1
|
Hubal A, Vendhoti A, Shaffer CN, Vos S, Corcino YL, Subauste CS. Inhibition of Src signaling induces autophagic killing of Toxoplasma gondii via PTEN-mediated deactivation of Akt. PLoS Pathog 2025; 21:e1012907. [PMID: 39869638 PMCID: PMC11801697 DOI: 10.1371/journal.ppat.1012907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 02/06/2025] [Accepted: 01/14/2025] [Indexed: 01/29/2025] Open
Abstract
The intracellular protozoan Toxoplasma gondii manipulates host cell signaling to avoid targeting by autophagosomes and lysosomal degradation. Epidermal Growth Factor Receptor (EGFR) is a mediator of this survival strategy. However, EGFR expression is limited in the brain and retina, organs affected in toxoplasmosis. This raises the possibility that T. gondii activates a signaling mechanism independently of EGFR to avoid autophagic targeting. We report T. gondii activates Src to promote parasite survival even in cells that lack EGFR. Blockade of Src triggered LC3 and LAMP-1 recruitment around the parasitophorous vacuole (PV) and parasite killing dependent on the autophagy protein, ULK1, and lysosomal enzymes. Src promoted PI3K activation and recruitment of activated Akt to the PV membrane. T. gondii promoted Src association with PTEN, and PTEN phosphorylation at Y240, S380, T382, and T383, hallmarks of an inactive PTEN conformation known to maintain Akt activation. Blockade of parasite killing was dependent of activated Akt. Src knockdown or treatment with the Src family kinase inhibitor, Saracatinib, impaired these events, leading to PTEN accumulation around the PV and a reduction in activated Akt recruitment at this site. Saracatinib treatment in mice with pre-established cerebral and ocular toxoplasmosis promoted PTEN recruitment around tachyzoites in neural tissue impairing recruitment of activated Akt, profoundly reducing parasite load and neural histopathology that were dependent of the autophagy protein, Beclin 1. Our studies uncovered an EGFR-independent pathway activated by T. gondii that enables its survival and is central to the development of neural toxoplasmosis.
Collapse
Affiliation(s)
- Alyssa Hubal
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Anusha Vendhoti
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Charles N. Shaffer
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Sarah Vos
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yalitza Lopez Corcino
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Carlos S. Subauste
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
2
|
Haghbin M, Maani S, Bagherzadeh MA, Bazmjoo A, Shakeri H, Taghipour A, Falahi S, Kenarkoohi A, Badri M, Abdoli A. Latent Toxoplasmosis among Breast Cancer Patients in Jahrom, South of Iran. Int J Breast Cancer 2023; 2023:4792260. [PMID: 37519423 PMCID: PMC10386900 DOI: 10.1155/2023/4792260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/11/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Objective Reactivation of latent toxoplasmosis is the main cause of severe infection among immunocompromised patients, including patients with cancer. Hence, this study is aimed at screening the status of Toxoplasma gondii infection among breast cancer patients by serological and molecular methods and determining their associated risk factors in Jahrom County, Fars Province, south of Iran. Methods One hundred and seven women with breast cancer (aged 34 to 80 years) were screened for anti-T. gondii antibodies (IgG and IgM) during 2019-2020. A questionnaire regarding demographic factors was filled out by participants. Molecular detection was performed by polymerase chain reaction (PCR) using the primer pair targeting the repetitive element (RE) gene of T. gondii. The risk factors and demographic data were analyzed by SPSS software (ver. 20, Chicago, IL, USA) using the Chi-squared test. Results Anti-T. gondii IgG was detected in 45.8% (49/107) of the patients, which indicates latent infection, but anti-T. gondii IgM and PCR were negative in all samples. Demographic factors revealed a statistically significant increased T. gondii seropositivity among nonmenopause cancer patients (P < 0.0005), patients without previous breast cancer (P = 0.0001), and human epidermal growth factor receptor 2- (HER2-) negative patients (P = 0.00002). As such, patients with a history of previous abortions and who were at stages II, III, and IIII of cancer had higher seropositivity rates than patients without a history of previous abortions or who were at stage I cancer, but the statistical analysis was not significant. We did not find a statistically significant association between T. gondii seropositivity and other risk factors of toxoplasmosis (e.g., education level, type of water source, washing raw fruits and vegetables, consumption of raw or undercooked meat, and contact with soil, cats, and domestic animal). Conclusion A high seroprevalence rate of latent T. gondii infection was detected among patients with breast cancer; hence, these patients may be at high risk for reactivation of latent infection. Screening of T. gondii infection is recommended to detect active infection among patients with malignancies.
Collapse
Affiliation(s)
- Marzeieh Haghbin
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Surgery, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Salar Maani
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
| | | | - Ahmadreza Bazmjoo
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Heshmatollah Shakeri
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Infectious Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Ali Taghipour
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Parasitology and Mycology, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Shahab Falahi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Azra Kenarkoohi
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Milad Badri
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amir Abdoli
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Parasitology and Mycology, Jahrom University of Medical Sciences, Jahrom, Iran
| |
Collapse
|
3
|
Abstract
Toxoplasma gondii infection in the central nervous system commonly occurs among immunodeficient patients. Its prevalence is high in countries with a high burden of HIV and low coverage of antiretroviral drugs. The brain is one of the predilections for T. gondii infection due to its low inflammatory reaction, and cerebral toxoplasmosis occurs solely due to the reactivation of a latent infection rather than a new infection. Several immune elements have recently been recognized to have an essential role in the immunopathogenesis of cerebral toxoplasmosis. Although real-time isothermal amplification, next-generation sequencing, and enzyme-linked aptamer assays from blood samples have been the recommended diagnostic tools in some in-vivo studies, a combination of clinical symptoms, serology examination, and neuroimaging are still the daily standard for the presumptive diagnosis of cerebral toxoplasmosis and early anti-toxoplasma administration. Clinical trials are needed to find a new therapy that is less likely to affect folate synthesis, have neuroprotective properties, or cure the latent phase of infection. The development of a vaccine is being extensively tested in animals, but its efficacy and safety for humans are still not proven.
Collapse
Affiliation(s)
- Sofiati Dian
- Department of Neurology, Faculty of Medicine, Universitas Padjdjaran/Hasan Sadikin Hospital, Bandung, Indonesia
- Health Research Unit, Faculty of Medicine, Padjadjaran University/Hasan Sadikin Hospital, Bandung, Indonesia
| | - Ahmad Rizal Ganiem
- Department of Neurology, Faculty of Medicine, Universitas Padjdjaran/Hasan Sadikin Hospital, Bandung, Indonesia
- Health Research Unit, Faculty of Medicine, Padjadjaran University/Hasan Sadikin Hospital, Bandung, Indonesia
| | - Savira Ekawardhani
- Parasitology Division, Department of Biomedical Sciences, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| |
Collapse
|
4
|
Zeng X, Deng Y, Yuan M, He Q, Wu Y, Li S. Study on the Antioxidant Effect of Tanshinone IIA on Diabetic Retinopathy and Its Mechanism Based on Integrated Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9990937. [PMID: 36437835 PMCID: PMC9691304 DOI: 10.1155/2022/9990937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 05/18/2022] [Indexed: 02/13/2024]
Abstract
AIM To explore the effect of tanshinone IIA on diabetic retinopathy (DR) and its mechanism. METHODS GeneCards and OMM databases were used to mine DR-related genes. The chemical structure of tanshinone IIA was searched by PubChem, and the potential target was predicted by PharmMapper. Cystape 3.8.2 was used to visualize and analyze the tanshinone IIA-DR protein interaction network. DAVID ver 6.8 data were used to perform enrichment analysis of the tanshinone IIA-DR protein interaction network. Then animal experiments were carried out to further explore the mechanism of tanshinone IIA in the treatment of DR. Male SD rats were intraperitoneally injected with streptozotocin to establish a diabetes model and were randomly divided into a model group, a low-dose tanshinone IIA group and a high-dose group. Normal rats served as the control group. Hematoxylin-eosin (HE) staining was used to observe the structural changes of the retina; the SOD, GSH-Px, and MDA levels in the retina were detected by the xanthine oxidase method; the expression of VEGF, IL-1β, IL-6, TNF-α, and caspase-3 mRNA were detected by qRT-PCR; and the Bcl-2, Bax, and VEGFA proteins were determined by the western blot. RESULTS A total of 213 tanshinone IIA potential targets and 223 DR-related genes were obtained. The enrichment analysis showed that tanshinone IIA may regulate hypoxia, oxidative stress, positive regulation of ERK1 and ERK2 cascade, steroid hormone-mediated signaling pathway, inflammatory response, angiogenesis, VEGF signaling pathway, apoptosis, PI3K-Akt signaling pathway, TNF signaling pathway, and biological processes and signaling pathways. The structure of the retina in the normal control group was clear, the retina in the model group was not clear, the nerve fiber layer was edema, the retinal cell layers of the tanshinone IIA low-dose group are arranged neatly, the inner and outer nuclear layers are slightly disordered, and the tanshinone IIA low-dose group was large. The structure of the mouse retina was further improved compared with the low-dose tanshinone IIA group. Compared with the model group, the retinal tissue SOD and GSH-PX of rats in the tanshinone IIA group increased, and the MDA level decreased (P < 0.05). Compared with the model group, the expression of VEGF, IL-1β, IL-6, TNF-α, and caspase-3 mRNA in the retina of tanshinone IIA groups was significantly reduced (P < 0.01). Compared with the model group, the Bcl-2 protein in the tanshinone IIA groups increased, while the Bax and VEGFA proteins decreased (P < 0.05). CONCLUSION Tanshinone IIA may improve the morphological performance of the retina of diabetic rats and inhibit DR, the mechanism of which may be anti-inflammatory, antiangiogenesis, etc.
Collapse
Affiliation(s)
- Xiaomei Zeng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Mengxia Yuan
- Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Yonghe Wu
- Hunan University of Chinese Medicine, Changsha, China
| | - Shibing Li
- Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Zhang XS, Zhao YJ, Zhang Y, Xu T, Cui KL, Duan BT, Lv XL, Zhang L, Xu ZY, Bai R, Zheng MX. Role of EtMIC4 EGF-like in regulating the apoptosis of Eimeria tenella host cells via the EGFR pathway. Poult Sci 2022; 101:102075. [PMID: 36041391 PMCID: PMC9449671 DOI: 10.1016/j.psj.2022.102075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
|
6
|
Infratentorial Stereotactic Biopsy of Brainstem and Cerebellar Lesions. Brain Sci 2021; 11:brainsci11111432. [PMID: 34827431 PMCID: PMC8615913 DOI: 10.3390/brainsci11111432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Stereotactic biopsy of posterior fossa lesions is often regarded as hazardous due to the critical structures in that area. Therefore, the aim of the study was to evaluate the diagnostic accuracy and safety of infratentorial stereotactic biopsy of brainstem or cerebellar lesions and its associations with other clinical, laboratory, and radiological parameters. From January 2000 to May 2021, 190 infratentorial stereotactic biopsies of posterior fossa tumors, including 108 biopsies of brainstem lesions, were performed. Moreover, 63 supratentorial biopsies of cerebral peduncle lesions were analyzed to compare the safety and efficacy of both approaches. Additionally, the presence of antibodies against Toxoplasma gondii and Epstein–Barr Virus (EBV) were documented in 67 and 66 patients, respectively, and magnetic resonance imaging (MRI) scans were evaluated in 114 patients. Only 4% of patients had minor complications and 1.5% had major complications, including one patient who died from intracranial bleeding. Nine (4.7%) biopsies were non-diagnostic. Isocitrate dehydrogenase 1 (IDH1) mutation, 1p/19q codeletion, and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status were assessed in 29 patients, and were non-diagnostic in only 3 (10.3%) cases. Patients with high-grade gliomas (HGG) were more frequently seropositive for T. gondii than individuals with low-grade gliomas (LGG; p < 0.001). A total of 27% of HGG and 41% of LGG were non-enhancing on MRI. The infratentorial approach is generally safe and reliable for biopsy of brainstem and cerebellar lesions. In our study, the safety and efficacy of supratentorial biopsy of the cerebral peduncle and infratentorial biopsy of lesions below the cerebral peduncle were comparably high. Moreover, patients with HGG were more frequently seropositive for T. gondii than patients with LGG, and the relationship between toxoplasmosis and gliomagenesis requires further investigation.
Collapse
|
7
|
Subauste CS. Recent Advances in the Roles of Autophagy and Autophagy Proteins in Host Cells During Toxoplasma gondii Infection and Potential Therapeutic Implications. Front Cell Dev Biol 2021; 9:673813. [PMID: 34179003 PMCID: PMC8220159 DOI: 10.3389/fcell.2021.673813] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/30/2021] [Indexed: 11/29/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular protozoan that can cause encephalitis and retinitis in humans. The success of T. gondii as a pathogen depends in part on its ability to form an intracellular niche (parasitophorous vacuole) that allows protection from lysosomal degradation and parasite replication. The parasitophorous vacuole can be targeted by autophagy or by autophagosome-independent processes triggered by autophagy proteins. However, T. gondii has developed many strategies to preserve the integrity of the parasitophorous vacuole. Here, we review the interaction between T. gondii, autophagy, and autophagy proteins and expand on recent advances in the field, including the importance of autophagy in the regulation of invasion of the brain and retina by the parasite. We discuss studies that have begun to explore the potential therapeutic applications of the knowledge gained thus far.
Collapse
Affiliation(s)
- Carlos S Subauste
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
8
|
Ferreira AIC, Brandão de Mattos CC, Frederico FB, Bernardo CR, de Almeida Junior GC, Siqueira RC, Meira-Strejevitch CS, Pereira-Chioccola VL, de Mattos LC. Duffy blood group system and ocular toxoplasmosis. INFECTION GENETICS AND EVOLUTION 2020; 85:104430. [PMID: 32565360 DOI: 10.1016/j.meegid.2020.104430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
Abstract
Duffy blood group phenotypes [Fy(a + b-), Fy(a-b+), Fy(a + b+), Fy(a-b-)], characterized by the expression of Fya, and Fyb antigens, are present in red blood cells. Therefore, we hypothesize that the non-hematopoietic expression of these antigens might influence cell invasion by T. gondii. 576 consecutive patients from both genders were enrolled. The presumed OT clinical diagnosis was performed. Duffy phenotyping was performed by hemagglutination in gel columns and for the correct molecular characterization Fy(a-b-) phenotype, using PCR-RFLP. Anti-T. gondii IgG antibodies were detected by ELISA. Chi-square, Fisher's exact tests were used to compare the proportions. OT was present in 22.9% (n = 132) and absent in 77.1% (n = 444) of patients. The frequencies of anti-T. gondii IgG antibodies were higher in OT (127/132, 96.2%) than those without this disease (321/444, 72.3%) (p < .0001). None of the Duffy antigens or phenotypes were associated with T. gondii infection (χ2: 2.222, GL: 3, p = .5276) as well as the risk of OT (χ2: 0.771, GL: 3, p = .8566). Duffy blood group system phenotypes and their antigens do not constitute risk factors for infection by T. gondii infection and the development of OT.
Collapse
Affiliation(s)
- Ana Iara Costa Ferreira
- Universidade Federal de Roraima. Brazil; Faculdade de Medicina de São Jose do Rio Preto, SP, Brazil
| | | | - Fábio Batista Frederico
- Ophthalmology Outpatient Clinic of Fundação Faculdade Regional de Medicina de São José do Rio Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
9
|
El Mouhawass A, Hammoud A, Zoghbi M, Hallit S, Haddad C, El Haddad K, El Khoury S, Tannous J, Obeid S, Halabi MA, Mammari N. Relationship between Toxoplasma gondii seropositivity and schizophrenia in the Lebanese population: potential implication of genetic polymorphism of MMP-9. BMC Psychiatry 2020; 20:264. [PMID: 32460746 PMCID: PMC7254747 DOI: 10.1186/s12888-020-02683-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/18/2020] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Toxoplasma multiplication and its persistence into the brain cause a local neuroinflammatory reaction, resulting synthesis of neurotransmitters involved in neurological disorders, especially schizophrenia. The Matrix metallopeptidase 9 (MMP-9) protein can play a major role in this neuroinflammation. It can promote extravasation and migration of infected immune cells into the brain. The objectives of this study are to determine the possible association between schizophrenia and toxoplasmosis and highlight the existence of gene polymorphism encoding MMP-9 protein's in patients presented both schizophrenia and toxoplasmosis. METHODS A case-control study was conducted on 150 patients with schizophrenia (case group), and 150 healthy persons (control group). Groups were matched with age, gender, and place of residence. The survey was conducted using a questionnaire and a serological profile assay for specific IgG and IgM antibodies against T. gondii. Reverse transcription-polymerase chain reaction (RT-PCR) of gene polymorphism encoding MMP-9 was performed on 83 cases selected randomly. RESULTS Data show a significant association between toxoplasmosis (IgM+/IgG+ serological profile) and schizophrenia. Significant effects of raw meat consumption and contact with cats have been associated with the occurrence of schizophrenia. RT-PCR shows the presence of muted allele of MMP-9 gene in selected cases whose present T. gondii serological profile IgM+/IgG+ and IgM-/IgG+ respectively. CONCLUSION Toxoplasmosis may be one of the etiological causes of schizophrenia, and MMP-9 gene polymorphism could be involved in the occurrence mechanism of this pathology following Toxoplasma infection.
Collapse
Affiliation(s)
- Amata El Mouhawass
- Medical Laboratory Department, Holy Family University, Batroun, 5534 Lebanon
| | - Amale Hammoud
- Public Health Faculty, Jinan University, Tripoli, Lebanon
| | - Marouan Zoghbi
- Psychiatric Hospital of the Cross, Jal Eddib, 6096 Lebanon
- Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| | - Souheil Hallit
- Faculty of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Jounieh, Lebanon
- INSPECT-LB: Institut National de Santé Publique, Épidémiologie Clinique et Toxicologie, Beirut, Lebanon
| | - Chadia Haddad
- Psychiatric Hospital of the Cross, Jal Eddib, 6096 Lebanon
- INSERM, Univ. Limoges, CH Esquirol Limoges, IRD, U1094 Tropical Neuroepidemiology, Institute of Epidemiology and Tropical Neurology, GEIST, Limoges, France
| | - Kinda El Haddad
- Medical Laboratory Department, Holy Family University, Batroun, 5534 Lebanon
| | - Saydeh El Khoury
- Medical Laboratory Department, Holy Family University, Batroun, 5534 Lebanon
| | - Jennifer Tannous
- Medical Laboratory Department, Holy Family University, Batroun, 5534 Lebanon
| | - Sahar Obeid
- Psychiatric Hospital of the Cross, Jal Eddib, 6096 Lebanon
- INSPECT-LB: Institut National de Santé Publique, Épidémiologie Clinique et Toxicologie, Beirut, Lebanon
- Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), Jounieh, Lebanon
| | | | - Nour Mammari
- Medical Laboratory Department, Holy Family University, Batroun, 5534 Lebanon
| |
Collapse
|
10
|
Poncet AF, Blanchard N, Marion S. Toxoplasma and Dendritic Cells: An Intimate Relationship That Deserves Further Scrutiny. Trends Parasitol 2019; 35:870-886. [PMID: 31492624 DOI: 10.1016/j.pt.2019.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 02/07/2023]
Abstract
Toxoplasma gondii (Tg), an obligate intracellular parasite of the phylum Apicomplexa, infects a wide range of animals, including humans. A hallmark of Tg infection is the subversion of host responses, which is thought to favor parasite persistence and propagation to new hosts. Recently, a variety of parasite-secreted modulatory effectors have been uncovered in fibroblasts and macrophages, but the specific interplay between Tg and dendritic cells (DCs) is just beginning to emerge. In this review, we summarize the current knowledge on Tg-DC interactions, including innate recognition, cytokine production, and antigen presentation, and discuss open questions regarding how Tg-secreted effectors may shape DC functions to perturb innate and adaptive immunity.
Collapse
Affiliation(s)
- Anaïs F Poncet
- Centre d'Infection et d'Immunité de Lille, Université de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Nicolas Blanchard
- Centre de Physiopathologie Toulouse Purpan (CPTP), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France. @inserm.fr
| | - Sabrina Marion
- Centre d'Infection et d'Immunité de Lille, Université de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Lille, France. @pasteur-lille.fr
| |
Collapse
|
11
|
CD40 in Endothelial Cells Restricts Neural Tissue Invasion by Toxoplasma gondii. Infect Immun 2019; 87:IAI.00868-18. [PMID: 31109947 DOI: 10.1128/iai.00868-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/10/2019] [Indexed: 02/08/2023] Open
Abstract
Little is known about whether pathogen invasion of neural tissue is affected by immune-based mechanisms in endothelial cells. We examined the effects of endothelial cell CD40 on Toxoplasma gondii invasion of the retina and brain, organs seeded hematogenously. T. gondii circulates in the bloodstream within infected leukocytes (including monocytes and dendritic cells) and as extracellular tachyzoites. After T. gondii infection, mice that expressed CD40 restricted to endothelial cells exhibited diminished parasite loads and histopathology in the retina and brain. These mice also had lower parasite loads in the retina and brain after intravenous (i.v.) injection of infected monocytes or dendritic cells. The protective effect of endothelial cell CD40 was not explained by changes in cellular or humoral immunity, reduced transmigration of leukocytes into neural tissue, or reduced invasion by extracellular parasites. Circulating T. gondii-infected leukocytes (dendritic cells used as a model) led to infection of neural endothelial cells. The number of foci of infection in these cells were reduced if endothelial cells expressed CD40. Infected dendritic cells and macrophages expressed membrane-associated inducible Hsp70. Infected leukocytes triggered Hsp70-dependent autophagy in CD40+ endothelial cells and anti-T. gondii activity dependent on ULK1 and beclin 1. Reduced parasite load in the retina and brain not only required CD40 expression in endothelial cells but was also dependent on beclin 1 and the expression of inducible Hsp70 in dendritic cells. These studies suggest that during endothelial cell-leukocyte interaction, CD40 restricts T. gondii invasion of neural tissue through a mechanism that appears mediated by endothelial cell anti-parasitic activity stimulated by Hsp70.
Collapse
|
12
|
Lopez Corcino Y, Gonzalez Ferrer S, Mantilla LE, Trikeriotis S, Yu JS, Kim S, Hansen S, Portillo JAC, Subauste CS. Toxoplasma gondii induces prolonged host epidermal growth factor receptor signalling to prevent parasite elimination by autophagy: Perspectives for in vivo control of the parasite. Cell Microbiol 2019; 21:e13084. [PMID: 31290228 PMCID: PMC6771541 DOI: 10.1111/cmi.13084] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/03/2019] [Accepted: 07/07/2019] [Indexed: 12/23/2022]
Abstract
Toxoplasma gondii causes retinitis and encephalitis. Avoiding targeting by autophagosomes is key for its survival because T. gondii cannot withstand lysosomal degradation. During invasion of host cells, T. gondii triggers epidermal growth factor receptor (EGFR) signalling enabling the parasite to avoid initial autophagic targeting. However, autophagy is a constitutive process indicating that the parasite may also use a strategy operative beyond invasion to maintain blockade of autophagic targeting. Finding that such a strategy exists would be important because it could lead to inhibition of host cell signalling as a novel approach to kill the parasite in previously infected cells and treat toxoplasmosis. We report that T. gondii induced prolonged EGFR autophosphorylation. This effect was mediated by PKCα/PKCβ ➔ Src because T. gondii caused prolonged activation of these molecules and their knockdown or incubation with inhibitors of PKCα/PKCβ or Src after host cell invasion impaired sustained EGFR autophosphorylation. Addition of EGFR tyrosine kinase inhibitor (TKI) to previously infected cells led to parasite entrapment by LC3 and LAMP-1 and pathogen killing dependent on the autophagy proteins ULK1 and Beclin 1 as well as lysosomal enzymes. Administration of gefitinib (EGFR TKI) to mice with ocular and cerebral toxoplasmosis resulted in disease control that was dependent on Beclin 1. Thus, T. gondii promotes its survival through sustained EGFR signalling driven by PKCα/β ➔ Src, and inhibition of EGFR controls pre-established toxoplasmosis.
Collapse
Affiliation(s)
| | - Shekina Gonzalez Ferrer
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Sophia Trikeriotis
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jin-Sang Yu
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Steven Kim
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Samuel Hansen
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jose-Andres C Portillo
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Carlos S Subauste
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.,Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
13
|
Drewry LL, Sibley LD. The hitchhiker's guide to parasite dissemination. Cell Microbiol 2019; 21:e13070. [PMID: 31219666 DOI: 10.1111/cmi.13070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/21/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022]
Abstract
Toxoplasma gondii (T. gondii) is a parasitic protist that can infect nearly all nucleated cell types and tissues of warm-blooded vertebrate hosts. T. gondii utilises a unique form of gliding motility to cross cellular barriers, enter tissues, and penetrate host cells, thus enhancing spread within an infected host. However, T. gondii also disseminates by hijacking the migratory abilities of infected leukocytes. Traditionally, this process has been viewed as a route to cross biological barriers such as the blood-brain barrier. Here, we review recent findings that challenge this view by showing that infection of monocytes downregulates the program of transendothelial migration. Instead, infection by T. gondii enhances Rho-dependent interstitial migration of monocytes and macrophages, which enhances dissemination within tissues. Collectively, the available evidence indicates that T. gondii parasites use multiple means to disseminate within the host, including enhanced motility in tissues and translocation across biological barriers.
Collapse
Affiliation(s)
- Lisa L Drewry
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
14
|
Ross EC, Olivera GC, Barragan A. Dysregulation of focal adhesion kinase upon
Toxoplasma gondii
infection facilitates parasite translocation across polarised primary brain endothelial cell monolayers. Cell Microbiol 2019; 21:e13048. [DOI: 10.1111/cmi.13048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Emily C. Ross
- Department of Molecular Biosciences, The Wenner‐Gren InstituteStockholm University Stockholm Sweden
| | - Gabriela C. Olivera
- Department of Molecular Biosciences, The Wenner‐Gren InstituteStockholm University Stockholm Sweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner‐Gren InstituteStockholm University Stockholm Sweden
| |
Collapse
|
15
|
Subauste CS. Interplay Between Toxoplasma gondii, Autophagy, and Autophagy Proteins. Front Cell Infect Microbiol 2019; 9:139. [PMID: 31119109 PMCID: PMC6506789 DOI: 10.3389/fcimb.2019.00139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022] Open
Abstract
Survival of Toxoplasma gondii within host cells depends on its ability of reside in a vacuole that avoids lysosomal degradation and enables parasite replication. The interplay between immune-mediated responses that lead to either autophagy-driven lysosomal degradation or disruption of the vacuole and the strategies used by the parasite to avoid these responses are major determinants of the outcome of infection. This article provides an overview of this interplay with an emphasis on autophagy.
Collapse
Affiliation(s)
- Carlos S Subauste
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|