. Therefore, our study focuses on exploring the impact of 5 G signal exposure on human fatigue, particularly considering the influence of expectancy induced by psychological priming on the outcomes. In this study, we recruited 21 healthy subjects who were tested in three sessions. Each session included two 30-min exposures to either real or sham 5 G signals, with the order randomized. The experiment was conducted under varying informational conditions: subjects were provided with correct, false, or no information about the order of exposure. Additionally, subjects completed a fatigue scoring questionnaire and underwent Electroencephalogram (EEG) measurements during the experiment. The statistical comparison indicates that 5 G RF-EMF exposure at routine levels does not lead to changes in EEG power. The finding reveals that the report of fatigue can be altered by the conveyed information of being exposed by 5 G signals although there is no real exposure and no detectable electrophysiological indicator. Our findings suggest that it is necessary to prevent psychological priming in any kind or to take its possible consequence into consideration, to reveal this effect of RF-EMF exposure.
Collapse
Affiliation(s)
- Lei Yang
- China Academy of Information and Communications Technology, CTTL-Terminals, Beijing, China
| | - Xiaotong Ding
- China Academy of Information and Communications Technology, CTTL-Terminals, Beijing, China
| | - Shun Zhang
- Northwestern Polytechnical University, Electronic Information, Xian, China
| | - Tongning Wu
- China Academy of Information and Communications Technology, Artificial Intelligence Institute, Beijing, China
| |
Collapse
|
2
|
Haji AI, Ejaz H, Omar MO, Takriti MB, Narayanan SN. Analysis of the Association of Mobile Phone Usage and Hearing Function in Young Adults. Cureus 2025; 17:e79403. [PMID: 40130146 PMCID: PMC11930783 DOI: 10.7759/cureus.79403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND The health effects of radiofrequency electromagnetic radiation (RF-EMR), especially 4G and 5G, have been the subject of recent debate. The impact of this technology, particularly the nonthermal biological effects on humans and other animals has been largely ignored and not been comprehensively evaluated. Billions of people use this technology all over the globe today, and a significant percentage of them are in the adolescent age group. Therefore, a minor incidence of any adverse effect on health would be a major public health issue on a long-term basis. AIM The current study was designed to determine the association between long-, intermediate-, and/or short-term RF-EMR exposure from mobile phones on hearing ability in vulnerable populations like young adults. MATERIALS AND METHODS Seventy-eight young adults (aged 17-24 years) were recruited after obtaining their informed consent. First, a validated questionnaire was used to obtain the extent of phone usage among participants. They were then grouped as long-term, intermediate-term, and short-term users as per the criteria, and later their hearing ability was tested by pure tone audiometry. RESULTS Among the 78 participants, 40 (51.28%) were males and 38 (48.71%) were females. Sixty-four (82.05%) of the participants responded that the right ear was their dominant ear, and for the remaining 14 (17.95%), it was the left ear. Forty-five participants (57.69%) use a 4G phone, while 32 (41.02%) use a 5G, and only one participant (1.28%) uses a 2G phone. Forty-five participants (57.69%) use the phone primarily for texting, while 33 (42.30%) use it to make calls. Fifty-four participants (69.23%) firmly attached the phone over their ears while making/receiving a call, but 24 (30.76%) did not. Fifty-nine participants (75.64%) did not feel any discomfort, but 11 (14.10%) felt a headache, one (1.28%) felt nausea, and seven (8.97%) experienced tinnitus during a call. In audiometry, mild to moderate hearing loss was evident in all three groups of participants at frequencies 250 Hz, 500 Hz, and 1000 Hz. The hearing loss was evident in individuals who have used their phones for more than 30 min/day for five years continuously compared to individuals who have used their phones 30 min/day for four years and/or 30 min/day for less than three years. This pattern was similar in both the right and left ears. Ear dominance did not play a significant role in influencing hearing loss in participants. However, significant hearing loss was found in 4G phone users compared to 5G phone users at 250 Hz and 500 Hz but not with frequencies between 1000 Hz and 8000 Hz particularly in the left ear. Moreover, irrespective of the participant's per-day average call duration, the hearing loss was evident at frequencies 250-1000Hz in both the left and right ears compared to other frequencies. CONCLUSION Long-term mobile phone use led to mild to moderate hearing loss, at frequencies 250 Hz, 500 Hz, and 1000 Hz. Ear dominance did not play a significant role in influencing hearing loss in participants. However, significant hearing loss was found in 4G phone users compared to 5G phone users at 250 Hz and 500 Hz but not with other frequencies. Further research is required to validate these results and understand RF-EMR effects on hearing in vulnerable populations like young adults.
Collapse
Affiliation(s)
- Ahmed I Haji
- Internal Medicine, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, ARE
| | - Haris Ejaz
- Anesthesia and Critical Care, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, ARE
| | - Moaz O Omar
- Physiology, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, ARE
| | - Mohamad B Takriti
- General Surgery, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, ARE
| | - Sareesh N Narayanan
- Physiology, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, ARE
- Physiology, School of Medicine and Dentistry, University of Central Lancashire, Preston, GBR
| |
Collapse
|
3
|
Bijlsma N, Conduit R, Kennedy G, Cohen M. Does radiofrequency radiation impact sleep? A double-blind, randomised, placebo-controlled, crossover pilot study. Front Public Health 2024; 12:1481537. [PMID: 39534742 PMCID: PMC11554657 DOI: 10.3389/fpubh.2024.1481537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The most common source of Radiofrequency Electromagnetic Field (RF-EMF) exposures during sleep includes digital devices, yet there are no studies investigating the impact of multi-night exposure to electromagnetic fields emitted from a baby monitor on sleep under real-world conditions in healthy adults. Given the rise in the number of people reporting to be sensitive to manmade electromagnetic fields, the ubiquitous use of Wi-Fi enabled digital devices and the lack of real-world data, we investigated the effect of 2.45 GHz radiofrequency exposure during sleep on subjective sleep quality, and objective sleep measures, heart rate variability and actigraphy in healthy adults. This pilot study was a 4-week randomised, double-blind, crossover trial of 12 healthy adults. After a one-week run-in period, participants were randomised to exposure from either an active or inactive (sham) baby monitor for 7 nights and then crossed over to the alternate intervention after a one-week washout period. Subjective and objective assessments of sleep included the Pittsburgh Insomnia Rating Scale (PIRS-20), electroencephalography (EEG), actigraphy and heart rate variability (HRV) derived from electrocardiogram. Sleep quality was reduced significantly (p < 0.05) and clinically meaningful during RF-EMF exposure compared to sham-exposure as indicated by the PIRS-20 scores. Furthermore, at higher frequencies (gamma, beta and theta bands), EEG power density significantly increased during the Non-Rapid Eye Movement sleep (p < 0.05). No statistically significant differences in HRV or actigraphy were detected. Our findings suggest that exposure to a 2.45 GHz radiofrequency device (baby monitor) may impact sleep in some people under real-world conditions however further large-scale real-world investigations with specified dosimetry are required to confirm these findings.
Collapse
Affiliation(s)
- Nicole Bijlsma
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Australian College of Environmental Studies, Warrandyte, VIC, Australia
| | - Russell Conduit
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Gerard Kennedy
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- School of Science, Psychology and Sport, Federation University, Mount Helen, VIC, Australia
- Austin Health, Institute for Breathing and Sleep, Heidelberg, VIC, Australia
| | - Marc Cohen
- The Extreme Wellness Institute, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Pophof B, Kuhne J, Schmid G, Weiser E, Dorn H, Henschenmacher B, Burns J, Danker-Hopfe H, Sauter C. The effect of exposure to radiofrequency electromagnetic fields on cognitive performance in human experimental studies: Systematic review and meta-analyses. ENVIRONMENT INTERNATIONAL 2024; 191:108899. [PMID: 39265322 DOI: 10.1016/j.envint.2024.108899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND The objective of this review is to evaluate the associations between short-term exposure to radiofrequency electromagnetic fields (RF-EMF) and cognitive performance in human experimental studies. METHODS Online databases (PubMed, Embase, Scopus, Web of Science and EMF-Portal) were searched for studies that evaluated effects of exposure to RF-EMF on seven domains of cognitive performance in human experimental studies. The assessment of study quality was based on the Risk of Bias (RoB) tool developed by the Office of Health Assessment and Translation (OHAT). Random effects meta-analyses of Hedges's g were conducted separately for accuracy- and speed-related performance measures of various cognitive domains, for which data from at least two studies were available. Finally, the certainty of evidence for each identified outcome was assessed according to Grading of Recommendations Assessment, Development, and Evaluation (GRADE). RESULTS 57,543 records were identified and 76 studies (80 reports) met the inclusion criteria. The included 76 studies with 3846 participants, consisting of humans of different age, sex and health status from 19 countries, were conducted between 1989 and 2021. Quantitative data from 50 studies (52 reports) with 2433 participants were included into the meta-analyses. These studies were performed in 15 countries between 2001 and 2021. The majority of the included studies used head exposure with GSM 900 uplink. None of the meta-analyses observed a statistically significant effect of RF-EMF exposure compared to sham on cognitive performance as measured by the confidence interval surrounding the Hedges's g or the significance of the z-statistic. For the domain Orientation and Attention, subclass Attention - Attentional Capacity RF-EMF exposure results in little to no difference in accuracy (Hedges's g 0.024, 95 % CI [-0.10; 0.15], I2 = 28 %, 473 participants). For the domain Orientation and Attention, subclass Attention - Concentration / Focused Attention RF-EMF exposure results in little to no difference in speed (Hedges's g 0.005, 95 % CI [-0.17; 0.18], I2 = 7 %, 132 participants) and probably results in little to no difference in accuracy; it does not reduce accuracy (Hedges's g 0.097, 95 % CI [-0.05; 0.24], I2 = 0 %, 217 participants). For the domain Orientation and Attention, subclass Attention - Vigilance RF-EMF exposure probably results in little to no difference in speed and does not reduce speed (Hedges's g 0.118, 95 % CI [-0.04; 0.28], I2 = 41 %, 247 participants) and results in little to no difference in accuracy (Hedges's g 0.042, 95 % CI, [-0.09; 0.18], I2 = 0 %, 199 participants). For the domain Orientation and Attention, subclass Attention - Selective Attention RF-EMF exposure probably results in little to no difference in speed and does not reduce speed (Hedges's g 0.080, 95 % CI [-0.09; 0.25], I2 = 63 %, 452 participants); it may result in little to no difference in accuracy, but it probably does not reduce accuracy (Hedges's g 0.178, 95 % CI [-0.02; 0.38], I2 = 68 %, 480 participants). For the domain Orientation and Attention, subclass Attention - Divided Attention RF-EMF exposure results in little to no difference in speed (Hedges's g -0.010, 95 % CI [-0.14; 0.12], I2 = 5 %, 307 participants) and may result in little to no difference in accuracy (Hedges's g -0.089, 95 % CI [-0.35; 0.18], I2 = 53 %, 167 participants). For the domain Orientation and Attention, subclass Processing Speed - Simple Reaction Time Task RF-EMF exposure results in little to no difference in speed (Hedges's g 0.069, 95 % CI [-0.02; +0.16], I2 = 29 %, 820 participants). For the domain Orientation and Attention, subclass Processing Speed - 2-Choice Reaction Time Task RF-EMF exposure results in little to no difference in speed (Hedges's g -0.023, 95 % CI [-0.13; 0.08], I2 = 0 %, 401 participants), and may result in little to no difference in accuracy (Hedges's g -0.063, 95 % CI [-0.38; 0.25], I2 = 63 %, 117 participants). For the domain Orientation and Attention, subclass Processing Speed - >2-Choice Reaction Time Task RF-EMF exposure results in little to no difference in speed (Hedges's g -0.054, 95 % CI [-0.14; 0.03], I2 = 0 %, 544 participants) and probably results in little to no difference in accuracy (Hedges's g -0.129, 95 % CI [-0.30; 0.04], I2 = 0 %, 131 participants). For the domain Orientation and Attention, subclass Processing Speed - Other Tasks RF-EMF exposure probably results in little to no difference in speed and does not reduce speed (Hedges's g 0.067, 95 % CI [-0.12; 0.26], I2 = 38 %, 249 participants); it results in little to no difference in accuracy (Hedges's g 0.036, 95 % CI [-0.08; 0.15], I2 = 0 %, 354 participants). For the domain Orientation and Attention, subclass Working Memory - n-back Task (0-3-back) we found Hedges's g ranging from -0.090, 95 % CI [-0.18; 0.01] to 0.060, 95 % CI [-0.06; 0.18], all I2 = 0 %, 237 to 474 participants, and conclude that RF-EMF exposure results in little to no difference in both speed and accuracy. For the domain Orientation and Attention, subclass Working Memory - Mental Tracking RF-EMF exposure results in little to no difference in accuracy (Hedges's g -0.047, 95 % [CI -0.15; 0.05], I2 = 0 %, 438 participants). For the domain Perception, subclass Visual and Auditory Perception RF-EMF exposure may result in little to no difference in speed (Hedges's g -0.015, 95 % CI [-0.23; 0.195], I2 = 0 %, 84 participants) and probably results in little to no difference in accuracy (Hedges's g 0.035, 95 % CI [-0.13; 0.199], I2 = 0 %, 137 participants). For the domain Memory, subclass Verbal and Visual Memory RF-EMF exposure probably results in little to no difference in speed and does not reduce speed (Hedges's g 0.042, 95 % CI [-0.15; 0.23], I2 = 0 %, 102 participants); it may result in little to no difference in accuracy (Hedges's g -0.087, 95 % CI [-0.38; 0.20], I2 = 85 %, 625 participants). For the domain Verbal Functions and Language Skills, subclass Verbal Expression, a meta-analysis was not possible because one of the two included studies did not provide numerical values. Results of both studies did not indicate statistically significant effects of RF-EMF exposure on both speed and accuracy. For the domain Construction and Motor Performance, subclass Motor Skills RF-EMF exposure may reduce speed, but the evidence is very uncertain (Hedges's g -0.919, 95 % CI [-3.09; 1.26], I2 = 96 %, 42 participants); it probably results in little to no difference in accuracy and does not reduce accuracy (Hedges's g 0.228, 95 % CI [-0.01; 0.46], I2 = 0 %, 109 participants). For the domain Concept Formation and Reasoning, subclass Reasoning RF-EMF exposure results in little to no difference in speed (Hedges's g 0.010, 95 % CI [-0.11; 0.13], I2 = 0 %, 263 participants) and probably results in little to no difference in accuracy and does not reduce accuracy (Hedges's g 0.051, 95 % CI [-0.14; 0.25], I2 = 0 %, 100 participants). For the domain Concept Formation and Reasoning, subclass Mathematical Procedures RF-EMF exposure results in little to no difference in speed (Hedges's g 0.033, 95 % CI [-0.12; 0.18], I2 = 0 %, 168 participants) and may result in little to no difference in accuracy but probably does not reduce accuracy (Hedges's g 0.232, 95 % CI [-0.12; +0.59], I2 = 86 %, 253 participants). For the domain Executive Functions there were no studies. DISCUSSION Overall, the results from all domains and subclasses across their speed- and accuracy-related outcome measures according to GRADE provide high to low certainty of evidence that short-term RF-EMF exposure does not reduce cognitive performance in human experimental studies. For 16 out of 35 subdomains some uncertainty remains, because of limitations in the study quality, inconsistency in the results or imprecision of the combined effect size estimate. Future research should focus on construction and motor performance, elderly, and consideration of both sexes. OTHER This review was partially funded by the WHO radioprotection programme. The protocol for this review was registered in Prospero reg. no. CRD42021236168 and published in Environment International (Pophof et al. 2021).
Collapse
Affiliation(s)
- Blanka Pophof
- Federal Office for Radiation Protection, Competence Centre EMF, Oberschleißheim, Germany.
| | - Jens Kuhne
- Federal Office for Radiation Protection, Competence Centre EMF, Oberschleißheim, Germany
| | | | - Evelyn Weiser
- Federal Office for Radiation Protection, Competence Centre EMF, Cottbus, Germany
| | - Hans Dorn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Competence Centre of Sleep Medicine, 12203 Berlin, Germany
| | - Bernd Henschenmacher
- Federal Office for Radiation Protection, Optical Radiation, Oberschleißheim, Germany
| | - Jacob Burns
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), LMU Munich, Germany
| | - Heidi Danker-Hopfe
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Competence Centre of Sleep Medicine, 12203 Berlin, Germany
| | - Cornelia Sauter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Competence Centre of Sleep Medicine, 12203 Berlin, Germany
| |
Collapse
|
5
|
Bosch-Capblanch X, Esu E, Oringanje CM, Dongus S, Jalilian H, Eyers J, Auer C, Meremikwu M, Röösli M. The effects of radiofrequency electromagnetic fields exposure on human self-reported symptoms: A systematic review of human experimental studies. ENVIRONMENT INTERNATIONAL 2024; 187:108612. [PMID: 38640611 DOI: 10.1016/j.envint.2024.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND The technological applications of radiofrequency electromagnetic fields (RF-EMF) have been steadily increasing since the 1950s exposing large proportions of the population. The World Health Organization (WHO) is assessing the potential health effects of exposure to RF-EMF. OBJECTIVES To systematically assess the effects of exposure to RF-EMF on self-reported non-specific symptoms in human subjects and to assess the accuracy of perceptions of presence or absence of RF-EMF exposure. METHODS Eligibility criteria: experimental studies carried out in the general population and in individuals with idiopathic environmental intolerance attributed to EMF (IEI-EMF), in any language. INFORMATION SOURCES Medline, Web of Science, PsycInfo, Cochrane Library, Epistemonikos, Embase and EMF portal, searched till April 2022. Risk of Bias (ROB): we used the RoB tool developed by OHAT adapted to the topic of this review. SYNTHESIS OF RESULTS we synthesized studies using random effects meta-analysis and sensitivity analyses, where appropriate. RESULTS Included studies: 41 studies were included, mostly cross over trials and from Europe, with a total of 2,874 participants. SYNTHESIS OF RESULTS considering the primary outcomes, we carried out meta-analyses of 10 exposure-outcomes pairs. All evidence suggested no or small non-significant effects of exposure on symptoms with high (three comparisons), moderate (four comparisons), low (one comparison) and very low (two comparisons) certainty of evidence. The effects (standard mean difference, where positive values indicate presence of symptom being exposed) in the general population for head exposure were (95% confidence intervals) 0.08 (-0.07 to 0.22) for headache, -0.01 (-0.22 to 0.20) for sleeping disturbances and 0.13 (-0.51 to 0.76) for composite symptoms; and for whole-body exposure: 0.09 (-0.35 to 0.54), 0.00 (-0.15 to 0.15) for sleeping disturbances and -0.05 (-0.17 to 0.07) for composite symptoms. For IEI-EMF individuals SMD ranged from -0.19 to 0.11, all of them with confidence intervals crossing the value of zero. Further, the available evidence suggested that study volunteers could not perceive the EMF exposure status better than what is expected by chance and that IEI-EMF individuals could not determine EMF conditions better than the general population. DISCUSSION Limitations of evidence: experimental conditions are substantially different from real-life situations in the duration, frequency, distance and position of the exposure. Most studies were conducted in young, healthy volunteers, who might be more resilient to RF-EMF than the general population. The outcomes of interest in this systematic review were symptoms, which are self-reported. The available information did not allow to assess the potential effects of exposures beyond acute exposure and in elderly or in chronically ill people. It cannot be ruled out that a real EMF effect in IEI-EMF groups is masked by a mix with insensitive subjects. However, studies on symptoms reporting and/or field perceptions did not find any evidence that there were particularly vulnerable individuals in the IEI-EMF group, although in open provocation studies, when volunteers were informed about the presence or absence of EMF exposure, such differences were consistently observed. INTERPRETATION available evidence suggests that acute RF-EMF below regulatory limits does not cause symptoms and corresponding claims in the everyday life are related to perceived and not to real EMF exposure status.
Collapse
Affiliation(s)
- Xavier Bosch-Capblanch
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland; University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland.
| | - Ekpereonne Esu
- Department of Public Health, College of Medical Sciences, University of Calabar, Calabar, Nigeria.
| | - Chioma Moses Oringanje
- Department of Biology, College of Art & Sciences, Xavier University, Cincinnati, OH 45247, USA.
| | - Stefan Dongus
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland; University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland.
| | - Hamed Jalilian
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland; University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland.
| | - John Eyers
- Independent Consultant & Senior Research Fellow, 3ie, c/o LIDC, 20 Bloomsbury Square, London WC1A 2NS, United Kingdom.
| | - Christian Auer
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland; University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland.
| | - Martin Meremikwu
- Faculty of Medicine, College of Medical Sciences, University of Calabar, Calabar, Nigeria.
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland; University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland.
| |
Collapse
|
6
|
Sannino A, Romeo S, Scarfì MR, Pinchera D, Schettino F, Alonzo M, Allocca M, Zeni O. The effect of exposure to radiofrequency LTE signal and coexposure to mitomycin-C in Chinese hamster lung fibroblast V79 cells. Bioelectromagnetics 2024; 45:97-109. [PMID: 37493434 DOI: 10.1002/bem.22478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023]
Abstract
This study aims to investigate the cellular effects of radiofrequency exposure, 1950 MHz, long-term evolution (LTE) signal, administered alone and in combination with mitomycin-C (MMC), a well-known cytotoxic agent. Chinese hamster lung fibroblast (V79) cells were exposed/sham exposed in a waveguide-based system under strictly controlled conditions of both electromagnetic and environmental parameters, at specific absorption rate (SAR) of 0.3 and 1.25 W/kg. Chromosomal damage (micronuclei formation), oxidative stress (reactive oxygen species [ROS] formation), and cell cycle progression were analyzed after exposure and coexposure. No differences between exposed samples and sham-controls were detected following radiofrequency exposure alone, for all the experimental conditions tested and biological endpoints investigated. When radiofrequency exposure was followed by MMC treatment, 3 h pre-exposure did not modify MMC-induced micronuclei. Pre-exposure of 20 h at 0.3 W/kg did not modify the number of micronuclei induced by MMC, while 1.25 W/kg resulted in a significant reduction of MMC-induced damage. Absence of effects was also detected when CW was used, at both SAR levels. MMC-induced ROS formation resulted significantly decreased at both SAR levels investigated, while cell proliferation and cell cycle progression were not affected by coexposures. The results here reported provide no evidence of direct effects of 1950 MHz, LTE signal. Moreover, they further support our previous findings on the capability of radiofrequency pre-exposure to induce protection from a subsequent toxic treatment, and the key role of the modulated signals and the experimental conditions adopted in eliciting the effect.
Collapse
Affiliation(s)
- Anna Sannino
- National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy
| | - Stefania Romeo
- National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy
| | - Maria Rosaria Scarfì
- National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy
| | - Daniele Pinchera
- Department of Electrical and Information Engineering "Maurizio Scarano" (DIEI), University of Cassino and Southern Lazio, Cassino, Italy
| | - Fulvio Schettino
- Department of Electrical and Information Engineering "Maurizio Scarano" (DIEI), University of Cassino and Southern Lazio, Cassino, Italy
| | - Mario Alonzo
- National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy
| | - Mariateresa Allocca
- National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy
| | - Olga Zeni
- National Research Council of Italy (CNR), Institute for Electromagnetic Sensing of the Environment (IREA), Naples, Italy
| |
Collapse
|
7
|
Jamal L, Yahia-Cherif L, Hugueville L, Mazet P, Lévêque P, Selmaoui B. Assessment of Electrical Brain Activity of Healthy Volunteers Exposed to 3.5 GHz of 5G Signals within Environmental Levels: A Controlled-Randomised Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6793. [PMID: 37754652 PMCID: PMC10530694 DOI: 10.3390/ijerph20186793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023]
Abstract
Following the recent deployment of fifth-generation (5G) radio frequencies, several questions about their health impacts have been raised. Due to the lack of experimental research on this subject, the current study aimed to investigate the bio-physiological effects of a generated 3.5 GHz frequency. For this purpose, the wake electroencephalograms (EEG) of 34 healthy volunteers were explored during two "real" and "sham" exposure sessions. The electromagnetic fields were antenna-emitted in an electrically shielded room and had an electrical field root-mean-square intensity of 2 V/m, corresponding to the current outdoor exposure levels. The sessions were a maximum of one week apart, and both contained an exposure period of approximately 26 min and were followed by a post-exposure period of 17 min. The power spectral densities (PSDs) of the beta, alpha, theta, and delta bands were then computed and corrected based on an EEG baseline period. This was acquired for 17 min before the subsequent phases were recorded under two separate conditions: eyes open (EO) and eyes closed (EC). A statistical analysis showed an overall non-significant change in the studied brain waves, except for a few electrodes in the alpha, theta, and delta spectra. This change was translated into an increase or decrease in the PSDs, in response to the EO and EC conditions. In conclusion, this studhy showed that 3.5 GHz exposure, within the regulatory levels and exposure parameters used in this protocol, did not affect brain activity in healthy young adults. Moreover, to our knowledge, this was the first laboratory-controlled human EEG study on 5G effects. It attempted to address society's current concern about the impact of 5G exposure on human health at environmental levels.
Collapse
Affiliation(s)
- Layla Jamal
- Department of Experimental Toxicology and Modeling (TEAM), Institut National de l’Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France;
- PériTox Laboratory (UMR_I 01), INERIS/UPJV, INERIS, 60550 Verneuil en Halatte, France
| | - Lydia Yahia-Cherif
- Paris Brain Institute (ICM), Center for NeuroImaging Research (CENIR), Sorbonne University, INSERM U1127, CNRS UMR7225, Pitié-Salpêtrière Hospital, 75013 Paris, France; (L.Y.-C.); (L.H.)
| | - Laurent Hugueville
- Paris Brain Institute (ICM), Center for NeuroImaging Research (CENIR), Sorbonne University, INSERM U1127, CNRS UMR7225, Pitié-Salpêtrière Hospital, 75013 Paris, France; (L.Y.-C.); (L.H.)
| | - Paul Mazet
- Technical Centre for Mechanical Industries (CETIM), 52 Avenue Félix Louat, 60300 Senlis, France;
| | - Philippe Lévêque
- XLIM Research Institute, University of Limoges, UMR CNRS 7252, 123 Avenue Albert Thomas, 87000 Limoges, France;
| | - Brahim Selmaoui
- Department of Experimental Toxicology and Modeling (TEAM), Institut National de l’Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France;
- PériTox Laboratory (UMR_I 01), INERIS/UPJV, INERIS, 60550 Verneuil en Halatte, France
| |
Collapse
|
8
|
Yadav H, Maini S. Electroencephalogram based brain-computer interface: Applications, challenges, and opportunities. MULTIMEDIA TOOLS AND APPLICATIONS 2023:1-45. [PMID: 37362726 PMCID: PMC10157593 DOI: 10.1007/s11042-023-15653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 07/17/2022] [Accepted: 04/22/2023] [Indexed: 06/28/2023]
Abstract
Brain-Computer Interfaces (BCI) is an exciting and emerging research area for researchers and scientists. It is a suitable combination of software and hardware to operate any device mentally. This review emphasizes the significant stages in the BCI domain, current problems, and state-of-the-art findings. This article also covers how current results can contribute to new knowledge about BCI, an overview of BCI from its early developments to recent advancements, BCI applications, challenges, and future directions. The authors pointed to unresolved issues and expressed how BCI is valuable for analyzing the human brain. Humans' dependence on machines has led humankind into a new future where BCI can play an essential role in improving this modern world.
Collapse
Affiliation(s)
- Hitesh Yadav
- Department of Electrical and Instrumentation Engineering, Sant Longowal Institute of Engineering & Technology, Longowal, Punjab India
| | - Surita Maini
- Department of Electrical and Instrumentation Engineering, Sant Longowal Institute of Engineering & Technology, Longowal, Punjab India
| |
Collapse
|
9
|
Eeftens M, Pujol S, Klaiber A, Chopard G, Riss A, Smayra F, Flückiger B, Gehin T, Diallo K, Wiart J, Mazloum T, Mauny F, Röösli M. The association between real-life markers of phone use and cognitive performance, health-related quality of life and sleep. ENVIRONMENTAL RESEARCH 2023; 231:116011. [PMID: 37127107 DOI: 10.1016/j.envres.2023.116011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
INTRODUCTION The real-life short-term implications of electromagnetic fields (RF-EMF) on cognitive performance and health-related quality of life have not been well studied. The SPUTNIC study (Study Panel on Upcoming Technologies to study Non-Ionizing radiation and Cognition) aimed to investigate possible correlations between mobile phone radiation and human health, including cognition, health-related quality of life and sleep. METHODS Adult participants tracked various daily markers of RF-EMF exposures (cordless calls, mobile calls, and mobile screen time 4 h prior to each assessment) as well as three health outcomes over ten study days: 1) cognitive performance, 2) health-related quality of life (HRQoL), and 3) sleep duration and quality. Cognitive performance was measured through six "game-like" tests, assessing verbal and visuo-spatial performance repeatedly. HRQoL was assessed as fatigue, mood and stress on a Likert-scale (1-10). Sleep duration and efficiency was measured using activity trackers. We fitted mixed models with random intercepts per participant on cognitive, HRQoL and sleep scores. Possible time-varying confounders were assessed at daily intervals by questionnaire and used for model adjustment. RESULTS A total of 121 participants ultimately took part in the SPUTNIC study, including 63 from Besancon and 58 from Basel. Self-reported wireless phone use and screen time were sporadically associated with visuo-spatial and verbal cognitive performance, compatible with chance findings. We found a small but robust significant increase in stress 0.03 (0.00-0.06; on a 1-10 Likert-scale) in relation to a 10-min increase in mobile phone screen time. Sleep duration and quality were not associated with either cordless or mobile phone calls, or with screen time. DISCUSSION The study did not find associations between short-term RF-EMF markers and cognitive performance, HRQoL, or sleep duration and quality. The most consistent finding was increased stress in relation to more screen time, but no association with cordless or mobile phone call time.
Collapse
Affiliation(s)
- Marloes Eeftens
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| | - Sophie Pujol
- CHU de Besançon, Unité de Méthodologie en Recherche Clinique, Épidémiologie et Santé Publique, INSERM CIC, 1431, Besançon, France; Laboratoire Chrono-Environnement UMR 6249 CNRS / Université de Franche-Comté, Besançon, France
| | - Aaron Klaiber
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Gilles Chopard
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université Franche-Comté, Besançon, France; Centre Mémoire de Ressources et de Recherche, Service de Neurologie, CHU de Besançon, France
| | - Andrin Riss
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Florian Smayra
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Benjamin Flückiger
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Thomas Gehin
- CHU de Besançon, Unité de Méthodologie en Recherche Clinique, Épidémiologie et Santé Publique, INSERM CIC, 1431, Besançon, France; Laboratoire Chrono-Environnement UMR 6249 CNRS / Université de Franche-Comté, Besançon, France
| | - Kadiatou Diallo
- CHU de Besançon, Unité de Méthodologie en Recherche Clinique, Épidémiologie et Santé Publique, INSERM CIC, 1431, Besançon, France; Laboratoire Chrono-Environnement UMR 6249 CNRS / Université de Franche-Comté, Besançon, France
| | - Joe Wiart
- Chair C2M, LTCI Télecom ParisTech, Université Paris Saclay, 46 Rue Barrault, 75013, Paris, France
| | - Taghrid Mazloum
- Centre Mémoire de Ressources et de Recherche, Service de Neurologie, CHU de Besançon, France
| | - Frédéric Mauny
- CHU de Besançon, Unité de Méthodologie en Recherche Clinique, Épidémiologie et Santé Publique, INSERM CIC, 1431, Besançon, France; Laboratoire Chrono-Environnement UMR 6249 CNRS / Université de Franche-Comté, Besançon, France
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Yaghmazadeh O, Vöröslakos M, Alon L, Carluccio G, Collins C, Sodickson DK, Buzsáki G. Neuronal activity under transcranial radio-frequency stimulation in metal-free rodent brains in-vivo. COMMUNICATIONS ENGINEERING 2022; 1:15. [PMID: 38125336 PMCID: PMC10732550 DOI: 10.1038/s44172-022-00014-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/08/2022] [Indexed: 12/23/2023]
Abstract
As the use of Radio Frequency (RF) technologies increases, the impact of RF radiation on neurological function continues to receive attention. Whether RF radiation can modulate ongoing neuronal activity by non-thermal mechanisms has been debated for decades. However, the interactions between radiated energy and metal-based neural probes during experimentation could impact neural activity, making interpretation of the results difficult. To address this problem, we modified a miniature 1-photon Ca2+ imaging device to record interference-free neural activity and compared the results to those acquired using metal-containing silicon probes. We monitored the neuronal activity of awake rodent-brains under RF energy exposure (at 950 MHz) and in sham control paradigms. Spiking activity was reliably affected by RF energy in metal containing systems. However, we did not observe neuronal responses using metal-free optical recordings at induced local electric field strengths up to 230 V/m. Our results suggest that RF exposure higher than levels that are allowed by regulatory limits in real-life scenarios do not affect neuronal activity.
Collapse
Affiliation(s)
- Omid Yaghmazadeh
- Neuroscience Institute, School of Medicine, New York University, New York, NY 10016, USA
- These authors contributed equally: Omid Yaghmazadeh, Mihály Vöröslakos
| | - Mihály Vöröslakos
- Neuroscience Institute, School of Medicine, New York University, New York, NY 10016, USA
- These authors contributed equally: Omid Yaghmazadeh, Mihály Vöröslakos
| | - Leeor Alon
- Department of Radiology, School of Medicine, New York University, New York, NY 10016, USA
| | - Giuseppe Carluccio
- Department of Radiology, School of Medicine, New York University, New York, NY 10016, USA
| | - Christopher Collins
- Department of Radiology, School of Medicine, New York University, New York, NY 10016, USA
| | - Daniel K. Sodickson
- Neuroscience Institute, School of Medicine, New York University, New York, NY 10016, USA
- Department of Radiology, School of Medicine, New York University, New York, NY 10016, USA
| | - György Buzsáki
- Neuroscience Institute, School of Medicine, New York University, New York, NY 10016, USA
- Department of Neurology, School of Medicine, New York University, New York, NY 10016, USA
| |
Collapse
|
11
|
Orlacchio R, Percherancier Y, Poulletier De Gannes F, Hurtier A, Lagroye I, Leveque P, Arnaud-Cormos D. In Vivo Functional Ultrasound (fUS) Real-Time Imaging and Dosimetry of Mice Brain Under Radiofrequency Exposure. Bioelectromagnetics 2022; 43:257-267. [PMID: 35485721 DOI: 10.1002/bem.22403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/31/2022] [Accepted: 04/06/2022] [Indexed: 11/06/2022]
Abstract
This study aims to analyze in real-time the potential modifications induced by low-level continuous-wave and Global System for Mobile Communications radiofrequency (RF) exposure at 1.8 GHz on brain activation in anesthetized mice. A specific in vivo experimental setup consisting of a dipole antenna for the local exposure of the brain was fully characterized. A unique neuroimaging technique based on a functional ultrasound (fUS) probe was used to observe the areas of mice brain activation simultaneously to the RF exposure with unprecedented spatial and temporal resolution (~100 μm, 1 ms) following manual whisker stimulation using a brush. Numerical and experimental dosimetry was carried out to characterize the exposure and to guarantee the validity of the biological results. Our results show that the fUS probe can be efficiently used during in vivo exposure without interference with the dipole. In addition, we conclude that exposure to brain-averaged specific absorption rate levels of 2 and 6 W/kg does not introduce significant changes in the time course of the evoked fUS response in the left barrel field cortex. The proposed technique represents a valuable instrument for providing new insights into the possible effects induced on brain activation under RF exposure. For the first time, brain activity under mobile phone exposure was evaluated in vivo with fUS imaging, paving the way for more realistic exposure configurations, i.e. awake mice and new signals such as the 5 G networks. © 2022 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Rosa Orlacchio
- CNRS, XLIM, UMR 7252, University of Limoges, Limoges, France
| | | | | | | | | | | | - Delia Arnaud-Cormos
- CNRS, XLIM, UMR 7252, University of Limoges, Limoges, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
12
|
Exposure to 1800 MHz LTE electromagnetic fields under proinflammatory conditions decreases the response strength and increases the acoustic threshold of auditory cortical neurons. Sci Rep 2022; 12:4063. [PMID: 35260711 PMCID: PMC8902282 DOI: 10.1038/s41598-022-07923-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/25/2022] [Indexed: 11/09/2022] Open
Abstract
Increased needs for mobile phone communications have raised successive generations (G) of wireless technologies, which could differentially affect biological systems. To test this, we exposed rats to single head-only exposure of a 4G long-term evolution (LTE)-1800 MHz electromagnetic field (EMF) for 2 h. We then assessed the impact on microglial space coverage and electrophysiological neuronal activity in the primary auditory cortex (ACx), under acute neuroinflammation induced by lipopolysaccharide. The mean specific absorption rate in the ACx was 0.5 W/kg. Multiunit recording revealed that LTE-EMF triggered reduction in the response strength to pure tones and to natural vocalizations, together with an increase in acoustic threshold in the low and medium frequencies. Iba1 immunohistochemistry showed no change in the area covered by microglia cell bodies and processes. In healthy rats, the same LTE-exposure induced no change in response strength and acoustic threshold. Our data indicate that acute neuroinflammation sensitizes neuronal responses to LTE-EMF, which leads to an altered processing of acoustic stimuli in the ACx.
Collapse
|
13
|
Hinrikus H, Koppel T, Lass J, Orru H, Roosipuu P, Bachmann M. Possible health effects on the human brain by various generations of mobile telecommunication: a review based estimation of 5G impact. Int J Radiat Biol 2022; 98:1210-1221. [PMID: 34995145 DOI: 10.1080/09553002.2022.2026516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE The deployment of new 5G NR technology has significantly raised public concerns in possible negative effects on human health by radiofrequency electromagnetic fields (RF EMF). The current review is aimed to clarify the differences between possible health effects caused by the various generations of telecommunication technology, especially discussing and projecting possible health effects by 5G. The review of experimental studies on the human brain over the last fifteen years and the discussion on physical mechanisms and factors determining the dependence of the RF EMF effects on frequency and signal structure have been performed to discover and explain the possible distinctions between health effects by different telecommunication generations. CONCLUSIONS The human experimental studies on RF EMF effects on the human brain by 2G, 3G and 4G at frequencies from 450 to 2500 MHz were available for analyses. The search for publications indicated no human experimental studies by 5G nor at the RF EMF frequencies higher than 2500 MHz. The results of the current review demonstrate no consistent relationship between the character of RF EMF effects and parameters of exposure by different generations (2G, 3G, 4G) of telecommunication technology. At the RF EMF frequencies lower than 10 GHz, the impact of 5G NR FR1 should have no principal differences compared to the previous generations. The radio frequencies used in 5G are even higher and the penetration depths of the fields are smaller, therefore the effect is rather lower than at previous generations. At the RF EMF frequencies higher than 10 GHz, the mechanism of the effects might differ and the impact of 5G NR FR2 becomes unpredictable. Existing knowledge about the mechanism of RF EMF effects at millimeter waves lacks sufficient experimental data and theoretical models for reliable conclusions. The insufficient knowledge about the possible health effects at millimeter waves and the lack of in vivo experimental studies on 5G NR underline an urgent need for the theoretical and experimental investigations of health effects by 5G NR, especially by 5G NR FR2.
Collapse
Affiliation(s)
- Hiie Hinrikus
- Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Tarmo Koppel
- Department of Business Administration, School of Business and Governance, Tallinn University of Technology, Tallinn, Estonia
| | - Jaanus Lass
- Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Hans Orru
- Department of Public Health, Institute of Family Medicine and Public Health, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Priit Roosipuu
- Thomas Johann Seebeck Department of Electronics, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Maie Bachmann
- Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
14
|
Wallace J, Yahia-Cherif L, Gitton C, Hugueville L, Lemaréchal JD, Selmaoui B. Human resting-state EEG and radiofrequency GSM mobile phone exposure: the impact of the individual alpha frequency. Int J Radiat Biol 2021; 98:986-995. [PMID: 34797205 DOI: 10.1080/09553002.2021.2009146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE With the extensive use of mobile phone (MP), several studies have been realized to investigate the effects of radiofrequency electromagnetic fields (RF-EMF) exposure on brain activity at rest via electroencephalography (EEG), and the most consistent effect has been seen on the alpha band power spectral density (PSD). However, some studies reported an increase or a decrease of the PSD, while others showed no effect. It has been suggested that these differences might partly be due to a variability of the physiological state of the brain between subjects. So, the aim of this study was to investigate the alpha band modulation, exploring the impact of the alpha band frequency ranges applied in the PSD analysis. MATERIALS AND METHODS Twenty-one healthy volunteers took part to the study with a double-blind, randomized and counterbalanced crossover design, during which eyes-open (EO) and eyes-closed (EC) resting-state EEG was recorded. The exposure system was a sham or a real GSM (global system for mobile) 900 MHz MP (pulse modulated at 217 Hz, mean power of 250 mW and 2 W peak, with a maximum specific absorption rate of 0.70 W/kg on 1 g tissue). The experimental protocol presented a baseline recording phase without MP exposure, an exposure phase during which the exposure system was placed against the left ear, and the post-exposure phase without MP. EEG data from baseline and exposure phases were analyzed and PSD was computed for the alpha band in the fixed range of 8-12 Hz and for the individual alpha band frequency range (IAF). RESULTS Results showed a trend in decrease or increase of EEG power of both alpha oscillations during exposure in relation to EC and EO recording conditions, respectively, but not reaching statistical significance. Findings did not provide evidence for a different sensitivity to RF-EMF MP related to individual variability in the frequency of the alpha band. CONCLUSION In conclusion, these results did not show alpha band activity modulation during resting-state under RF-EMF. It might be argued the need of a delay after the exposure in order to appreciate an EEG spectral power modulation related to RF-EMF exposure.
Collapse
Affiliation(s)
- Jasmina Wallace
- Department of Experimental Toxicology and Modeling (TEAM), Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France.,PériTox Laboratory, UMR-I 01 INERIS, Université de Picardie Jules Verne, Amiens, France.,Department of Biological Radiation Effect, Emergent Risk Technologies Unit, French Armed Forces Biomedical Research Institute (IRBA), Bretigny-sur-Orge, France
| | - Lydia Yahia-Cherif
- Centre De NeuroImagerie De Recherche (CENIR), Institut du Cerveau et de la Moelle épinière (ICM), Paris, France.,Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Christophe Gitton
- Centre De NeuroImagerie De Recherche (CENIR), Institut du Cerveau et de la Moelle épinière (ICM), Paris, France.,Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Laurent Hugueville
- Centre De NeuroImagerie De Recherche (CENIR), Institut du Cerveau et de la Moelle épinière (ICM), Paris, France.,Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Jean-Didier Lemaréchal
- Centre De NeuroImagerie De Recherche (CENIR), Institut du Cerveau et de la Moelle épinière (ICM), Paris, France.,Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Brahim Selmaoui
- Department of Experimental Toxicology and Modeling (TEAM), Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France.,PériTox Laboratory, UMR-I 01 INERIS, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
15
|
Wallace J, Yahia-Cherif L, Gitton C, Hugueville L, Lemaréchal JD, Selmaoui B. Modulation of magnetoencephalography alpha band activity by radiofrequency electromagnetic field depicted in sensor and source space. Sci Rep 2021; 11:23403. [PMID: 34862418 PMCID: PMC8642443 DOI: 10.1038/s41598-021-02560-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 11/12/2021] [Indexed: 01/05/2023] Open
Abstract
Several studies reported changes in spontaneous electroencephalogram alpha band activity related to radiofrequency electromagnetic fields, but findings showed both an increase and a decrease of its spectral power or no effect. Here, we studied the alpha band modulation after 900 MHz mobile phone radiofrequency exposure and localized cortical regions involved in these changes, via a magnetoencephalography (MEG) protocol with healthy volunteers in a double-blind, randomized, counterbalanced crossover design. MEG was recorded during eyes open and eyes closed resting-state before and after radiofrequency exposure. Potential confounding factors, known to affect alpha band activity, were assessed as control parameters to limit bias. Entire alpha band, lower and upper alpha sub-bands MEG power spectral densities were estimated in sensor and source space. Biochemistry assays for salivary biomarkers of stress (cortisol, chromogranin-A, alpha amylase), heart rate variability analysis and high-performance liquid chromatography for salivary caffeine concentration were realized. Results in sensor and source space showed a significant modulation of MEG alpha band activity after the radiofrequency exposure, with different involved cortical regions in relation to the eyes condition, probably because of different attention level with open or closed eyes. None of the control parameters reported a statistically significant difference between experimental sessions.
Collapse
Affiliation(s)
- Jasmina Wallace
- Department of Experimental Toxicology and Modeling (TEAM), Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France
- PériTox Laboratory, UMR-I 01 INERIS, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Lydia Yahia-Cherif
- Centre De NeuroImagerie De Recherche (CENIR), Institut du Cerveau et de la Moelle épinière (ICM), 75013, Paris, France
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, 75013, Paris, France
| | - Christophe Gitton
- Centre De NeuroImagerie De Recherche (CENIR), Institut du Cerveau et de la Moelle épinière (ICM), 75013, Paris, France
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, 75013, Paris, France
| | - Laurent Hugueville
- Centre De NeuroImagerie De Recherche (CENIR), Institut du Cerveau et de la Moelle épinière (ICM), 75013, Paris, France
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, 75013, Paris, France
| | - Jean-Didier Lemaréchal
- Centre De NeuroImagerie De Recherche (CENIR), Institut du Cerveau et de la Moelle épinière (ICM), 75013, Paris, France
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, 75013, Paris, France
| | - Brahim Selmaoui
- Department of Experimental Toxicology and Modeling (TEAM), Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France.
- PériTox Laboratory, UMR-I 01 INERIS, Université de Picardie Jules Verne, 80025, Amiens, France.
| |
Collapse
|
16
|
Hinrikus H, Lass J, Bachmann M. Threshold of radiofrequency electromagnetic field effect on human brain. Int J Radiat Biol 2021; 97:1505-1515. [PMID: 34402382 DOI: 10.1080/09553002.2021.1969055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE This review aims to estimate the threshold of radiofrequency electromagnetic field (RF EMF) effects on human brain based on analyses of published research results. To clarify the threshold of the RF EMF effects, two approaches have been applied: (1) the analyses of restrictions in sensitivity for different steps of the physical model of low-level RF EMF mechanism and (2) the analyses of experimental data to clarify the dependence of the RF EMF effect on exposure level based on the results of published original neurophysiological and behavioral human studies for 15 years 2007-2021. CONCLUSIONS The analyses of the physical model of nonthermal mechanisms of RF EMF effect leads to conclusion that no principal threshold of the effect can be determined. According to the review of experimental data, the rate of detected RF EMF effects is 76.7% in resting EEG studies, 41.7% in sleep EEG and 38.5% in behavioral studies. The changes in EEG probably appear earlier than alterations in behavior become evident. The lowest level of RF EMF at which the effect in EEG was detected is 2.45 V/m (SAR = 0.003 W/kg). There is a preliminary indication that the dependence of the effect on the level of exposure follows rather field strength than SAR alterations. However, no sufficient data are available for clarifying linearity-nonlinearity of the dependence of effect on the level of RF EMF. The finding that only part of people are sensitive to RF EMF exposure can be related to immunity to radiation or hypersensitivity. The changes in EEG caused by RF EMF appeared similar in the majority of analyzed studies and similar to these in depression. The possible causal relationship between RF EMF effect and depression among young people is highly important problem.
Collapse
Affiliation(s)
| | - Jaanus Lass
- Tallinn University of Technology, Tallinn, Estonia
| | | |
Collapse
|
17
|
Dalecki A, Verrender A, Loughran SP, Croft RJ. The Effect of GSM Electromagnetic Field Exposure on the Waking Electroencephalogram: Methodological Influences. Bioelectromagnetics 2021; 42:317-328. [PMID: 33847008 DOI: 10.1002/bem.22338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 03/07/2021] [Accepted: 03/26/2021] [Indexed: 11/10/2022]
Abstract
Although there is consistent evidence that exposure to radiofrequency electromagnetic fields (RF-EMF) increases the spontaneous resting alpha spectral power of the electroencephalogram (EEG), the reliability of this evidence is uncertain as some studies have also failed to observe this effect. The present study aimed to determine whether the effect of RF-EMF exposure on EEG alpha power depends on whether EEG is derived from eyes open or closed conditions and assessed earlier (<5-min) versus later (>25-min) in the exposure interval. Thirty-six adults participated in three experimental sessions, each involving one exposure: "Sham," "Low," and "High" RF-EMF corresponding to peak spatial specific absorption rates averaged over 10 g of 0, 1, and 2 W/kg, respectively. Resting EEG was recorded at baseline (no exposure), during, and after exposure. Alpha power increase was found to be greater for the eyes open than eyes closed EEG during both the High (P = 0.04) and Low (P = 0.04) RF-EMF exposures. There was also a trend toward it being larger at the end, versus the start of the "High" 30-min exposure (P < 0.01; eyes open condition). This suggests that the use of eyes closed conditions, and insufficient RF-EMF exposure durations, are likely explanations for the failure of some studies to detect an RF-EMF exposure-related increase in alpha power, as such methodological choices decrease signal-to-noise ratios and increase type II error.
Collapse
Affiliation(s)
- Anna Dalecki
- Illawarra Health and Medical Research Institute, School of Psychology, University of Wollongong, Wollongong, Australia.,Population Health Research on Electromagnetic Energy, Monash University, Melbourne, Victoria, Australia
| | - Adam Verrender
- Illawarra Health and Medical Research Institute, School of Psychology, University of Wollongong, Wollongong, Australia.,Australian Centre for Electromagnetic Bioeffects Research, Wollongong, New South Wales, Australia
| | - Sarah P Loughran
- Illawarra Health and Medical Research Institute, School of Psychology, University of Wollongong, Wollongong, Australia.,Population Health Research on Electromagnetic Energy, Monash University, Melbourne, Victoria, Australia.,Australian Centre for Electromagnetic Bioeffects Research, Wollongong, New South Wales, Australia
| | - Rodney J Croft
- Illawarra Health and Medical Research Institute, School of Psychology, University of Wollongong, Wollongong, Australia.,Population Health Research on Electromagnetic Energy, Monash University, Melbourne, Victoria, Australia.,Australian Centre for Electromagnetic Bioeffects Research, Wollongong, New South Wales, Australia
| |
Collapse
|
18
|
Cabré-Riera A, van Wel L, Liorni I, Thielens A, Birks LE, Pierotti L, Joseph W, González-Safont L, Ibarluzea J, Ferrero A, Huss A, Wiart J, Santa-Marina L, Torrent M, Vrijkotte T, Capstick M, Vermeulen R, Vrijheid M, Cardis E, Röösli M, Guxens M. Association between estimated whole-brain radiofrequency electromagnetic fields dose and cognitive function in preadolescents and adolescents. Int J Hyg Environ Health 2020; 231:113659. [PMID: 33221634 DOI: 10.1016/j.ijheh.2020.113659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/18/2020] [Accepted: 10/29/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To investigate the association between estimated whole-brain radiofrequency electromagnetic fields (RF-EMF) dose, using an improved integrated RF-EMF exposure model, and cognitive function in preadolescents and adolescents. METHODS Cross-sectional analysis in preadolescents aged 9-11 years and adolescents aged 17-18 years from the Dutch Amsterdam Born Children and their Development Study (n = 1664 preadolescents) and the Spanish INfancia y Medio Ambiente Project (n = 1288 preadolescents and n = 261 adolescents), two population-based birth cohort studies. Overall whole-brain RF-EMF doses (mJ/kg/day) were estimated for several RF-EMF sources together including mobile and Digital Enhanced Cordless Telecommunications phone calls (named phone calls), other mobile phone uses than calling, tablet use, laptop use (named screen activities), and far-field sources. We also estimated whole-brain RF-EMF doses in these three groups separately (i.e. phone calls, screen activities, and far-field) that lead to different patterns of RF-EMF exposure. We assessed non-verbal intelligence in the Dutch and Spanish preadolescents, information processing speed, attentional function, and cognitive flexibility in the Spanish preadolescents, and working memory and semantic fluency in the Spanish preadolescents and adolescents using validated neurocognitive tests. RESULTS Estimated overall whole-brain RF-EMF dose was 90.1 mJ/kg/day (interquartile range (IQR) 42.7; 164.0) in the Dutch and Spanish preadolescents and 105.1 mJ/kg/day (IQR 51.0; 295.7) in the Spanish adolescents. Higher overall estimated whole-brain RF-EMF doses from all RF-EMF sources together and from phone calls were associated with lower non-verbal intelligence score in the Dutch and Spanish preadolescents (-0.10 points, 95% CI -0.19; -0.02 per 100 mJ/kg/day increase in each exposure). However, none of the whole-brain RF-EMF doses was related to any other cognitive function outcome in the Spanish preadolescents or adolescents. CONCLUSIONS Our results suggest that higher brain exposure to RF-EMF is related to lower non-verbal intelligence but not to other cognitive function outcomes. Given the cross-sectional nature of the study, the small effect sizes, and the unknown biological mechanisms, we cannot discard that our resultsare due to chance finding or reverse causality. Longitudinal studies on RF-EMF brain exposure and cognitive function are needed.
Collapse
Affiliation(s)
- Alba Cabré-Riera
- ISGlobal, Doctor Aiguader 88, 08003, Barcelona, Spain; Pompeu Fabra University, Doctor Aiguader 88, 08003, Barcelona, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Avenida de Monforte de Lemos 5, 28029, Madrid, Spain
| | - Luuk van Wel
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands
| | - Ilaria Liorni
- IT'IS Foundation, Zeughausstrasse 43, CH-8004 Zurich, Switzerland
| | - Arno Thielens
- Department of Information Technology, Ghent University/IMEC, Technologiepark 126, 9052, Gent, Belgium
| | - Laura Ellen Birks
- ISGlobal, Doctor Aiguader 88, 08003, Barcelona, Spain; Pompeu Fabra University, Doctor Aiguader 88, 08003, Barcelona, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Avenida de Monforte de Lemos 5, 28029, Madrid, Spain
| | - Livia Pierotti
- ISGlobal, Doctor Aiguader 88, 08003, Barcelona, Spain; Pompeu Fabra University, Doctor Aiguader 88, 08003, Barcelona, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Avenida de Monforte de Lemos 5, 28029, Madrid, Spain
| | - Wout Joseph
- Department of Information Technology, Ghent University/IMEC, Technologiepark 126, 9052, Gent, Belgium
| | - Llúcia González-Safont
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Avenida de Monforte de Lemos 5, 28029, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Avinguda de Cataluya 21, 46020 Valencia, Spain
| | - Jesús Ibarluzea
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Avenida de Monforte de Lemos 5, 28029, Madrid, Spain; Department of Health, Public Health Division of Gipuzkoa, 20014, San Sebastian, Spain; BIODONOSTIA Health Research Institute, Avenida de Navarra 4, 20013, San Sebastian, Spain; Faculty of Psychology, University of the Basque Country (UPV/EHU), Berio Pasealekua, 20018, San Sebastian, Spain
| | - Amparo Ferrero
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Avenida de Monforte de Lemos 5, 28029, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Avinguda de Cataluya 21, 46020 Valencia, Spain
| | - Anke Huss
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands
| | - Joe Wiart
- LTCI, Telecom Paris, Chaire C2M France, 19 Place Marguerite Perey, 91120, Palaiseau, France
| | - Loreto Santa-Marina
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Avenida de Monforte de Lemos 5, 28029, Madrid, Spain; Department of Health, Public Health Division of Gipuzkoa, 20014, San Sebastian, Spain; BIODONOSTIA Health Research Institute, Avenida de Navarra 4, 20013, San Sebastian, Spain
| | - Maties Torrent
- ib-Salut, Area de Salud de Menorca, Carrer Sant Josep 5, 07720, Santa Ana, Spain
| | - Tanja Vrijkotte
- Department of Public and Occipational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands
| | - Myles Capstick
- IT'IS Foundation, Zeughausstrasse 43, CH-8004 Zurich, Switzerland
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands
| | - Martine Vrijheid
- ISGlobal, Doctor Aiguader 88, 08003, Barcelona, Spain; Pompeu Fabra University, Doctor Aiguader 88, 08003, Barcelona, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Avenida de Monforte de Lemos 5, 28029, Madrid, Spain
| | - Elisabeth Cardis
- ISGlobal, Doctor Aiguader 88, 08003, Barcelona, Spain; Pompeu Fabra University, Doctor Aiguader 88, 08003, Barcelona, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Avenida de Monforte de Lemos 5, 28029, Madrid, Spain
| | - Martin Röösli
- Departement of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland; University of Basel, Petersplatz 1, 4051, Basel, Switzerland
| | - Mònica Guxens
- ISGlobal, Doctor Aiguader 88, 08003, Barcelona, Spain; Pompeu Fabra University, Doctor Aiguader 88, 08003, Barcelona, Spain; Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Avenida de Monforte de Lemos 5, 28029, Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Dr. Molenwaterplein 50, 3015GE, Rotterdam, the Netherlands.
| |
Collapse
|
19
|
Broom KA, Findlay R, Addison DS, Goiceanu C, Sienkiewicz Z. Early-Life Exposure to Pulsed LTE Radiofrequency Fields Causes Persistent Changes in Activity and Behavior in C57BL/6 J Mice. Bioelectromagnetics 2019; 40:498-511. [PMID: 31522469 PMCID: PMC6790696 DOI: 10.1002/bem.22217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/22/2019] [Indexed: 11/15/2022]
Abstract
Despite much research, gaps remain in knowledge about the potential health effects of exposure to radiofrequency (RF) fields. This study investigated the effects of early-life exposure to pulsed long term evolution (LTE) 1,846 MHz downlink signals on innate mouse behavior. Animals were exposed for 30 min/day, 5 days/week at a whole-body average specific energy absorption rate (SAR) of 0.5 or 1 W/kg from late pregnancy (gestation day 13.5) to weaning (postnatal day 21). A behavioral tracking system measured locomotor, drinking, and feeding behavior in the home cage from 12 to 28 weeks of age. The exposure caused significant effects on both appetitive behaviors and activity of offspring that depended on the SAR. Compared with sham-exposed controls, exposure at 0.5 W/kg significantly decreased drinking frequency (P ≤ 0.000) and significantly decreased distance moved (P ≤ 0.001). In contrast, exposure at 1 W/kg significantly increased drinking frequency (P ≤ 0.001) and significantly increased moving duration (P ≤ 0.005). In the absence of other plausible explanations, it is concluded that repeated exposure to low-level RF fields in early life may have a persistent and long-term effect on adult behavior. Bioelectromagnetics. 2019;40:498-511. © 2019 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kerry A. Broom
- Centre for Radiation, Chemical and Environmental HazardsPublic Health EnglandChiltonOxfordshireUK
| | - Richard Findlay
- Physics Group, EMFcomp LimitedHarwell CampusHarwellOxfordshireUK
| | - Darren S. Addison
- Centre for Radiation, Chemical and Environmental HazardsPublic Health EnglandChiltonOxfordshireUK
| | - Cristian Goiceanu
- Department of Environmental Health, National Institute of Public HealthRegional Center IasiIasiRomania
| | - Zenon Sienkiewicz
- Centre for Radiation, Chemical and Environmental HazardsPublic Health EnglandChiltonOxfordshireUK
| |
Collapse
|
20
|
Wallace J, Selmaoui B. Effect of mobile phone radiofrequency signal on the alpha rhythm of human waking EEG: A review. ENVIRONMENTAL RESEARCH 2019; 175:274-286. [PMID: 31146099 DOI: 10.1016/j.envres.2019.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 05/14/2023]
Abstract
In response to the exponential increase in mobile phone use and the resulting increase in exposure to radiofrequency electromagnetic fields (RF-EMF), there have been several studies to investigate via electroencephalography (EEG) whether RF-EMF exposure affects brain activity. Data in the literature have shown that exposure to radiofrequency signals modifies the waking EEG with the main effect on the alpha band frequency (8-13 Hz). However, some studies have reported an increase in alpha band power, while others have shown a decrease, and other studies showed no effect on EEG power. Given that changes in the alpha amplitude are associated with attention and some cognitive aspects of human behavior, researchers deemed necessary to look whether alpha rhythm was modulated under RF-EMF exposure. The present review aims at comparing and discussing the main findings obtained so far regarding RF-EMF effects on alpha rhythm of human waking spontaneous EEG, focusing on differences in protocols between studies, which might explain the observed discrepancies and inconclusive results.
Collapse
Affiliation(s)
- Jasmina Wallace
- Experimental Toxicology Unit, National Institute of Industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France; PériTox Laboratory, UMR-I-01, Faculty of Medicine, University of Picardy Jules Verne, Amiens, France
| | - Brahim Selmaoui
- Experimental Toxicology Unit, National Institute of Industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France; PériTox Laboratory, UMR-I-01, Faculty of Medicine, University of Picardy Jules Verne, Amiens, France.
| |
Collapse
|