1
|
Boueya IL, Sandhow L, Albuquerque JRP, Znaidi R, Passaro D. Endothelial heterogeneity in bone marrow: insights across development, adult life and leukemia. Leukemia 2025; 39:8-24. [PMID: 39528790 PMCID: PMC11717709 DOI: 10.1038/s41375-024-02453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
The central role of the endothelial microenvironment in orchestrating bone marrow (BM) homeostasis and hematopoietic support has been confirmed at various developmental stages and in adult life. The BM vasculature is crucial in mediating communication between BM parenchyma and circulating blood, displaying remarkable heterogeneity in structure and function. While vascular cell diversity in other tissues has long been recognized, the molecular basis of this phenomenon in BM is just now emerging. Over the past decade, single-cell approaches and microscopic observations have expanded our understanding of BM vasculature. While solely characterized for their paracrine properties in the past, recent advances have revolutionized our perception of endothelial function, revealing distinct anatomical locations associated with diverse endothelial cell states. The identification of phenotypic differences between normal and pathological conditions has therefore deepened our understanding of vascular dynamics and their impact on hematopoiesis in health and disease. In this review, we highlight key milestones and recent advances in understanding vascular heterogeneity within BM microenvironment during development, adulthood and aging. We also explore how leukemia affects this heterogeneity and how we can take this knowledge forward to improve clinical practices. By synthesizing existing literature, we aim to address unresolved questions and outline future research directions.
Collapse
Affiliation(s)
- I L Boueya
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - L Sandhow
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - J R P Albuquerque
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - R Znaidi
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - D Passaro
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France.
| |
Collapse
|
2
|
Abbasizadeh N, Burns CS, Verrinder R, Ghazali F, Seyedhassantehrani N, Spencer JA. Age and dose dependent changes to the bone and bone marrow microenvironment after cytotoxic conditioning with busulfan. Front Cell Dev Biol 2024; 12:1441381. [PMID: 39139448 PMCID: PMC11319712 DOI: 10.3389/fcell.2024.1441381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Preparative regimens before Hematopoietic Cell Transplantation (HCT) damage the bone marrow (BM) microenvironment, potentially leading to secondary morbidity and even mortality. The precise effects of cytotoxic preconditioning on bone and BM remodeling, regeneration, and subsequent hematopoietic recovery over time remain unclear. Moreover, the influence of recipient age and cytotoxic dose have not been fully described. In this study, we longitudinally investigated bone and BM remodeling after busulfan treatment with low intensity (LI) and high intensity (HI) regimens as a function of animal age. As expected, higher donor chimerism was observed in young mice in both LI and HI regimens compared to adult mice. Noticeably in adult mice, significant engraftment was only observed in the HI group. The integrity of the blood-bone marrow barrier in calvarial BM blood vessels was lost after busulfan treatment in the young mice and remained altered even 6 weeks after HCT. In adult mice, the severity of vascular leakage appeared to be dose-dependent, being more pronounced in HI compared to LI recipients. Interestingly, no noticeable change in blood flow velocity was observed following busulfan treatment. Ex vivo imaging of the long bones revealed a reduction in the frequency and an increase in the diameter and density of the blood vessels shortly after treatment, a phenomenon that largely recovered in young mice but persisted in older mice after 6 weeks. Furthermore, analysis of bone remodeling indicated a significant alteration in bone turnover at 6 weeks compared to earlier timepoints in both young and adult mice. Overall, our results reveal new aspects of bone and BM remodeling, as well as hematopoietic recovery, which is dependent on the cytotoxic dose and recipient age.
Collapse
Affiliation(s)
- Nastaran Abbasizadeh
- Department of Bioengineering, University of California, Merced, Merced, CA, United States
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, United States
| | - Christian S. Burns
- Department of Bioengineering, University of California, Merced, Merced, CA, United States
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, United States
| | - Ruth Verrinder
- Department of Bioengineering, University of California, Merced, Merced, CA, United States
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, United States
| | - Farhad Ghazali
- Department of Bioengineering, University of California, Merced, Merced, CA, United States
| | - Negar Seyedhassantehrani
- Department of Bioengineering, University of California, Merced, Merced, CA, United States
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, United States
| | - Joel A. Spencer
- Department of Bioengineering, University of California, Merced, Merced, CA, United States
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, United States
- Health Sciences Research Institute, University of California, Merced, Merced, CA, United States
| |
Collapse
|
3
|
Gonçalves CES, da Silva RO, Hastreiter AA, Vivian GK, Makiyama EN, Borelli P, Fock RA. Reduced protein intake and aging affects the sustainment of hematopoiesis by impairing bone marrow mesenchymal stem cells. J Nutr Biochem 2024; 124:109511. [PMID: 37913969 DOI: 10.1016/j.jnutbio.2023.109511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Protein malnourishment (PM) is common among the elderly, but how aging and PM impact hematopoiesis is not fully understood. This study aimed to assess how aging and PM affect the hematopoietic regulatory function of bone marrow (BM) mesenchymal stem cells (MSCs). Young and aged male C57BL/6J mice were fed with normoproteic or hypoproteic diets and had their nutritional, biochemical, and hematological parameters evaluated. BM MSCs were characterized and had their secretome, gene expression, autophagy, reactive oxygen species production (ROS), and DNA double-stranded breaks evaluated. The modulation of hematopoiesis by MSCs was assayed using in vitro and in vivo models. Lastly, BM invasiveness and mice survival were evaluated after being challenged with leukemic cells of the C1498 cell line. Aging and PM alter biochemical parameters, changing the peripheral blood and BM immunophenotype. MSC autophagy was affected by aging and the frequencies for ROS and DNA double-stranded breaks. Regarding the MSCs' secretome, PM and aging affected CXCL12, IL-6, and IL-11 production. Aging and PM up-regulated Akt1 and PPAR-γ while down-regulating Cdh2 and Angpt-1 in MSCs. Aged MSCs increased C1498 cell proliferation while reducing their colony-forming potential. PM and aging lowered mice survival, and malnourishment accumulated C1498 cells at the BM. Finally, aged and/or PM MSCs up-regulated Sox2, Nanog, Pou5f1, and Akt1 expression while down-regulating Cdkn1a in C1498 cells. Together, aging and PM can induce cell-intrinsic shifts in BM MSCs, creating an environment that alters the regulation of hematopoietic populations and favoring the development of malignant cells.
Collapse
Affiliation(s)
- Carlos Eduardo Silva Gonçalves
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Renaira Oliveira da Silva
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Araceli Aparecida Hastreiter
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela Kodja Vivian
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Edson Naoto Makiyama
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Primavera Borelli
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ricardo Ambrósio Fock
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
4
|
Vergadi E, Kolliniati O, Lapi I, Ieronymaki E, Lyroni K, Alexaki VI, Diamantaki E, Vaporidi K, Hatzidaki E, Papadaki HA, Galanakis E, Hajishengallis G, Chavakis T, Tsatsanis C. An IL-10/DEL-1 axis supports granulopoiesis and survival from sepsis in early life. Nat Commun 2024; 15:680. [PMID: 38263289 PMCID: PMC10805706 DOI: 10.1038/s41467-023-44178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/03/2023] [Indexed: 01/25/2024] Open
Abstract
The limited reserves of neutrophils are implicated in the susceptibility to infection in neonates, however the regulation of neutrophil kinetics in infections in early life remains poorly understood. Here we show that the developmental endothelial locus (DEL-1) is elevated in neonates and is critical for survival from neonatal polymicrobial sepsis, by supporting emergency granulopoiesis. Septic DEL-1 deficient neonate mice display low numbers of myeloid-biased multipotent and granulocyte-macrophage progenitors in the bone marrow, resulting in neutropenia, exaggerated bacteremia, and increased mortality; defects that are rescued by DEL-1 administration. A high IL-10/IL-17A ratio, observed in newborn sepsis, sustains tissue DEL-1 expression, as IL-10 upregulates while IL-17 downregulates DEL-1. Consistently, serum DEL-1 and blood neutrophils are elevated in septic adult and neonate patients with high serum IL-10/IL-17A ratio, and mortality is lower in septic patients with high serum DEL-1. Therefore, IL-10/DEL-1 axis supports emergency granulopoiesis, prevents neutropenia and promotes sepsis survival in early life.
Collapse
Affiliation(s)
- Eleni Vergadi
- Department of Paediatrics, School of Medicine, University of Crete, Heraklion, Greece.
- Institute of Molecular Biology and Biotechnology, IMMB, FORTH, Heraklion, Greece.
| | - Ourania Kolliniati
- Institute of Molecular Biology and Biotechnology, IMMB, FORTH, Heraklion, Greece
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Ioanna Lapi
- Institute of Molecular Biology and Biotechnology, IMMB, FORTH, Heraklion, Greece
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Eleftheria Ieronymaki
- Institute of Molecular Biology and Biotechnology, IMMB, FORTH, Heraklion, Greece
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Konstantina Lyroni
- Institute of Molecular Biology and Biotechnology, IMMB, FORTH, Heraklion, Greece
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Eleni Diamantaki
- Department of Intensive Care Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Katerina Vaporidi
- Department of Intensive Care Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Eleftheria Hatzidaki
- Department of Neonatology/Neonatal Intensive Care Unit, School of Medicine, University of Crete, Heraklion, Greece
| | - Helen A Papadaki
- Department of Hematology, School of Medicine, University of Crete, Heraklion, Greece
| | - Emmanouil Galanakis
- Department of Paediatrics, School of Medicine, University of Crete, Heraklion, Greece
| | - George Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christos Tsatsanis
- Institute of Molecular Biology and Biotechnology, IMMB, FORTH, Heraklion, Greece
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
5
|
Murphy LA, Winters AC. Emerging and Future Targeted Therapies for Pediatric Acute Myeloid Leukemia: Targeting the Leukemia Stem Cells. Biomedicines 2023; 11:3248. [PMID: 38137469 PMCID: PMC10741170 DOI: 10.3390/biomedicines11123248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Acute myeloid leukemia (AML) is a rare subtype of acute leukemia in the pediatric and adolescent population but causes disproportionate morbidity and mortality in this age group. Standard chemotherapeutic regimens for AML have changed very little in the past 3-4 decades, but the addition of targeted agents in recent years has led to improved survival in select subsets of patients as well as a better biological understanding of the disease. Currently, one key paradigm of bench-to-bedside practice in the context of adult AML is the focus on leukemia stem cell (LSC)-targeted therapies. Here, we review current and emerging immunotherapies and other targeted agents that are in clinical use for pediatric AML through the lens of what is known (and not known) about their LSC-targeting capability. Based on a growing understanding of pediatric LSC biology, we also briefly discuss potential future agents on the horizon.
Collapse
Affiliation(s)
- Lindsey A. Murphy
- Department of Pediatrics, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Amanda C. Winters
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Zhang Y, Jiang S, He F, Tian Y, Hu H, Gao L, Zhang L, Chen A, Hu Y, Fan L, Yang C, Zhou B, Liu D, Zhou Z, Su Y, Qin L, Wang Y, He H, Lu J, Xiao P, Hu S, Wang QF. Single-cell transcriptomics reveals multiple chemoresistant properties in leukemic stem and progenitor cells in pediatric AML. Genome Biol 2023; 24:199. [PMID: 37653425 PMCID: PMC10472599 DOI: 10.1186/s13059-023-03031-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Cancer patients can achieve dramatic responses to chemotherapy yet retain resistant tumor cells, which ultimately results in relapse. Although xenograft model studies have identified several cellular and molecular features that are associated with chemoresistance in acute myeloid leukemia (AML), to what extent AML patients exhibit these properties remains largely unknown. RESULTS We apply single-cell RNA sequencing to paired pre- and post-chemotherapy whole bone marrow samples obtained from 13 pediatric AML patients who had achieved disease remission, and distinguish AML clusters from normal cells based on their unique transcriptomic profiles. Approximately 50% of leukemic stem and progenitor populations actively express leukemia stem cell (LSC) and oxidative phosphorylation (OXPHOS) signatures, respectively. These clusters have a higher chance of tolerating therapy and exhibit an enhanced metabolic program in response to treatment. Interestingly, the transmembrane receptor CD69 is highly expressed in chemoresistant hematopoietic stem cell (HSC)-like populations (named the CD69+ HSC-like subpopulation). Furthermore, overexpression of CD69 results in suppression of the mTOR signaling pathway and promotion of cell quiescence and adhesion in vitro. Finally, the presence of CD69+ HSC-like cells is associated with unfavorable genetic mutations, the persistence of residual tumor cells in chemotherapy, and poor outcomes in independent pediatric and adult public AML cohorts. CONCLUSIONS Our analysis reveals leukemia stem cell and OXPHOS as two major chemoresistant features in human AML patients. CD69 may serve as a potential biomarker in defining a subpopulation of chemoresistant leukemia stem cells. These findings have important implications for targeting residual chemo-surviving AML cells.
Collapse
Affiliation(s)
- Yongping Zhang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Shuting Jiang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fuhong He
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Tian
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Haiyang Hu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Gao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Lin Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aili Chen
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yixin Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Liyan Fan
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Chun Yang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Bi Zhou
- SuZhou Hospital of Anhui Medical University, Suzhou, China
| | - Dan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Zihan Zhou
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanxun Su
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Qin
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Wang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Hailong He
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Jun Lu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Peifang Xiao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Shaoyan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China.
| | - Qian-Fei Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Costa RG, Silva SL, Dias IR, Oliveira MDS, Rodrigues ACBDC, Dias RB, Bezerra DP. Emerging drugs targeting cellular redox homeostasis to eliminate acute myeloid leukemia stem cells. Redox Biol 2023; 62:102692. [PMID: 37031536 PMCID: PMC10119960 DOI: 10.1016/j.redox.2023.102692] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Acute myeloid leukemia (AML) is a very heterogeneous group of disorders with large differences in the percentage of immature blasts that presently are classified according to the specific mutations that trigger malignant proliferation among thousands of mutations reported thus far. It is an aggressive disease for which few targeted therapies are available and still has a high recurrence rate and low overall survival. The main reason for AML relapse is believed to be due to leukemic stem cells (LSCs) that have unlimited self-renewal capacity and long residence in a quiescent state, which promote greater resistance to traditional therapies for this cancer. AML LSCs have low oxidative stress levels, which appear to be caused by a combination of low mitochondrial activity and high activity of ROS-removing pathways. In this sense, oxidative stress has been thought to be an important new potential target for the treatment of AML patients, targeting the eradication of AML LSCs. The aim of this review is to discuss some drugs that induce oxidative stress to direct new goals for future research focusing on redox imbalance as an effective strategy to eliminate AML LSCs.
Collapse
|
8
|
Mazzarini M, Arciprete F, Picconi O, Valeri M, Verachi P, Martelli F, Migliaccio AR, Falchi M, Zingariello M. Single cell analysis of the localization of the hematopoietic stem cells within the bone marrow architecture identifies niche-specific proliferation dynamics. Front Med (Lausanne) 2023; 10:1166758. [PMID: 37188088 PMCID: PMC10175646 DOI: 10.3389/fmed.2023.1166758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction Hematopoietic stem cells (HSC) reside in the bone marrow (BM) in specialized niches which provide support for their self-replication and differentiation into the blood cells. Recently, numerous studies using sophisticated molecular and microscopic technology have provided snap-shots information on the identity of the BM niches in mice. In adults, HSC are localized around arterioles and sinusoids/venules whereas in juvenile mice they are in close to the osteoblasts. However, although it is well recognized that in mice the nature of the hematopoietic niche change with age or after exposure to inflammatory insults, much work remains to be done to identify changes occurring under these conditions. The dynamic changes occurring in niche/HSC interactions as HSC enter into cycle are also poorly defined. Methods We exploit mice harboring the hCD34tTA/Tet-O-H2BGFP transgene to establish the feasibility to assess interactions of the HSC with their niche as they cycle. In this model, H2BGFP expression is driven by the TET trans-activator under the control of the human CD34 promoter which in mice is active only in the HSC. Since Doxycycline inhibits TET, HSC exposed to this drug no longer express H2BGFP and loose half of their label every division allowing establishing the dynamics of their first 1-3 divisions. To this aim, we first validated user-friendly confocal microscopy methods to determine HSC divisions by hemi-decrement changes in levels of GFP expression. We then tracked the interaction occurring in old mice between the HSC and their niche during the first HSC divisions. Results We determined that in old mice, most of the HSC are located around vessels, both arterioles which sustain quiescence and self-replication, and venules/sinusoids, which sustain differentiation. After just 1 week of exposure to Doxycycline, great numbers of the HSC around the venules lost most of their GFP label, indicating that they had cycled. By contrast, the few HSC surrounding the arterioles retained maximal levels of GFP expression, indicating that they are either dormant or cycle at very low rates. Conclusion These results reveal that in old mice, HSC cycle very dynamically and are biased toward interactions with the niche that instructs them to differentiate.
Collapse
Affiliation(s)
- Maria Mazzarini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Altius Institute for Biomedical Sciences, Seattle, WA, United States
| | - Francesca Arciprete
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Orietta Picconi
- National Center for HIV/AIDS Research, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Valeri
- Center for Animal Experimentation and Well-Being, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Verachi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Fabrizio Martelli
- National Center for Preclinical and Clinical Research and Evaluation of Pharmaceutical Drugs, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Rita Migliaccio
- Altius Institute for Biomedical Sciences, Seattle, WA, United States
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
- *Correspondence: Anna Rita Migliaccio ;
| | - Mario Falchi
- National Center for HIV/AIDS Research, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Zingariello
- Altius Institute for Biomedical Sciences, Seattle, WA, United States
| |
Collapse
|
9
|
Sánchez‐Lanzas R, Kalampalika F, Ganuza M. Diversity in the bone marrow niche: Classic and novel strategies to uncover niche composition. Br J Haematol 2022; 199:647-664. [PMID: 35837798 PMCID: PMC9796334 DOI: 10.1111/bjh.18355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 01/01/2023]
Abstract
Our view on the role and composition of the bone marrow (BM) has dramatically changed over time from a simple nutrient for the bone to a highly complex multicellular tissue that sustains haematopoiesis. Among these cells, multipotent haematopoietic stem cells (HSCs), which are predominantly quiescent, possess unique self-renewal capacity and multilineage differentiation potential and replenish all blood lineages to maintain lifelong haematopoiesis. Adult HSCs reside in specialised BM niches, which support their functions. Much effort has been put into deciphering HSC niches due to their potential clinical relevance. Multiple cell types have been implicated as HSC-niche components including sinusoidal endothelium, perivascular stromal cells, macrophages, megakaryocytes, osteoblasts and sympathetic nerves. In this review we provide a historical perspective on how technical advances, from genetic mouse models to imaging and high-throughput sequencing techniques, are unveiling the plethora of molecular cues and cellular components that shape the niche and regulate HSC functions.
Collapse
Affiliation(s)
- Raúl Sánchez‐Lanzas
- Centre for Haemato‐Oncology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Foteini Kalampalika
- Centre for Haemato‐Oncology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Miguel Ganuza
- Centre for Haemato‐Oncology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| |
Collapse
|
10
|
Davenport P, Liu ZJ, Sola-Visner M. Fetal vs adult megakaryopoiesis. Blood 2022; 139:3233-3244. [PMID: 35108353 PMCID: PMC9164738 DOI: 10.1182/blood.2020009301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/12/2022] [Indexed: 11/20/2022] Open
Abstract
Fetal and neonatal megakaryocyte progenitors are hyperproliferative compared with adult progenitors and generate a large number of small, low-ploidy megakaryocytes. Historically, these developmental differences have been interpreted as "immaturity." However, more recent studies have demonstrated that the small, low-ploidy fetal and neonatal megakaryocytes have all the characteristics of adult polyploid megakaryocytes, including the presence of granules, a well-developed demarcation membrane system, and proplatelet formation. Thus, rather than immaturity, the features of fetal and neonatal megakaryopoiesis reflect a developmentally unique uncoupling of proliferation, polyploidization, and cytoplasmic maturation, which allows fetuses and neonates to populate their rapidly expanding bone marrow and blood volume. At the molecular level, the features of fetal and neonatal megakaryopoiesis are the result of a complex interplay of developmentally regulated pathways and environmental signals from the different hematopoietic niches. Over the past few years, studies have challenged traditional paradigms about the origin of the megakaryocyte lineage in both fetal and adult life, and the application of single-cell RNA sequencing has led to a better characterization of embryonic, fetal, and adult megakaryocytes. In particular, a growing body of data suggests that at all stages of development, the various functions of megakaryocytes are not fulfilled by the megakaryocyte population as a whole, but rather by distinct megakaryocyte subpopulations with dedicated roles. Finally, recent studies have provided novel insights into the mechanisms underlying developmental disorders of megakaryopoiesis, which either uniquely affect fetuses and neonates or have different clinical presentations in neonatal compared with adult life.
Collapse
Affiliation(s)
- Patricia Davenport
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA; and
- Harvard Medical School, Boston, MA
| | - Zhi-Jian Liu
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA; and
- Harvard Medical School, Boston, MA
| | - Martha Sola-Visner
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA; and
- Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Aging, Bone Marrow and Next-Generation Sequencing (NGS): Recent Advances and Future Perspectives. Int J Mol Sci 2021; 22:ijms222212225. [PMID: 34830107 PMCID: PMC8620539 DOI: 10.3390/ijms222212225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 12/28/2022] Open
Abstract
The aging of bone marrow (BM) remains a very imperative and alluring subject, with an ever-increasing interest among fellow scientists. A considerable amount of progress has been made in this field with the established ‘hallmarks of aging’ and continued efforts to investigate the age-related changes observed within the BM. Inflammaging is considered as a low-grade state of inflammation associated with aging, and whilst the possible mechanisms by which aging occurs are now largely understood, the processes leading to the underlying changes within aged BM remain elusive. The ability to identify these changes and detect such alterations at the genetic level are key to broadening the knowledgebase of aging BM. Next-generation sequencing (NGS) is an important molecular-level application presenting the ability to not only determine genomic base changes but provide transcriptional profiling (RNA-seq), as well as a high-throughput analysis of DNA–protein interactions (ChIP-seq). Utilising NGS to explore the genetic alterations occurring over the aging process within alterative cell types facilitates the comprehension of the molecular and cellular changes influencing the dynamics of aging BM. Thus, this review prospects the current landscape of BM aging and explores how NGS technology is currently being applied within this ever-expanding field of research.
Collapse
|
12
|
Zhang L, Khadka B, Wu J, Feng Y, Long B, Xiao R, Liu J. Bone Marrow Mesenchymal Stem Cells-Derived Exosomal miR-425-5p Inhibits Acute Myeloid Leukemia Cell Proliferation, Apoptosis, Invasion and Migration by Targeting WTAP. Onco Targets Ther 2021; 14:4901-4914. [PMID: 34594112 PMCID: PMC8478487 DOI: 10.2147/ott.s286326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/22/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Acute myeloid leukemia (AML) is a predominant blood malignancy with high mortality and severe morbidity. AML is affected by microRNAs (miRNAs) loaded in exosomes derived from bone marrow mesenchymal stem cells (BM-MSCs). MiR-425-5p has been reported to participate in different cancer models. However, the function of BM-MSCs-derived exosomal miR-425-5p in AML is unclear. Methods The expression of miR-425-5p was measured by qRT-PCR in clinical AML samples. The immunophenotype of BM-MSCs was analyzed using antibodies against CD44, CD90, and CD105. The exosome was isolated from BM-MSCs. The effect of BM-MSCs-derived exosomal miR-425-5p on AML was analyzed by CCK-8 assay, Edu assay, transwell assay, flow cytometry in AML cells. qRT-PCR, luciferase reporter gene assay and Western blot analysis were also conducted in AML cells. Results The expression levels of miR-425-5p were decreased in CD34 + CD38-AML cells from primary AML patients compared to that from the bone marrow of healthy cases, and were reduced in exosomes from AML patients compared that from healthy cases. Similarly, miR-425-5p was also down-regulated in AML cell lines compared with BM-MSCs. MiR-425-5p was able to express in exosomes from BM-MSCs. CCK-8, Edu, transwell assay and flow cytometry analysis revealed that BM-MSCs-derived exosomal miR-425-5p significantly inhibited cell viability, Edu positive cells, invasion and migration, and induced apoptosis of AML cells. Meanwhile, the expression levels of cleaved PARP and cleaved caspase3 were increased by BM-MSCs-derived exosomal miR-425-5p in cells. MiR-425-5p inhibited the expression of Wilms tumor 1-associated protein (WTAP). Moreover, overexpression of WTAP could reverse the miR-425-5p-induced inhibition effect on AML cell proliferation, apoptosis, migration and invasion. Conclusion BM-MSCs-derived exosomal miR-425-5p inhibits proliferation, invasion and migration of AML cells and induced apoptosis of AML cells by targeting WTAP. Therapeutically, BM-MSCs-derived exosomal miR-425-5p may serve as a potential target for AML therapy.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, 510630, People's Republic of China
| | - Bijay Khadka
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, 510630, People's Republic of China
| | - Jieying Wu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, 510630, People's Republic of China
| | - Yashu Feng
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, 510630, People's Republic of China
| | - Bing Long
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, 510630, People's Republic of China
| | - Ruozhi Xiao
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, 510630, People's Republic of China
| | - Jiajun Liu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, 510630, People's Republic of China
| |
Collapse
|
13
|
Aung MMK, Mills ML, Bittencourt‐Silvestre J, Keeshan K. Insights into the molecular profiles of adult and paediatric acute myeloid leukaemia. Mol Oncol 2021; 15:2253-2272. [PMID: 33421304 PMCID: PMC8410545 DOI: 10.1002/1878-0261.12899] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a clinically and molecularly heterogeneous disease characterised by uncontrolled proliferation, block in differentiation and acquired self-renewal of hematopoietic stem and myeloid progenitor cells. This results in the clonal expansion of myeloid blasts within the bone marrow and peripheral blood. The incidence of AML increases with age, and in childhood, AML accounts for 20% of all leukaemias. Whilst there are many clinical and biological similarities between paediatric and adult AML with continuum across the age range, many characteristics of AML are associated with age of disease onset. These include chromosomal aberrations, gene mutations and differentiation lineage. Following chemotherapy, AML cells that survive and result in disease relapse exist in an altered chemoresistant state. Molecular profiling currently represents a powerful avenue of experimentation to study AML cells from adults and children pre- and postchemotherapy as a means of identifying prognostic biomarkers and targetable molecular vulnerabilities that may be age-specific. This review highlights recent advances in our knowledge of the molecular profiles with a focus on transcriptomes and metabolomes, leukaemia stem cells and chemoresistant cells in adult and paediatric AML and focus on areas that hold promise for future therapies.
Collapse
Affiliation(s)
- Myint Myat Khine Aung
- Paul O’Gorman Leukaemia Research CentreInstitute of Cancer SciencesUniversity of GlasgowUK
| | - Megan L. Mills
- Paul O’Gorman Leukaemia Research CentreInstitute of Cancer SciencesUniversity of GlasgowUK
| | | | - Karen Keeshan
- Paul O’Gorman Leukaemia Research CentreInstitute of Cancer SciencesUniversity of GlasgowUK
| |
Collapse
|
14
|
Leukemia-Induced Cellular Senescence and Stemness Alterations in Mesenchymal Stem Cells Are Reversible upon Withdrawal of B-Cell Acute Lymphoblastic Leukemia Cells. Int J Mol Sci 2021; 22:ijms22158166. [PMID: 34360930 PMCID: PMC8348535 DOI: 10.3390/ijms22158166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022] Open
Abstract
Leukemic cell growth in the bone marrow (BM) induces a very stressful condition. Mesenchymal stem cells (MSC), a key component of this BM niche, are affected in several ways with unfavorable consequences on hematopoietic stem cells favoring leukemic cells. These alterations in MSC during B-cell acute lymphoblastic leukemia (B-ALL) have not been fully studied. In this work, we have compared the modifications that occur in an in vitro leukemic niche (LN) with those observed in MSC isolated from B-ALL patients. MSC in this LN niche showed features of a senescence process, i.e., altered morphology, increased senescence-associated β-Galactosidase (SA-βGAL) activity, and upregulation of p53 and p21 (without p16 expression), cell-cycle arrest, reduced clonogenicity, and some moderated changes in stemness properties. Importantly, almost all of these features were found in MSC isolated from B-ALL patients. These alterations rendered B-ALL cells susceptible to the chemotherapeutic agent dexamethasone. The senescent process seems to be transient since when leukemic cells are removed, normal MSC morphology is re-established, SA-βGAL expression is diminished, and MSC are capable of re-entering cell cycle. In addition, few cells showed low γH2AX phosphorylation that was reduced to basal levels upon cultivation. The reversibility of the senescent process in MSC must impinge important biological and clinical significance depending on cell interactions in the bone marrow at different stages of disease progression in B-ALL.
Collapse
|
15
|
Burns SS, Kapur R. Clonal Hematopoiesis of Indeterminate Potential as a Novel Risk Factor for Donor-Derived Leukemia. Stem Cell Reports 2021; 15:279-291. [PMID: 32783925 PMCID: PMC7419737 DOI: 10.1016/j.stemcr.2020.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a critical treatment modality for many hematological and non-hematological diseases that is being extended to treat older individuals. However, recent studies show that clonal hematopoiesis of indeterminate potential (CHIP), a common, asymptomatic condition characterized by the expansion of age-acquired somatic mutations in blood cell lineages, may be a risk factor for the development of donor-derived leukemia (DDL), unexplained cytopenias, and chronic graft-versus-host disease. CHIP may contribute to the pathogenesis of these significant transplant complications via various cell-autonomous and non-cell-autonomous mechanisms, and the clinical presentation of DDL may be broader than anticipated. A more comprehensive understanding of the contributions of CHIP to DDL may have important implications for the screening of donors and will improve the safety of HSCT. The objective of this review is to discuss studies linking DDL and CHIP and to explore potential mechanisms by which CHIP may contribute to DDL.
Collapse
Affiliation(s)
- Sarah S Burns
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Reuben Kapur
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Molecular Biology and Biochemistry, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
16
|
Fasouli ES, Katsantoni E. JAK-STAT in Early Hematopoiesis and Leukemia. Front Cell Dev Biol 2021; 9:669363. [PMID: 34055801 PMCID: PMC8160090 DOI: 10.3389/fcell.2021.669363] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem cells (HSCs) produce all the terminally differentiated blood cells and are controlled by extracellular signals from the microenvironment, the bone marrow (BM) niche, as well as intrinsic cell signals. Intrinsic signals include the tightly controlled action of signaling pathways, as the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. Activation of JAK-STAT leads to phosphorylation of members of the STAT family to regulate proliferation, survival, and self-renewal of HSCs. Mutations in components of the JAK-STAT pathway are linked with defects in HSCs and hematologic malignancies. Accumulating mutations in HSCs and aging contribute to leukemia transformation. Here an overview of hematopoiesis, and the role of the JAK-STAT pathway in HSCs and in the promotion of leukemic transformation is presented. Therapeutic targeting of JAK-STAT and clinical implications of the existing research findings are also discussed.
Collapse
Affiliation(s)
- Eirini Sofia Fasouli
- Basic Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Eleni Katsantoni
- Basic Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
17
|
Sendker S, Waack K, Reinhardt D. Far from Health: The Bone Marrow Microenvironment in AML, A Leukemia Supportive Shelter. CHILDREN (BASEL, SWITZERLAND) 2021; 8:371. [PMID: 34066861 PMCID: PMC8150304 DOI: 10.3390/children8050371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/28/2022]
Abstract
Acute myeloid leukemia (AML) is the second most common leukemia among children. Although significant progress in AML therapy has been achieved, treatment failure is still associated with poor prognosis, emphasizing the need for novel, innovative therapeutic approaches. To address this major obstacle, extensive knowledge about leukemogenesis and the complex interplay between leukemic cells and their microenvironment is required. The tremendous role of this bone marrow microenvironment in providing a supportive and protective shelter for leukemic cells, leading to disease development, progression, and relapse, has been emphasized by recent research. It has been revealed that the interplay between leukemic cells and surrounding cellular as well as non-cellular components is critical in the process of leukemogenesis. In this review, we provide a comprehensive overview of recently gained knowledge about the importance of the microenvironment in AML whilst focusing on promising future therapeutic targets. In this context, we describe ongoing clinical trials and future challenges for the development of targeted therapies for AML.
Collapse
Affiliation(s)
| | | | - Dirk Reinhardt
- Department of Pediatric Hematology and Oncology, Clinic of Pediatrics III, Essen University Hospital, 45147 Essen, Germany; (S.S.); (K.W.)
| |
Collapse
|
18
|
Baronciani D, Casale M, De Franceschi L, Graziadei G, Longo F, Origa R, Rigano P, Pinto V, Marchetti M, Gigante A, Iolascon A, Forni GL. Selecting β-thalassemia Patients for Gene Therapy: A Decision-making Algorithm. Hemasphere 2021; 5:e555. [PMID: 33969274 PMCID: PMC8096466 DOI: 10.1097/hs9.0000000000000555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/09/2021] [Indexed: 12/27/2022] Open
Abstract
This expert opinion originally developed by a panel of the Italian Society of Thalassemias and Hemoglobinopathies (SITE), reviewed and adopted by the European Hematology Association (EHA) through the EHA Scientific Working Group on Red Cells and Iron, has been developed as priority decision-making algorithm on evidence and consensus with the aim to identify which patients with transfusion-dependent beta-thalassemia (TDT) could benefit from a gene therapy (GT) approach. Even if the wide utilized and high successful allogeneic hematopoietic stem-cell transplantation provides the possibility to cure several patients a new scenario has been opened by GT. Therefore, it is important to establish the patients setting for whom it is priority indicated, particularly in the early phase of the diffuse use outside experimental trials conducted in high selected centers. Moreover, actual price, limited availability, and resources disposal constitute a further indication to a rational and progressive approach to this innovative treatment. To elaborate this algorithm, the experience with allogeneic transplantation has been used has a predictive model. In this large worldwide experience, it has been clearly demonstrated that key for the optimal transplant outcome is optimal transfusion and chelation therapy in the years before the procedure and consequently optimal patient's clinical condition. In the document, different clinical scenarios have been considered and analyzed for the possible impact on treatment outcome. According to the European Medicine Agency (EMA) for the GT product, this expert opinion must be considered as a dynamic, updatable, priority-based indications for physicians taking care of TDT patients.
Collapse
Affiliation(s)
| | - Maddalena Casale
- Università degli Studi della Campania «Luigi Vanvitelli», Napoli, Italy
| | | | - Giovanna Graziadei
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Malattie Rare, Milano, Italy
| | - Filomena Longo
- Centro Microcitemie-Pediatria, AOU San Luigi Gonzaga, Orbassano (TO), Italy
| | - Raffaella Origa
- Ospedale Pediatrico Microcitemico “A.Cao,” A.O. “G.Brotzu,” Cagliari, Italy
| | - Paolo Rigano
- Divisione di Malattie Rare del Sangue e degli Organi Emopoietici, Ospedale V. Cervello, Palermo, Italy
| | - Valeria Pinto
- Centro della Microcitemia e Anemie Congenite, E.O. Ospedali Galliera, Genova, Italy
| | - Monia Marchetti
- Hematology Day Service, SOC Oncologia, Ospedale Cardinal Massaia, Asti, Italy
| | - Antonia Gigante
- Società Italiana Talassemie ed Emoglobinopatie (SITE), Roma, Italy
| | - Achille Iolascon
- Dept. of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Gian Luca Forni
- Centro della Microcitemia e Anemie Congenite, E.O. Ospedali Galliera, Genova, Italy
| |
Collapse
|
19
|
Nasal Turbinate Mesenchymal Stromal Cells Preserve Characteristics of Their Neural Crest Origin and Exert Distinct Paracrine Activity. J Clin Med 2021; 10:jcm10081792. [PMID: 33924095 PMCID: PMC8074274 DOI: 10.3390/jcm10081792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/06/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
The sources of mesenchymal stromal cells (MSCs) for cell therapy trials are expanding, increasing the need for their characterization. Here, we characterized multi-donor, turbinate-derived MSCs (TB-MSCs) that develop from the neural crest, and compared them to bone marrow-derived MSCs (BM-MSCs). TB-MSCs had higher proliferation potential and higher self-renewal of colony forming cells, but lower potential for multi-lineage differentiation than BM-MSCs. TB-MSCs expressed higher levels of neural crest markers and lower levels of pericyte-specific markers. These neural crest-like properties of TB-MSCs were reflected by their propensity to differentiate into neuronal cells and proliferative response to nerve growth factors. Proteomics (LC-MS/MS) analysis revealed a distinct secretome profile of TB-MSCs compared to BM and adipose tissue-derived MSCs, exhibiting enrichments of factors for cell-extracellular matrix interaction and neurogenic signaling. However, TB-MSCs and BM-MSCs exhibited comparable suppressive effects on the allo-immune response and comparable stimulatory effects on hematopoietic stem cell self-renewal. In contrast, TB-MSCs stimulated growth and metastasis of breast cancer cells more than BM-MSCs. Altogether, our multi-donor characterization of TB-MSCs reveals distinct cell autonomous and paracrine properties, reflecting their unique developmental origin. These findings support using TB-MSCs as an alternative source of MSCs with distinct biological characteristics for optimal applications in cell therapy.
Collapse
|
20
|
Oxidative Stress and ROS-Mediated Signaling in Leukemia: Novel Promising Perspectives to Eradicate Chemoresistant Cells in Myeloid Leukemia. Int J Mol Sci 2021; 22:ijms22052470. [PMID: 33671113 PMCID: PMC7957553 DOI: 10.3390/ijms22052470] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/04/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Myeloid leukemic cells are intrinsically under oxidative stress due to impaired reactive oxygen species (ROS) homeostasis, a common signature of several hematological malignancies. The present review focuses on the molecular mechanisms of aberrant ROS production in myeloid leukemia cells as well as on the redox-dependent signaling pathways involved in the leukemogenic process. Finally, the relevance of new chemotherapy options that specifically exert their pharmacological activity by altering the cellular redox imbalance will be discussed as an effective strategy to eradicate chemoresistant cells.
Collapse
|
21
|
Mao L, Jiang P, Lei X, Ni C, Zhang Y, Zhang B, Zheng Q, Li D. Efficacy and safety of stem cell therapy for the early-stage osteonecrosis of femoral head: a systematic review and meta-analysis of randomized controlled trials. Stem Cell Res Ther 2020; 11:445. [PMID: 33076978 PMCID: PMC7574494 DOI: 10.1186/s13287-020-01956-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023] Open
Abstract
Background Osteonecrosis of femoral head (ONFH) is a seriously degenerative disease with no effective therapies to slow its progression. Several studies have reported short-term efficacy of stem cells on early-stage ONFH. However, its long-term effect was still unclear especially on progression events. This study was performed to evaluate the long-term efficacy and safety of stem cells and analyze its optimal age group and cell number. Methods Our review was registered on PROSPERO (http://www.crd.york.ac.uk/PROSPERO), registration number CRD42020136094. Following PRISMA guideline, we searched 8 electronic databases on January 5, 2020, and rigorous random controlled trials (RCTs) utilizing stem cell therapy on early-stage ONFH were included. Quality and bias were analyzed. Pooled analysis was performed to assess difference between various outcomes. Results A total of 13 RCTs (619 patients with 855 hips) were included. The application of stem cells significantly delayed collapse of femoral head(I2, 70%; RR, 0.54; 95% CI, 0.33 to 0.89; P < .00001) and total hip replacement (THR) (I2, 68%; RR, 0.55; 95% CI, 0.34 to 0.90; P = .02) in the long term. It effectively decreased the events of collapse of femoral head (≥ 60 months) (I2, 0%; RR, 0.37; 95% CI, 0.28 to 0.49; P < .00001) and THR (> 36 months) (I2, 0%; RR, 0.32; 95% CI, 0.23 to 0.44; P < .00001). There existed a beneficial effect for patients under 40 (Collapse of femoral head: I2, 56%; RR, 0.41; 95% CI, 0.23 to 0.76; P = .004) (THR: I2, 0%; RR, 0.31; 95% CI, 0.23 to 0.42; P < .00001). In addition, quantity of stem cells at 108 magnitude had better effects on disease progression events (I2, 0%; RR, 0.34; 95%CI, 0.16 to 0.74; P = .007). Besides, there were no significant differences on adverse events between the stem cell group and control group (I2, 0%; RR, 0.82; 95% CI, 0.39 to 1.73; P = .60). Conclusion Our findings build solid evidence that stem cell therapy could be expected to have a long-term effect on preventing early-stage ONFH patients from progression events, such as collapse of femoral head and total hip replacement. Furthermore, patients under 40 may be an ideal age group and the optimal cell number could be at 108 magnitude for this therapy. Further studies including strict RCTs are required to evaluate a clear effect of stem cells on ideal patient profile and the procedures of implantation.
Collapse
Affiliation(s)
- Lianghao Mao
- Affiliated Hospital of Jiangsu University, Jiefang Road No.438, Zhenjiang, 212001, Jiangsu, China
| | - Pan Jiang
- Affiliated Hospital of Jiangsu University, Jiefang Road No.438, Zhenjiang, 212001, Jiangsu, China
| | - Xuan Lei
- Affiliated Hospital of Jiangsu University, Jiefang Road No.438, Zhenjiang, 212001, Jiangsu, China
| | - Chenlie Ni
- Affiliated Hospital of Jiangsu University, Jiefang Road No.438, Zhenjiang, 212001, Jiangsu, China
| | - Yiming Zhang
- Affiliated Hospital of Jiangsu University, Jiefang Road No.438, Zhenjiang, 212001, Jiangsu, China
| | - Bing Zhang
- Affiliated Hospital of Jiangsu University, Jiefang Road No.438, Zhenjiang, 212001, Jiangsu, China
| | - Qiping Zheng
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dapeng Li
- Affiliated Hospital of Jiangsu University, Jiefang Road No.438, Zhenjiang, 212001, Jiangsu, China.
| |
Collapse
|
22
|
Ryk modulates the niche activity of mesenchymal stromal cells by fine-tuning canonical Wnt signaling. Exp Mol Med 2020; 52:1140-1151. [PMID: 32724069 PMCID: PMC8080773 DOI: 10.1038/s12276-020-0477-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
The importance of modulating the intensity of Wnt signaling has been highlighted in various biological models, but their mechanisms remain unclear. In this study, we found that Ryk—an atypical Wnt receptor with a pseudokinase domain—has a Wnt-modulating effect in bone marrow stromal cells to control hematopoiesis-supporting activities. We first found that Ryk is predominantly expressed in the mesenchymal stromal cells (MSCs) of the bone marrow (BM) compared with hematopoietic cells. Downregulation of Ryk in MSCs decreased their clonogenic activity and ability to support self-renewing expansion of primitive hematopoietic progenitors (HPCs) in response to canonical Wnt ligands. In contrast, under high concentrations of Wnt, Ryk exerted suppressive effects on the transactivation of target genes and HPC-supporting effects in MSCs, thus fine-tuning the signaling intensity of Wnt in BM stromal cells. This ability of Ryk to modulate the HPC-supporting niche activity of MSCs was abrogated by induction of deletion mutants of Ryk lacking the intracellular domain or extracellular domain, indicating that the pseudokinase-containing intracellular domain mediates the Wnt-modulating effects in response to extracellular Wnt ligands. These findings indicate that the ability of the BM microenvironment to respond to extracellular signals and support hematopoiesis may be fine-tuned by Ryk via modulation of Wnt signaling intensity to coordinate hematopoietic activity. Steady production of immune and blood cells depends on a signaling protein that helps maintain stable stem cell populations within the bone marrow. Hematopoietic stem cells (HSCs), which give rise to blood cells, reside within a supportive “niche” surrounded by mesenchymal stromal cells (MSCs), with extensive communication between the two populations. Researchers led by Il-Hoan Oh at The Catholic University of Korea, Seoul, have now identified a mechanism that MSCs employ to stabilize the niche environment through fine-tuning the signaling intensity of Wnt. Oh and colleagues focused on a signaling pathway that controls the undifferentiated state of HSCs, and showed that these signals are specifically modulated by an MSC protein known as Ryk. Without Ryk, MSCs can no longer promote HSC proliferation. However, when these signals are excessively strong, Ryk helps suppress proliferation to keep HSC numbers under control.
Collapse
|
23
|
Aguilar-Navarro AG, Meza-León B, Gratzinger D, Juárez-Aguilar FG, Chang Q, Ornatsky O, Tsui H, Esquivel-Gómez R, Hernández-Ramírez A, Xie SZ, Dick JE, Flores-Figueroa E. Human Aging Alters the Spatial Organization between CD34+ Hematopoietic Cells and Adipocytes in Bone Marrow. Stem Cell Reports 2020; 15:317-325. [PMID: 32649902 PMCID: PMC7419665 DOI: 10.1016/j.stemcr.2020.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/08/2023] Open
Abstract
Age-related clonal hematopoiesis is a major risk factor for myeloid malignancy and myeloid skewing is a hallmark of aging. However, while it is known that non-cell-autonomous components of the microenvironment can also influence this risk, there have been few studies of how the spatial architecture of human bone marrow (BM) changes with aging. Here, we show that BM adiposity increases with age, which correlates with increased density of maturing myeloid cells and CD34+ hematopoietic stem/progenitor cells (HSPCs) and an increased proportion of HSPCs adjacent to adipocytes. However, NGFR+ bone marrow stromal cell (NGFR+ BMSC) density and distance to HSPCs and vessels remained stable. Interestingly, we found that, upon aging, maturing myeloid cell density increases in hematopoietic areas surrounding adipocytes. We propose that increased adjacency to adipocytes in the BM microenvironment may influence myeloid skewing of aging HSPCs, contributing to age-related risk of myeloid malignancies. Aging increases adipose, myeloid, and CD34+ HSPC density in the human bone marrow Human CD34+ HSPC niche is reticular, perivascular, and periadipocytic in aging Aging increases maturing myeloid cell density surrounding adipocytes
Collapse
Affiliation(s)
- Alicia G Aguilar-Navarro
- Unidad de Investigación Médica en Enfermedades Oncológicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Berenice Meza-León
- Unidad de Investigación Médica en Enfermedades Oncológicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Dita Gratzinger
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Fany G Juárez-Aguilar
- Departamento de Patología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Qing Chang
- Fluidigm Canada Inc., Markham, ON, Canada
| | | | - Hubert Tsui
- Division of Hematopathology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Ricardo Esquivel-Gómez
- División de Ortopedia, Hospital de Traumatología y Ortopedia Lomas Verdes, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Antonio Hernández-Ramírez
- Unidad de Reemplazo Articular, Hospital de Traumatología y Ortopedia Lomas Verdes, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Stephanie Z Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Eugenia Flores-Figueroa
- Unidad de Investigación Médica en Enfermedades Oncológicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico; Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
24
|
Choi H, Kim Y, Kang D, Kwon A, Kim J, Min Kim J, Park SS, Kim YJ, Min CK, Kim M. Common and different alterations of bone marrow mesenchymal stromal cells in myelodysplastic syndrome and multiple myeloma. Cell Prolif 2020; 53:e12819. [PMID: 32372504 PMCID: PMC7260074 DOI: 10.1111/cpr.12819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/13/2020] [Accepted: 04/11/2020] [Indexed: 12/12/2022] Open
Abstract
Objective The objective of this study was to explore characteristics of bone marrow mesenchymal stromal cells (BM‐MSCs) derived from patients with myelodysplastic syndrome (MDS) and multiple myeloma (MM). Methods BM‐MSCs were recovered from 17 of MDS patients, 23 of MM patients and 9 healthy donors and were passaged until proliferation stopped. General characteristics and gene expression profiles of MSCs were analysed. In vitro, ex vivo coculture, immunohistochemistry and knockdown experiments were performed to verify gene expression changes. Results BM‐MSCs failed to culture in 35.0% of patients and 50.0% of recovered BM‐MSCs stopped to proliferate before passage 6. MDS‐ and MM‐MSCs shared characteristics including decreased osteogenesis, increased angiogenesis and senescence‐associated molecular pathways. In vitro and ex vivo experiments showed disease‐specific changes such as neurogenic tendency in MDS‐MSCs and cardiomyogenic tendency in MM‐MSCs. Although the age of normal control was younger than patients and telomere length was shorter in patient's BM‐MSCs, they were not different according to disease category nor degree of proliferation. Specifically, poorly proliferation BM‐MSCs showed CDKN2A overexpression and CXCL12 downregulation. Immunohistochemistry of BM biopsy demonstrated that CDKN2A was intensely accumulation in perivascular BM‐MSCs failed to culture. Interestingly, patient's BM‐MSCs revealed improved proliferation activity after CDKN2A knockdown. Conclusion These results collectively indicate that MDS‐MSCs and MM‐MSCs have common and different alterations at various degrees. Hence, it is necessary to evaluate their alteration status using representative markers such as CDKN2A expression.
Collapse
Affiliation(s)
- Hayoung Choi
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Yonggoo Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dain Kang
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ahlm Kwon
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jiyeon Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | - Sung-Soo Park
- Department of Hematology, Leukemia Research Institute, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoo-Jin Kim
- Department of Hematology, Leukemia Research Institute, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chang-Ki Min
- Department of Hematology, Leukemia Research Institute, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Myungshin Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea.,Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
25
|
Guo ZH, Zeng YM, Lin JS. Dynamic spatiotemporal expression pattern of limbal stem cell putative biomarkers during mouse development. Exp Eye Res 2020; 192:107915. [PMID: 31911164 DOI: 10.1016/j.exer.2020.107915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 12/20/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023]
Abstract
Limbal stem cells (LSCs), a subpopulation of limbal epithelial basal cells, are crucial to the homeostasis and wound healing of corneal epithelium. The identification and isolation of LSCs remains a challenge due to lack of specific LSCs biomarkers. In this study, Haematoxylin-eosin (HE), 4', 6-diamidino-2-phenylindole (DAPI), and immunohistochemistry (IHC) stains were performed on the pre- and post-natal limbus tissues of mice which has the advantage of more controllable in term of sampling age relative to human origin. By morphological analysis, we supported that there is an absence of the Palisades of Vogt (POV) in the mouse. The development of prenatal and neonatal cornea was dominated by its stroma, whereas after eyelids opened at P14, the corneal epithelial cells (CECs) quickly go stratification in response to the liquid-air interface. Based on IHC staining, we found that the expression of LSCs putative biomarkers in limbal epithelial basal cells appeared in chronological order as follows: Vim = p63 > CK14 > CK15 (where = represents same time; > represents earlier), and in corneal epithelial basal cells were weakened in chronological order as follows: Vim > p63 > CK15 > CK14, which might also represent the stemness degree. Furthermore, the dynamic spatial expression of the examined LSCs putative biomarkers during mouse development also implied a temporal restriction. The expression of Vim in epithelial cells of mouse ocular surface occurred during E12-E19 only. The expression of CK15 was completely undetectable in CECs after P14, whereas the others putative molecular markers of LSCs, such as p63 and CK14, still remained weak expression, suggesting that CK15 was suitable to serve as the mouse LSCs biomarkers after P14. In this study, our data demonstrated the dynamic spatiotemporal expression pattern of LSCs putative biomarkers in mouse was age-related and revealed the time spectrum of the expression of LSCs in mouse, which adds in our knowledge by understanding the dynamic expression pattern of biomarkers of stem cells relate to maintenance of their stemness.
Collapse
Affiliation(s)
- Zhi Hou Guo
- School of Medicine, Huaqiao University, Quanzhou, 362021, Fujian, China; Stem Cell Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| | - Yi Ming Zeng
- The Second Affiliated Hospital of Fujian Medical University, China.
| | - Jun Sheng Lin
- School of Medicine, Huaqiao University, Quanzhou, 362021, Fujian, China.
| |
Collapse
|
26
|
Abstract
Comprehensive cataloguing of the acute myeloid leukaemia (AML) genome has revealed a high frequency of mutations and deletions in epigenetic factors that are frequently linked to treatment resistance and poor patient outcome. In this review, we discuss how the epigenetic mechanisms that underpin normal haematopoiesis are subverted in AML, and in particular how these processes are altered in childhood and adolescent leukaemias. We also provide a brief summary of the burgeoning field of epigenetic-based therapies, and how AML treatment might be improved through provision of better conceptual frameworks for understanding the pleiotropic molecular effects of epigenetic disruption.
Collapse
Affiliation(s)
- Luke Jones
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland
| | - Peter McCarthy
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Jonathan Bond
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland.,Children's Health Ireland at Crumlin, Dublin, Ireland
| |
Collapse
|