1
|
Sun J, Liang S, Gu X, Xu J, Wang X, Wang Z, Tao H, Wang J, Han B. Effects of Dietary Supplementation with Yeast Hydrolysate on Immune Function, Fecal Short Chain Fatty Acids, and Intestinal Health in Cats. Vet Sci 2025; 12:239. [PMID: 40266957 PMCID: PMC11946482 DOI: 10.3390/vetsci12030239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/08/2025] [Accepted: 02/22/2025] [Indexed: 04/25/2025] Open
Abstract
Yeast hydrolysate (YH) is rich in amino acids and other nutrients, and as a nutritional supplement it has been widely used in daily nutritional supplements for livestock. However, the role of YH in domestic pets, especially cats, has not yet been determined. The objective of this research was to study the effects of different concentrations of YH on the healthy cats. All cats were randomly divided into four treatments: the control group (T0, n = 6, without YH), treatment 1 (T1, the low concentration group, 0.8% of YH, n = 6), treatment 2 (T2, the middle concentration group, 1.5% of YH, n = 6), and treatment 3 (T3, the high concentration group, 4% of YH, n = 6), and the blood biochemistry, immune indexes and odorous substances in the feces, and microbiome of cats were determined on day 28. Our results showed that YH could increase the immunoglobulin G (IgG) level in the serum (p < 0.01) and reduce 3-methylindole content in the feces (p < 0.01). The acetic acid in the feces of T2 treatment (1.5%YH) was apparently increased compared to the control treatment (p < 0.05). The blood biochemistry indexes were not affected by the YH. Compared to the control group, there was no significant difference in the abundance at the phylum level. On the genus level, the abundance of g_Ruminocococcaceae and g_Lachnospiraceae, the beneficial bacteria in the gut, were decreased in the treatment T3 compared to treatment T1 (p < 0.05), but there was no significance between T1 and T2, which suggested that a high concentration of YH may be negative for gut health. So, the research showed that 1.5% of YH could be the best concentration for the improvement of immunity and gut health for cats.
Collapse
Affiliation(s)
- Jintao Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (J.S.); (S.L.); (X.G.); (X.W.); (Z.W.); (H.T.); (J.W.)
| | - Shukun Liang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (J.S.); (S.L.); (X.G.); (X.W.); (Z.W.); (H.T.); (J.W.)
- School of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinshu Gu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (J.S.); (S.L.); (X.G.); (X.W.); (Z.W.); (H.T.); (J.W.)
| | - Jie Xu
- Angel Yeast Co., Ltd., 168 Chengdong Avenue, Yichang 443000, China;
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (J.S.); (S.L.); (X.G.); (X.W.); (Z.W.); (H.T.); (J.W.)
| | - Zhenlong Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (J.S.); (S.L.); (X.G.); (X.W.); (Z.W.); (H.T.); (J.W.)
| | - Hui Tao
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (J.S.); (S.L.); (X.G.); (X.W.); (Z.W.); (H.T.); (J.W.)
| | - Jinquan Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (J.S.); (S.L.); (X.G.); (X.W.); (Z.W.); (H.T.); (J.W.)
| | - Bing Han
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China; (J.S.); (S.L.); (X.G.); (X.W.); (Z.W.); (H.T.); (J.W.)
| |
Collapse
|
2
|
Taranu I, Bulgaru (Procudin) CV, Pistol GC, Gras MA, Ciupitu AM, Grosu IA, Vlassa M, Filip M, Marin DE. Mustard Meal Extract as an Alternative to Zinc Oxide for Protecting the Intestinal Barrier Against E. coli-Lipopolysaccharide Damage. Int J Mol Sci 2024; 26:273. [PMID: 39796129 PMCID: PMC11719691 DOI: 10.3390/ijms26010273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
The present study aimed to investigate the ability of an aqueous extract derived from mustard seed meal to counteract the effects of E. coli endotoxin lipopolysaccharide (LPS) on the intestinal epithelium. Caco-2 cells were cultured together with HT29-MTX and used as a cellular model to analyze critical intestinal parameters, such as renewal, integrity, innate immunity, and signaling pathway. Byproducts of mustard seed oil extraction are rich in soluble polysaccharides, proteins, allyl isothiocyanates, and phenolic acids, which are known as powerful antioxidants with antimicrobial and antifungal properties. Cells were seeded at a ratio of nine (Caco-2) to one (HT29-MXT) and treated for 2 h with mustard meal extract (ME, dilution 1/50) and zinc oxide (ZnO, 50 μM) after reaching 80-100% confluence. Then, they were challenged with 5 μg/mL E. coli-LPS and incubated for another 4 h. The results show that LPS did not alter the cell viability but decreased proliferation compared to the control, ME and ZnO treatments. LPS altered the cell membrane integrity and monolayer permeability by decreasing the transepithelial electrical resistance and tight-junction protein expression. In addition, LPS increased the activity of LDH and the expression of Toll-like receptors. The mechanisms by which LPS induces these disturbances involves the overexpression of PKC, p38 MAPK, and NF-κB signaling molecules. The pretreatment with mustard meal and ZnO succeeded in counteracting the impairment of epithelial renewal, the damage of the membrane integrity and permeability as well as in restoring the gene expression of tight-junction proteins.
Collapse
Affiliation(s)
- Ionelia Taranu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, 077015 Ilfov, Romania
| | - Cristina Valeria Bulgaru (Procudin)
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, 077015 Ilfov, Romania
| | - Gina Cecilia Pistol
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, 077015 Ilfov, Romania
| | - Mihai Alexandru Gras
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, 077015 Ilfov, Romania
| | - Ana-Maria Ciupitu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, 077015 Ilfov, Romania
| | - Iulian Alexandru Grosu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, 077015 Ilfov, Romania
| | - Mihaela Vlassa
- Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania
| | - Miuta Filip
- Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania
| | - Daniela Eliza Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, 077015 Ilfov, Romania
| |
Collapse
|
3
|
Ali SS, Alsharbaty MHM, Al-Tohamy R, Naji GA, Elsamahy T, Mahmoud YAG, Kornaros M, Sun J. A review of the fungal polysaccharides as natural biopolymers: Current applications and future perspective. Int J Biol Macromol 2024; 273:132986. [PMID: 38866286 DOI: 10.1016/j.ijbiomac.2024.132986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
As a unique natural resource, fungi are a sustainable source of lipids, polysaccharides, vitamins, proteins, and other nutrients. As a result, they have beneficial medicinal and nutritional properties. Polysaccharides are among the most significant bioactive components found in fungi. Increasing research has revealed that fungal polysaccharides (FPS) contain a variety of bioactivities, including antitumor, antioxidant, immunomodulatory, anti-inflammatory, hepatoprotective, cardioprotective, and anti-aging properties. However, the exact knowledge about FPS and their applications related to their future possibilities must be thoroughly examined to enhance a better understanding of this sustainable biopolymer source. Therefore, FPS' biological applications and their role in the food and feed industry, agriculture, and cosmetics applications were all discussed in this work. In addition, this review highlighted the mode of action of FPS on human diseases by regulating gut microbiota and discussed the mechanism of FPS as antioxidants in the living cell. The structure-activity connections of FPS were also highlighted and explored. Moreover, future perspectives were listed to pave the way for future studies of FPS applications. Hence, this study can be a scientific foundation for future FPS research and industrial applications.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Mohammed H M Alsharbaty
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq; Branch of Prosthodontics, College of Dentistry, University of Al-Ameed, Karbala, Iraq.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ghassan A Naji
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq; College of Dentistry, The Iraqia University, Baghdad, Iraq.
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yehia A-G Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Michael Kornaros
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, 26504 Patras, Greece.
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
4
|
Li H, Wu M, Li Z, Zhang Q, Zhang X, Zhang Y, Zhao D, Wang L, Hou Y, Wu T. Effect of supplementation with yeast polysaccharides on intestinal function in piglets infected with porcine epidemic diarrhea virus. Front Microbiol 2024; 15:1378070. [PMID: 38655081 PMCID: PMC11035810 DOI: 10.3389/fmicb.2024.1378070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) has caused huge economic losses to the pig industry. Yeast polysaccharides (YP) has been used as a feed additive in recent years and poses good anti-inflammatory and antiviral effects. The present study aimed to explore the protective effect of YP on intestinal damage in PEDV-infected piglets. Eighteen 7-day-old piglets with similar body weights were randomly divided into three groups: Control group (basal diet), PEDV group (basal diet), and PEDV+YP group (basal diet +20 mg/kg BW YP), six replicates per group and one pig per replicate. Piglets in PEDV group and PEDV+YP group were orally given PEDV (dose: 1 × 106 TCID50) at 19:30 PM on the 8th day of the experiment. The control group received the same volume of PBS solution. Weight was taken on an empty stomach in the morning of the 11th day, blood was collected and then anesthetic was administered with pentobarbital sodium (50 mg/kg·BW) by intramuscular injection, and samples were slaughtered after the anesthetic was complete. The results showed that YP could alleviate the destruction of intestinal villus morphology of piglets caused by PEDV. Meanwhile, PEDV infection can reduce the activity of glutathione peroxidase, superoxide dismutase and catalase, and increase the content of malondialdehyde. YP can improve the antioxidative capacity in the serum and small intestine of PEDV-infected piglets. In addition, YP inhibited the replication of PEDV in the jejunum ileum and colon. Moreover, YP can regulate the mRNA levels of inflammatory genes (IL-1β and iNOS) and lipid metabolic genes (APOA4 and APOC3) in the small intestine. In summary, YP could inhibit virus replicates, improve intestinal morphology, enhance antioxidant capacity, relieve inflammation and regulate the metabolism of the intestine in PEDV-infected piglets.
Collapse
Affiliation(s)
- Hanxiao Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Mengjun Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Zhonghua Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Qian Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Xiaohan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Yanyan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Di Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Lei Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
5
|
O’Doherty J, Dowley A, Conway E, Sweeney T. Nutritional Strategies to Mitigate Post-Weaning Challenges in Pigs: A Focus on Glucans, Vitamin D, and Selenium. Animals (Basel) 2023; 14:13. [PMID: 38200743 PMCID: PMC10778565 DOI: 10.3390/ani14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
This review examines the challenges faced by the pig industry, with a specific focus on improving the health and growth of weaned pigs. It emphasizes the immediate necessity of investigating alternative approaches to managing pig nutrition and health due to restrictions on the use of antibiotics and the prohibition of zinc oxide in weaned pig diets. The weaning phase is identified as a critical stage in piglet development, characterized by stressors that affect their gastrointestinal health, immune responses, and overall physiology. The primary challenge during weaning arises from transitioning piglets from a digestible milk-based diet to a less digestible cereal-based feed, causing nutritional stress. This manifests as reduced feed intake, leading to gastrointestinal disturbances, intestinal inflammation, and adverse effects on intestinal structure and microbiota. To address these challenges and optimize piglet development, various nutritional strategies have been explored. Notably, glucans, particularly β-glucans from fungi, cereals, algae, and yeast, show promise in alleviating weaning-related issues. Furthermore, it is important to highlight the critical roles played by Vitamin D and selenium in piglet nutrition. These essential nutrients can be sourced naturally from enriched mushrooms that are specifically enriched with Vitamin D and selenium, providing a sustainable dietary option. In conclusion, effective nutritional strategies, including glucans, Vitamin D, selenium, and enriched mushrooms, are beneficial for addressing weaning-related challenges.
Collapse
Affiliation(s)
- John O’Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland; (A.D.); (E.C.)
| | - Alison Dowley
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland; (A.D.); (E.C.)
| | - Eadaoin Conway
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland; (A.D.); (E.C.)
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| |
Collapse
|
6
|
Kiernan DP, O’Doherty JV, Sweeney T. The Effect of Prebiotic Supplements on the Gastrointestinal Microbiota and Associated Health Parameters in Pigs. Animals (Basel) 2023; 13:3012. [PMID: 37835619 PMCID: PMC10572080 DOI: 10.3390/ani13193012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Establishing a balanced and diverse microbiota in the GIT of pigs is crucial for optimizing health and performance throughout the production cycle. The post-weaning period is a critical phase, as it is often associated with dysbiosis, intestinal dysfunction and poor performance. Traditionally, intestinal dysfunctions associated with weaning have been alleviated using antibiotics and/or antimicrobials. However, increasing concerns regarding the prevalence of antimicrobial-resistant bacteria has prompted an industry-wide drive towards identifying natural sustainable dietary alternatives. Modulating the microbiota through dietary intervention can improve animal health by increasing the production of health-promoting metabolites associated with the improved microbiota, while limiting the establishment and proliferation of pathogenic bacteria. Prebiotics are a class of bioactive compounds that resist digestion by gastrointestinal enzymes, but which can still be utilized by beneficial microbes within the GIT. Prebiotics are a substrate for these beneficial microbes and therefore enhance their proliferation and abundance, leading to the increased production of health-promoting metabolites and suppression of pathogenic proliferation in the GIT. There are a vast range of prebiotics, including carbohydrates such as non-digestible oligosaccharides, beta-glucans, resistant starch, and inulin. Furthermore, the definition of a prebiotic has recently expanded to include novel prebiotics such as peptides and amino acids. A novel class of -biotics, referred to as "stimbiotics", was recently suggested. This bioactive group has microbiota-modulating capabilities and promotes increases in short-chain fatty acid (SCFA) production in a disproportionally greater manner than if they were merely substrates for bacterial fermentation. The aim of this review is to characterize the different prebiotics, detail the current understating of stimbiotics, and outline how supplementation to pigs at different stages of development and production can potentially modulate the GIT microbiota and subsequently improve the health and performance of animals.
Collapse
Affiliation(s)
- Dillon P. Kiernan
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| |
Collapse
|
7
|
St-Pierre B, Perez Palencia JY, Samuel RS. Impact of Early Weaning on Development of the Swine Gut Microbiome. Microorganisms 2023; 11:1753. [PMID: 37512925 PMCID: PMC10385335 DOI: 10.3390/microorganisms11071753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Considering that pigs are naturally weaned between 12 and 18 weeks of age, the common practice in the modern swine industry of weaning as early as between two and four weeks of age increases challenges during this transition period. Indeed, young pigs with an immature gut are suddenly separated from the sow, switched from milk to a diet consisting of only solid ingredients, and subjected to a new social hierarchy from mixing multiple litters. From the perspective of host gut development, weaning under these conditions causes a regression in histological structure as well as in digestive and barrier functions. While the gut is the main center of immunity in mature animals, the underdeveloped gut of early weaned pigs has yet to contribute to this function until seven weeks of age. The gut microbiota or microbiome, an essential contributor to the health and nutrition of their animal host, undergoes dramatic alterations during this transition, and this descriptive review aims to present a microbial ecology-based perspective on these events. Indeed, as gut microbial communities are dependent on cross-feeding relationships, the change in substrate availability triggers a cascade of succession events until a stable composition is reached. During this process, the gut microbiota is unstable and prone to dysbiosis, which can devolve into a diseased state. One potential strategy to accelerate maturation of the gut microbiome would be to identify microbial species that are critical to mature swine gut microbiomes, and develop strategies to facilitate their establishment in early post-weaning microbial communities.
Collapse
Affiliation(s)
- Benoit St-Pierre
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
| | - Jorge Yair Perez Palencia
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
| | - Ryan S Samuel
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
| |
Collapse
|
8
|
René R, Sebastian V, Marlies D, Lukas S, Annemarie K, Andrea L. Risk factors associated with post-weaning diarrhoea in Austrian piglet-producing farms. Porcine Health Manag 2023; 9:20. [PMID: 37170128 PMCID: PMC10176918 DOI: 10.1186/s40813-023-00315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
Post-weaning diarrhoea (PWD) is a frequent, multifactorial disease of piglets leading to increased mortality rates and high economic losses. Due to the emergence of multi-resistant Escherichia coli isolates and the ban of zinc oxide (ZnO) in the EU since June 2022, alternative measures to prevent PWD are urgently needed. While an abundance of feed supplements is described to prevent PWD, there are hardly any studies reflecting the current situation of PWD in the field. Thus, we aimed to identify differences in management practices, housing and feeding strategies between farms with PWD and farms without PWD. Data were personally collected using a semi-structured questionnaire in 257 Austrian piglet-producing farms. Farms with PWD in more than 10% of all weaned groups within twelve months prior to data collection were defined as case farms (n = 101), while the remaining 136 farms were defined as control farms. Data from 237 farms and 69 explanatory variables were analysed via penalized binary logistic regression using elastic-net in 100 different splits into randomly selected training and test datasets (80:20). Treatment with ZnO and/or colistin (136 farms) was negatively associated with PWD in all splits and had the biggest estimated absolute log odds ratio out of all tested variables. Implementation of an all-in/all-out system in the nursery units and administration of probiotics or horseradish also had preventive effects in most splits (≥ 97%). A higher number of feeding phases for piglets within the first seven weeks of life and housing on fully slatted floors was associated negatively with the occurrence of PWD as well in > 95% of all splits. PWD was more likely to occur on farms having problems with neonatal diarrhoea or postpartum dysgalactia syndrome. While our data demonstrate that treatment with ZnO or colistin had the biggest statistical effect on PWD, we were able to identify other preventive measures like supplementation with probiotics or horseradish. Since implementation of all-in/all-out measures and fully slatted floors were also negatively associated with the occurrence of PWD on visited farms, we assume that reduction of bacterial load by the implementation of simple hygiene measures are still crucial to prevent PWD.
Collapse
Affiliation(s)
- Renzhammer René
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria.
| | - Vetter Sebastian
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
| | - Dolezal Marlies
- Platform for Bioinformatics and Biostatistics, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
| | - Schwarz Lukas
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
| | - Käsbohrer Annemarie
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
| | - Ladinig Andrea
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
| |
Collapse
|
9
|
Maternal supplementation with a casein hydrolysate and yeast beta-glucan from late gestation through lactation improves gastrointestinal health of piglets at weaning. Sci Rep 2022; 12:17407. [PMID: 36258027 PMCID: PMC9579169 DOI: 10.1038/s41598-022-20723-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/19/2022] [Indexed: 01/29/2023] Open
Abstract
Improving maternal nutrition during pregnancy/lactation is a promising strategy to maximise the intestinal health of piglets undergoing abrupt weaning under commercial production conditions. This experiment investigated the effects of maternal supplementation of a casein hydrolysate and yeast β-glucan (CH-YBG) from day 83 of gestation until weaning (day 28) on sow faecal microbial populations and measures of piglet gastrointestinal health parameters at weaning. Sows (n = 10 sows/group) were assigned to: (1) control diet, and (2) control diet + CH-YBG. Maternal supplementation increased the abundance of the phylum Firmicutes, including members Lactobacillus in the sows faeces, with a concomitant increase in the caecal abundance of Lactobacillus in the weaned piglets compared to the controls. Piglets weaned from the supplemented sows had increased villus height in the duodenum (P < 0.05) and increased villus height to crypt depth ratio in the jejunum, as well as a decreased expression of the proinflammatory cytokine genes (IL6/TNF/TGFB), the tight junction gene CLDN3 and the mucin gene MUC2 in the duodenum/jejunum compared to the controls (P < 0.05). In conclusion, maternal CH-YBG supplementation during pregnancy/lactation improved microbial, structural, and inflammatory measures of gastrointestinal health of piglets at weaning. This is a promising strategy to alleviate the challenges that occur with early abrupt weaning in commercial pig production.
Collapse
|
10
|
Taranu I, Pistol GC, Anghel AC, Marin D, Bulgaru C. Yeast-Fermented Rapeseed Meal Extract Is Able to Reduce Inflammation and Oxidative Stress Caused by Escherichia coli Lipopolysaccharides and to Replace ZnO in Caco-2/HTX29 Co-Culture Cells. Int J Mol Sci 2022; 23:ijms231911640. [PMID: 36232939 PMCID: PMC9569814 DOI: 10.3390/ijms231911640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
(1) The present study tested in vitro the capacity of a fermented rapeseed meal extract to reduce medicinal ZnO, which will be banned at the EU level from 2023 onwards because of its potential to cause environmental pollution and the development of Zn resistance in gut bacteria. Rapeseed meal could be an important ZnO substitute as it has antioxidant/radical scavenging properties due to its content of bioactive compounds (e.g., polyphenols). (2) Protein array and flow cytometry were used to detect apoptosis, oxidative stress production, and inflammatory and signaling-related molecules in Caco-2 and goblet HT29-MTX co-culture cells challenged with Escherichia coli lipopolysaccharides and treated with ZnO and FRSM. (3) LPS induced cell death (21.1% vs. 12.7% in control, p < 0.005); apoptosis (16.6%); ROS production; and overexpression of biomarkers related to inflammation (63.15% cytokines and 66.67% chemokines), oxidative stress, and signaling proteins when compared to untreated cells. ZnO was effective in counteracting the effect of LPS, and 73.68% cytokines and 91.67% of chemokines were recovered. FRSM was better at restoring normal protein expression for 78.94% of cytokines, 91.67% of chemokines, and 61.11% of signaling molecules. FRSM was able to mitigate negative effects of LPS and might be an alternative to ZnO in pig diets.
Collapse
Affiliation(s)
- Ionelia Taranu
- Correspondence: ; Tel.: +40-213-512-241; Fax: +40-213-512-080
| | | | | | | | | |
Collapse
|
11
|
Lin B, Huang G. An important polysaccharide from fermentum. Food Chem X 2022; 15:100388. [PMID: 36211774 PMCID: PMC9532711 DOI: 10.1016/j.fochx.2022.100388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022] Open
Abstract
Extraction, structure and modification of polysaccharides from fermentum were summarized. Structure-activity relationship and application of polysaccharides from fermentum were reviewed. It provided a strong basis for the development and application of polysaccharides from fermentum.
Fermentum is a common unicellular fungus with many biological activities attributed to β-polysaccharides. Different in vivo and in vivo experimental studies have long proven that fermentum β-polysaccharides have antioxidant, anti-tumor, and fungal toxin adsorption properties. However, there are many uncertainties regarding the relationship between the structure and biological activity of fermentum β-polysaccharides, and a systematic summary of fermentum β-polysaccharides is still lacking. Herein, we reviewed the research progress about the extraction, structure and modification, structure–activity relationship, activity and application of fermentum β-polysaccharides, compared the extraction methods of fermentum β-polysaccharide, and paid special attention to the structure–activity relationship and application of fermentum β-polysaccharide, which provided a strong basis for the development and application of fermentum β-polysaccharide.
Collapse
|
12
|
Conway E, O’Doherty JV, Mukhopadhya A, Dowley A, Vigors S, Maher S, Ryan MT, Sweeney T. Maternal and/or direct supplementation with a combination of a casein hydrolysate and yeast β-glucan on post-weaning performance and intestinal health in the pig. PLoS One 2022; 17:e0265051. [PMID: 35839254 PMCID: PMC9286230 DOI: 10.1371/journal.pone.0265051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
A 2 × 2 factorial experiment was conducted to investigate the effect of maternal supplementation from day 83 of gestation and/or direct supplementation from weaning of a bovine casein hydrolysate plus a yeast β-glucan (CH-YBG) on pig performance and intestinal health on day ten post-weaning. Twenty cross bred gilts (Large White × Landrace) were randomly assigned to one of two dietary groups (n = 10 gilts/group): basal diet (basal sows) and basal diet supplemented with CH-YBG (supplemented sows) from day 83 of gestation until weaning (2g/sow/day). At weaning, 120 pigs (6 pigs/sow) were selected. The two dam groups were further divided, resulting in four experimental groups (10 replicates/group; 3 pigs/pen) as follows: 1) BB (basal sows + basal pigs); 2) BS (basal sows + supplemented pigs); 3) SB (supplemented sows + basal pigs); 4) SS (supplemented sows + supplemented pigs). Supplemented pigs were offered 0.5g CH-YBG/kg of feed for 10 days post-weaning. On day 10 post-weaning, 1 pig/pen was humanely sacrificed and samples were taken from the gastrointestinal tract for analysis. Pigs weaned from supplemented sows (SS, SB) had reduced faecal scores and incidence of diarrhoea (P<0.05) compared to pigs weaned from basal sows (BB, BS), with SS pigs not displaying the transient rise in faecal scores seen in the other three groups from day 3 to day 10 post-weaning (P<0.05). Pigs weaned from supplemented sows had reduced feed intake (P<0.05), improved feed efficiency (P<0.05), increased butyrate concentrations (P<0.05), increased abundance of Lactobacillus (P<0.05) and decreased abundance of Enterobacteriaceae and Campylobacteraceae (P<0.05) compared to pigs weaned from basal sows. In conclusion, maternal supplementation increased the abundance of Lactobacillus and decreased the abundance of Enterobacteriaceae and Campylobacteraceae while also increasing butyrate concentrations. The combination of maternal and direct supplementation led to pigs having the lowest faecal scores compared to all other groups.
Collapse
Affiliation(s)
- Eadaoin Conway
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Anindya Mukhopadhya
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Alison Dowley
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Stafford Vigors
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Shane Maher
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Marion T. Ryan
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
- * E-mail:
| |
Collapse
|
13
|
Venardou B, O'Doherty JV, Maher S, Ryan MT, Gath V, Ravindran R, Kiely C, Rajauria G, Garcia-Vaquero M, Sweeney T. Potential of a fucoidan-rich Ascophyllum nodosum extract to reduce Salmonella shedding and improve gastrointestinal health in weaned pigs naturally infected with Salmonella. J Anim Sci Biotechnol 2022; 13:39. [PMID: 35369884 PMCID: PMC8978420 DOI: 10.1186/s40104-022-00685-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dietary supplementation with a fucoidan-rich Ascophyllum nodosum extract (ANE), possessing an in vitro anti-Salmonella Typhimurium activity could be a promising on-farm strategy to control Salmonella infection in pigs. The objectives of this study were to: 1) evaluate the anti-S. Typhimurium activity of ANE (containing 46.6% fucoidan, 18.6% laminarin, 10.7% mannitol, 4.6% alginate) in vitro, and; 2) compare the effects of dietary supplementation with ANE and Zinc oxide (ZnO) on growth performance, Salmonella shedding and selected gut parameters in naturally infected pigs. This was established post-weaning (newly weaned pig experiment) and following regrouping of post-weaned pigs and experimental re-infection with S. Typhimurium (challenge experiment). RESULTS In the in vitro assay, increasing ANE concentrations led to a linear reduction in S. Typhimurium counts (P < 0.05). In the newly weaned pig experiment (12 replicates/treatment), high ANE supplementation increased gain to feed ratio, similar to ZnO supplementation, and reduced faecal Salmonella counts on d 21 compared to the low ANE and control groups (P < 0.05). The challenge experiment included thirty-six pigs from the previous experiment that remained on their original dietary treatments (control and high ANE groups with the latter being renamed to ANE group) apart from the ZnO group which transitioned onto a control diet on d 21 (ZnO-residual group). These dietary treatments had no effect on performance, faecal scores, Salmonella shedding or colonic and caecal Salmonella counts (P > 0.05). ANE supplementation decreased the Enterobacteriaceae counts compared to the control. Enterobacteriaceae counts were also reduced in the ZnO-residual group compared to the control (P < 0.05). ANE supplementation decreased the expression of interleukin 22 and transforming growth factor beta 1 in the ileum compared to the control (P < 0.05). CONCLUSIONS ANE supplementation was associated with some beneficial changes in the composition of the colonic microbiota, Salmonella shedding, and the expression of inflammatory genes associated with persistent Salmonella infection.
Collapse
Affiliation(s)
- Brigkita Venardou
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - John V O'Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Shane Maher
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Marion T Ryan
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Vivian Gath
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Rajeev Ravindran
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Claire Kiely
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gaurav Rajauria
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
14
|
Facile Preparation of Organo-Modified ZnO/Attapulgite Nanocomposites Loaded with Monoammonium Glycyrrhizinate via Mechanical Milling and Their Synergistic Antibacterial Effect. MINERALS 2022. [DOI: 10.3390/min12030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study, monoammonium glycyrrhizinate (MAG) was introduced into cetyltrimethyl ammonium bromide (CTAB)-modified ZnO/attapulgite (APT) via a mechanical process to form performance-enhanced antibacterial nanocomposites (MAG/C–ZnO/APT). The APT supported ZnO nanocomposite (ZnO/APT) was prepared by a conventional precipitation method, and 20–50 nm of globular ZnO nanoparticles were uniformly decorated on APT nanorods. The FTIR and zeta potential analyses demonstrated that modification by CTAB facilitated the loading of MAG into ZnO/APT by H-bonding and electrostatic interactions. Antibacterial evaluation results indicate that MAG/C–ZnO/APT nanocomposites with CTAB and MAG doses of 2.5% and 0.25%, respectively, exhibited synergistically enhanced inhibitory activities against Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus and extended-spectrum β-lactamases Escherichia coli, with minimum inhibitory concentrations of 1, 0.1, 0.25, 5, 0.1, and 2.5 mg/mL, respectively, which are better than those of ZnO/APT, C–ZnO/APT and MAG. Moreover, the nanocomposites had low cytotoxicity on human normal cell line L-O2. Therefore, this study provided a more effective strategy to extend the antibacterial spectrum and strengthen the inhibitory effects of antibiotic-free materials to address increasingly serious situations of microbial infection.
Collapse
|
15
|
Nowland TL, Kirkwood RN, Pluske JR. Review: Can early-life establishment of the piglet intestinal microbiota influence production outcomes? Animal 2021; 16 Suppl 2:100368. [PMID: 34649827 DOI: 10.1016/j.animal.2021.100368] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/07/2021] [Accepted: 08/27/2021] [Indexed: 12/21/2022] Open
Abstract
The gastrointestinal tract microbiota is involved in the development and function of many body processes. Studies demonstrate that early-life microbial colonisation is the most important time for shaping intestinal and immune development, with perturbations to the microbiota during this time having long-lasting negative implications for the host. Piglets face many early-life events that shape the acquisition and development of their intestinal microbiota. The pork industry has a unique advantage in that the producer has a degree of control over what piglets are exposed to, providing conditions that allow for optimum piglet growth and development. An influx of publications within this area has occurred in recent times and with this, interest surrounding its application in pork production has increased. However, it can be difficult to distinguish which research is of most relevance to industry in terms of delivering repeatable and reliable production outcomes. In this review, we describe the literature surrounding research within pigs, predominantly during the preweaning period that has either provided solutions to industry problems or is generating information targeted at addressing relevant industry issues, with the focus being on studies demonstrating causation where possible. This review will provide a basis for the development of new studies targeted at understanding how to better support initial intestinal microbiota colonisation in order to improve piglet health and survival.
Collapse
Affiliation(s)
- T L Nowland
- Livestock Sciences, South Australian Research and Development Institute, PPPI Building, University of Adelaide, Roseworthy, SA 5371, Australia.
| | - R N Kirkwood
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia
| | - J R Pluske
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
16
|
Venardou B, O'Doherty JV, McDonnell MJ, Mukhopadhya A, Kiely C, Ryan MT, Sweeney T. Evaluation of the in vitro effects of the increasing inclusion levels of yeast β-glucan, a casein hydrolysate and its 5 kDa retentate on selected bacterial populations and strains commonly found in the gastrointestinal tract of pigs. Food Funct 2021; 12:2189-2200. [PMID: 33589892 DOI: 10.1039/d0fo02269a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Previously, the 5 kDa retentate (5kDaR) of a casein hydrolysate (CH) and yeast β-glucan (YBG) were identified as promising anti-inflammatory dietary supplements for supporting intestinal health in pigs post-weaning. However, their direct effects on intestinal bacterial populations are less well-known. The main objectives of this study were to determine if the increasing concentrations of the CH, 5kDaR and YBG individually, can: (1) alter the bacterial and short-chain fatty acid profiles in a weaned pig faecal batch fermentation assay, and (2) directly influence the growth of selected beneficial (Lactobacillus plantarum, L. reuteri, Bifidobacterium thermophilum) and pathogenic (Enterotoxigenic Escherichia coli, Salmonella Typhimurium) bacterial strains in individual pure culture growth assays. The potential of CH as a comparable 5kDaR substitute was also evaluated. The 5kDaR increased lactobacilli counts and butyrate concentration in the batch fermentation assay (P < 0.05) and increased L. plantarum (linear, P < 0.05), L. reuteri (quadratic, P < 0.05) and B. thermophilum (linear, P < 0.05) counts and reduced S. typhimurium (quadratic, P = 0.058) counts in the pure culture growth assays. CH increased butyrate concentration (P < 0.05) in the batch fermentation assay. YBG reduced Prevotella spp. counts (P < 0.05) and butyrate concentration (P < 0.05) in the batch fermentation assay. Both CH and YBG had no major effects in the pure culture growth assays. In conclusion, the 5kDaR had the most beneficial effects associated with increased counts of Lactobacillus and Bifidobacterium genera and butyrate production and reduced S. typhimurium counts in vitro indicating its potential to promote gastrointestinal health.
Collapse
Affiliation(s)
- Brigkita Venardou
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - John V O'Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Mary J McDonnell
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Anindya Mukhopadhya
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland. and Food for Health Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Claire Kiely
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Marion T Ryan
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland. and Food for Health Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
17
|
Barszcz M, Taciak M, Tuśnio A, Święch E, Skomiał J, Čobanová K, Grešáková Ľ. The effect of organic and inorganic zinc source, used with lignocellulose or potato fiber, on microbiota composition, fermentation, and activity of enzymes involved in dietary fiber breakdown in the large intestine of pigs. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Effects of reducing dietary crude protein concentration and supplementation with either laminarin or zinc oxide on the growth performance and intestinal health of newly weaned pigs. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Abstract
Abstract
Weaning is a stressful period for the piglets and the sow. Stress during weaning is related to the change of diet which can affect the physiology of the gastrointestinal tract, as well as the microbial and immunological status of the animals. In the experiment a yeast-whey preparation was used to decrease the transient growth depression related to reduction of feed intake by the piglets. The piglets were assigned to three treatments. In the control group (I) the animals obtained standard feed mixture used routinely at the farm. In the case of piglets from II and III treatment, the yeast-whey preparation was added in the quantity of 4 and 7%, respectively.
Application of 7% yeast-whey preparation to the diet significantly increased the body weight of piglets (p<0.05) and in consequence the average daily body weight gain (p<0.01) in comparison with the control group of animals. Additionally, piglets which were fed the yeast-whey preparation diet had a higher feed intake (p<0.05) and better feed conversion ratio (p<0.05) than those fed a diet without the addition of this preparation. No significant differences were stated for most biological parameters (p>0.05), except for the blood urea level, which was significantly lower (p<0.05) in the treatments where the yeast-whey preparation was used. These results indicated that yeast-whey preparation efficiently suppressed post-weaning diarrhea and improved the performance of the animals.
Collapse
|
20
|
Zheng L, Hu Y, He X, Zhao Y, Xu H. Isolation of swine-derived Lactobacillus plantarum and its synergistic antimicrobial and health-promoting properties with ZnO nanoparticles. J Appl Microbiol 2020; 128:1764-1775. [PMID: 32027448 DOI: 10.1111/jam.14605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
AIMS The purpose of this study was to isolate Lactobacillus from gastrointestinal tract of healthy postweaning piglets and investigate its synergistic antimicrobial and probiotic effects with ZnO nanoparticles (nZnO). METHODS AND RESULTS Of the 128 isolates, Lactobacillus plantarum BLPL03 was selected based on its excellent acid and bile salt tolerance properties. Lactobacillus plantarum BLPL03 was sensitive to β-lactams, macrolides, amphenicols and cephalosporins, whereas it displayed the steady resistance to aminoglycosides, tetracyclines, quinolones and peptide antibiotics. In vitro analysis of antibacterial activities showed that L. plantarum BLPL03 inhibited the four common food-borne pathogenic bacteria including Escherichia coli O157:H7 CMCC 44828, Salmonella Typhimurium ATCC 13311, Staphylococcus aureus CMCC 26003 and Listeria monocytogenes CMCC 54007 in synergy with nZnO. Furthermore, the quantitative polymerase chain reaction test demonstrated that the combined administration of L. plantarum BLPL03 fermentation liquor (LFL) and nZnO synergistically elevated the faecal number of Bifidobacterium by 73·19-fold, and reduced the two potential enteropathogenic bacteria Enterobacteriaceae and Clostridium perfringens in mice challenged with Salm. Typhimurium. Finally, dietary supplementation with low dose of nZnO (20 mg kg-1 ) when combined with LFL administration enhanced final body weight, fur appearance and average daily gain, and decreased feed conversion ratio and diarrhoea incidence in weaned piglets. The faecal Bifidobacterium and Lactobacillus of piglets were dramatically enhanced by 81·96- and 3·15-fold, respectively, after administration of a mixture of nZnO and LFL. Meanwhile, combination of nZnO with LFL resulted in low levels of Bacteroides, Enterococcus, and Enterobacteriaceae. CONCLUSIONS A combination of nZnO and LFL exhibits potential health-benefit properties for the control of gut microbial composition by their synergistic antimicrobial and probiotic effects. SIGNIFICANCE AND IMPACT OF THE STUDY This study may provide a potential nutritional strategy to improve performance and gut health of animals with gut microbiota disorders caused by pathogen infections and weanling, and so on.
Collapse
Affiliation(s)
- L Zheng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
| | - Y Hu
- The 908th Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Nanchang, People's Republic of China
| | - X He
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
| | - Y Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
| | - H Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
21
|
López-Colom P, Estellé J, Bonet J, Coma J, Martín-Orúe SM. Applicability of an Unmedicated Feeding Program Aimed to Reduce the Use of Antimicrobials in Nursery Piglets: Impact on Performance and Fecal Microbiota. Animals (Basel) 2020; 10:ani10020242. [PMID: 32028658 PMCID: PMC7070809 DOI: 10.3390/ani10020242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/23/2020] [Accepted: 02/01/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The need for a reduction in the use of antibiotics in livestock to safeguard their efficacy requires the development of alternatives. In this line, the use of alternative by-products or ingredients, with functional properties brings the opportunity to improve pig health and thus, reduce medicalization. Therefore, in the present study, we aimed to evaluate the impact of an alternative feeding program based on unmedicalized diets formulated with fibrous by-products and functional feed ingredients on performance and fecal microbiota of young pigs compared to a common weaner diet supplemented with antibiotics. The alternative feeding program could anticipate the gut development of young piglets, which at the end of the nursery period presented a fecal microbiota more similar to that found in fattening animals. Moreover, piglets in the unmedicalized diets showed a trend to reduce the course of diarrhea immediately after weaning. The alternative feeding program showed, however, a reduced growth efficiency during the nursery period that needs to be discussed in the frame of the costs-benefits analysis of reducing antibiotics. Abstract This study aimed to assess the impact of two different feeding programs, including or not antimicrobials, on gut microbiota development at early ages in commercial pigs. For this, 21-day-old weaned piglets were distributed into 12 pens (6 replicates with 26 pigs each) and fed ad libitum until fattening with: standard commercial formula with antibiotics and zinc oxide (2400 ppm) (AB), and alternative unmedicated feed formula (UN). Subsequently, the animals were moved to the fattening unit (F) receiving a common diet. Pigs were weighed, and feed consumption and diarrhea scores registered. Feces were collected on days 9 (pre-starter), 40 (starter) and 72 (fattening) post-weaning and microbial DNA extracted for 16S rDNA sequencing. Piglets fed UN diets had a worse feed efficiency (p < 0.05) than AB during nursery; however, UN pigs spent less time scouring after weaning (p = 0.098). The structure of fecal community evolved with the age of the animals (p = 0.001), and diet also showed to have a role, particularly in the starter period when UN microbiomes clustered apart from AB, resembling the ecosystems found in the fattening animals. Fibrolytic genera (Fibrobacter, Butyrivibrio, Christellansellaceae) were enriched in UN piglets whereas Lactobacillus characterized AB piglets (adjusted p < 0.05). Overall, this alternative feeding program could anticipate the gut development of piglets despite a lower feed efficiency compared to standard medicalized programs.
Collapse
Affiliation(s)
- Paola López-Colom
- Animal Nutrition and Welfare Service, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Agraria del Ecuador, 090104 Guayaquil, Ecuador
| | - Jordi Estellé
- Génétique Animale et Biologie Intégrative (GABI), INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; or
| | - Jordi Bonet
- Vall Companys Group, 25191 Lleida, Spain; (J.B.); (J.C.)
| | - Jaume Coma
- Vall Companys Group, 25191 Lleida, Spain; (J.B.); (J.C.)
| | - Susana Ma. Martín-Orúe
- Animal Nutrition and Welfare Service, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Correspondence: ; Tel.: +34-93581-1504
| |
Collapse
|
22
|
Beta Glucan: Supplement or Drug? From Laboratory to Clinical Trials. Molecules 2019; 24:molecules24071251. [PMID: 30935016 PMCID: PMC6479769 DOI: 10.3390/molecules24071251] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/28/2019] [Indexed: 11/16/2022] Open
Abstract
Glucans are part of a group of biologically active natural molecules and are steadily gaining strong attention not only as an important food supplement, but also as an immunostimulant and potential drug. This paper represents an up-to-date review of glucans (β-1,3-glucans) and their role in various immune reactions and the treatment of cancer. With more than 80 clinical trials evaluating their biological effects, the question is not if glucans will move from food supplement to widely accepted drug, but how soon.
Collapse
|