1
|
Lopez-Lora YP, Galán-Freyle NJ, Vidal-Figueroa N, Cardozo-Puello AA, Acosta-Hoyos AJ, Parra-Anaya G, Lebrón-Ramírez ES, Espitia-Almeida F, Hernández-Rivera SP, Méndez-López M, Fiorillo-Moreno O, Rondon-Payare K, Pacheco-Londoño LC. Surface-Enhanced Raman Spectroscopy on Gold Nanoparticle for Sperm Quality Discrimination. Molecules 2025; 30:1876. [PMID: 40363683 PMCID: PMC12073400 DOI: 10.3390/molecules30091876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/02/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Spermatozoa were isolated from the seminal fluid using washing (wash), post-capacitation (POS), and swim-up (SU) techniques, followed by analysis through Surface-Enhanced Raman Spectroscopy (SERS). Density gradient and swim-up methods were applied to 35 semen samples to validate sperm quality. The resulting spectra showed notable variations at 408 cm-1 (S-S stretch attributed to lysozyme) and 728 cm-1 (associated with DNA alterations and methylation). These spectral markers were incorporated into partial least squares discriminant analysis (PLS-DA) models to distinguish among sperm populations prepared by different methods. One PLS-DA model differentiated wash from POS and SU, attaining 86% sensitivity and 91% accuracy. Another model distinguished between POS and SU, achieving 77% sensitivity and 74% accuracy. The combined use of SERS and multivariate analysis offers a promising alternative for assessing sperm quality, supported by motility assessments in 35 validated samples. This approach could enhance both the accuracy and efficiency of reproductive diagnostics.
Collapse
Affiliation(s)
- Yeira P. Lopez-Lora
- Facultad de Ciencias Básicas y Biomédicas, Life Science Research Center, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (Y.P.L.-L.); (N.J.G.-F.); (N.V.-F.); (A.A.C.-P.); (A.J.A.-H.); (F.E.-A.); (O.F.-M.); (K.R.-P.)
- Instituto de Reproducción Humana Procrear, Barranquilla 080020, Colombia;
| | - Nataly J. Galán-Freyle
- Facultad de Ciencias Básicas y Biomédicas, Life Science Research Center, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (Y.P.L.-L.); (N.J.G.-F.); (N.V.-F.); (A.A.C.-P.); (A.J.A.-H.); (F.E.-A.); (O.F.-M.); (K.R.-P.)
| | - Natally Vidal-Figueroa
- Facultad de Ciencias Básicas y Biomédicas, Life Science Research Center, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (Y.P.L.-L.); (N.J.G.-F.); (N.V.-F.); (A.A.C.-P.); (A.J.A.-H.); (F.E.-A.); (O.F.-M.); (K.R.-P.)
- ALERT DHS Center of Excellence for Explosives Research, Department of Chemistry, University of Puerto Rico-Mayagüez Campus, Mayagüez, PR 00681, USA; (E.S.L.-R.); (S.P.H.-R.)
| | - Antony A. Cardozo-Puello
- Facultad de Ciencias Básicas y Biomédicas, Life Science Research Center, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (Y.P.L.-L.); (N.J.G.-F.); (N.V.-F.); (A.A.C.-P.); (A.J.A.-H.); (F.E.-A.); (O.F.-M.); (K.R.-P.)
- ALERT DHS Center of Excellence for Explosives Research, Department of Chemistry, University of Puerto Rico-Mayagüez Campus, Mayagüez, PR 00681, USA; (E.S.L.-R.); (S.P.H.-R.)
| | - Antonio J. Acosta-Hoyos
- Facultad de Ciencias Básicas y Biomédicas, Life Science Research Center, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (Y.P.L.-L.); (N.J.G.-F.); (N.V.-F.); (A.A.C.-P.); (A.J.A.-H.); (F.E.-A.); (O.F.-M.); (K.R.-P.)
| | - Guido Parra-Anaya
- Instituto de Reproducción Humana Procrear, Barranquilla 080020, Colombia;
| | - Elvin S. Lebrón-Ramírez
- ALERT DHS Center of Excellence for Explosives Research, Department of Chemistry, University of Puerto Rico-Mayagüez Campus, Mayagüez, PR 00681, USA; (E.S.L.-R.); (S.P.H.-R.)
| | - Fabián Espitia-Almeida
- Facultad de Ciencias Básicas y Biomédicas, Life Science Research Center, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (Y.P.L.-L.); (N.J.G.-F.); (N.V.-F.); (A.A.C.-P.); (A.J.A.-H.); (F.E.-A.); (O.F.-M.); (K.R.-P.)
| | - Samuel P. Hernández-Rivera
- ALERT DHS Center of Excellence for Explosives Research, Department of Chemistry, University of Puerto Rico-Mayagüez Campus, Mayagüez, PR 00681, USA; (E.S.L.-R.); (S.P.H.-R.)
| | - Maximiliano Méndez-López
- Grupo de Química y Biología, Departamento de Química y Biología, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 080001, Colombia;
| | - Ornella Fiorillo-Moreno
- Facultad de Ciencias Básicas y Biomédicas, Life Science Research Center, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (Y.P.L.-L.); (N.J.G.-F.); (N.V.-F.); (A.A.C.-P.); (A.J.A.-H.); (F.E.-A.); (O.F.-M.); (K.R.-P.)
- Clínica Iberoamérica y Clínica El Carmen, Barranquilla 080020, Colombia
| | - Karin Rondon-Payare
- Facultad de Ciencias Básicas y Biomédicas, Life Science Research Center, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (Y.P.L.-L.); (N.J.G.-F.); (N.V.-F.); (A.A.C.-P.); (A.J.A.-H.); (F.E.-A.); (O.F.-M.); (K.R.-P.)
- Grupo de Salud Familiar, Facultad de Ciencias de la Salud, Programa de Medicina, Universidad del Magdalena, Santa Marta 470004, Colombia
| | - Leonardo C. Pacheco-Londoño
- Facultad de Ciencias Básicas y Biomédicas, Life Science Research Center, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (Y.P.L.-L.); (N.J.G.-F.); (N.V.-F.); (A.A.C.-P.); (A.J.A.-H.); (F.E.-A.); (O.F.-M.); (K.R.-P.)
| |
Collapse
|
2
|
Cunha I, Latron E, Bauer S, Sage D, Griffié J. Machine learning in microscopy - insights, opportunities and challenges. J Cell Sci 2024; 137:jcs262095. [PMID: 39465533 DOI: 10.1242/jcs.262095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Machine learning (ML) is transforming the field of image processing and analysis, from automation of laborious tasks to open-ended exploration of visual patterns. This has striking implications for image-driven life science research, particularly microscopy. In this Review, we focus on the opportunities and challenges associated with applying ML-based pipelines for microscopy datasets from a user point of view. We investigate the significance of different data characteristics - quantity, transferability and content - and how this determines which ML model(s) to use, as well as their output(s). Within the context of cell biological questions and applications, we further discuss ML utility range, namely data curation, exploration, prediction and explanation, and what they entail and translate to in the context of microscopy. Finally, we explore the challenges, common artefacts and risks associated with ML in microscopy. Building on insights from other fields, we propose how these pitfalls might be mitigated for in microscopy.
Collapse
Affiliation(s)
- Inês Cunha
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Tomtebodavägen 23, 171 65 Solna, Sweden
| | - Emma Latron
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Tomtebodavägen 23, 171 65 Solna, Sweden
| | - Sebastian Bauer
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Tomtebodavägen 23, 171 65 Solna, Sweden
| | - Daniel Sage
- Biomedical Imaging Group and EPFL Center for Imaging, École Polytechnique, Rte Cantonale, 1015 Lausanne, Switzerland
| | - Juliette Griffié
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Tomtebodavägen 23, 171 65 Solna, Sweden
| |
Collapse
|
3
|
Zheng C, Zhang L, Huang H, Wang X, Van Schepdael A, Ye J. Raman spectroscopy: A promising analytical tool used in human reproductive medicine. J Pharm Biomed Anal 2024; 249:116366. [PMID: 39029353 DOI: 10.1016/j.jpba.2024.116366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Over the past few years, there has been growing interest in developing new methods of embryo quality assessment to improve the outcomes of assisted reproductive technologies in the medical field. Raman microscopy as an increasingly promising analytical tool has been widely used in life sciences, biomedicine and "omics" to study molecular, biochemical components, living cells and tissues due to the label-free and non-destructive nature of the imaging technique. This paper reviews the analytical capability of Raman microscopy and applications of Raman spectroscopy technology mainly in reproductive medicine. The purpose of this review is to introduce the Raman spectroscopy technology, application and underlying principles of the method, to provide an intact picture of its uses in biomedical science and reproductive medicine, to offer ideas for its future application, verification and validation. The focus is on the application of Raman spectroscopy in the reproductive medicine field, including the application in gametes, embryos and spent embryo culture media.
Collapse
Affiliation(s)
- Chao Zheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lumei Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hefeng Huang
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium.
| | - Jian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Khadem H, Mangini M, Farazpour S, De Luca AC. Correlative Raman Imaging: Development and Cancer Applications. BIOSENSORS 2024; 14:324. [PMID: 39056600 PMCID: PMC11274409 DOI: 10.3390/bios14070324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Despite extensive research efforts, cancer continues to stand as one of the leading causes of death on a global scale. To gain profound insights into the intricate mechanisms underlying cancer onset and progression, it is imperative to possess methodologies that allow the study of cancer cells at the single-cell level, focusing on critical parameters such as cell morphology, metabolism, and molecular characteristics. These insights are essential for effectively discerning between healthy and cancerous cells and comprehending tumoral progression. Recent advancements in microscopy techniques have significantly advanced the study of cancer cells, with Raman microspectroscopy (RM) emerging as a particularly powerful tool. Indeed, RM can provide both biochemical and spatial details at the single-cell level without the need for labels or causing disruptions to cell integrity. Moreover, RM can be correlated with other microscopy techniques, creating a synergy that offers a spectrum of complementary insights into cancer cell morphology and biology. This review aims to explore the correlation between RM and other microscopy techniques such as confocal fluoresce microscopy (CFM), atomic force microscopy (AFM), digital holography microscopy (DHM), and mass spectrometry imaging (MSI). Each of these techniques has their own strengths, providing different perspectives and parameters about cancer cell features. The correlation between information from these various analysis methods is a valuable tool for physicians and researchers, aiding in the comprehension of cancer cell morphology and biology, unraveling mechanisms underlying cancer progression, and facilitating the development of early diagnosis and/or monitoring cancer progression.
Collapse
Affiliation(s)
- Hossein Khadem
- Institute for Experimental Endocrinology and Oncology 'G. Salvatore', IEOS-Second Unit, National Research Council, 80131 Naples, Italy
| | - Maria Mangini
- Institute for Experimental Endocrinology and Oncology 'G. Salvatore', IEOS-Second Unit, National Research Council, 80131 Naples, Italy
| | - Somayeh Farazpour
- Institute for Experimental Endocrinology and Oncology 'G. Salvatore', IEOS-Second Unit, National Research Council, 80131 Naples, Italy
| | - Anna Chiara De Luca
- Institute for Experimental Endocrinology and Oncology 'G. Salvatore', IEOS-Second Unit, National Research Council, 80131 Naples, Italy
| |
Collapse
|
5
|
Mangini M, Limatola N, Ferrara MA, Coppola G, Chun JT, De Luca AC, Santella L. Application of Raman spectroscopy to the evaluation of F-actin changes in sea urchin eggs at fertilization. ZYGOTE 2024; 32:38-48. [PMID: 38050697 DOI: 10.1017/s0967199423000552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The actin filaments on the surface of echinoderm oocytes and eggs readily undergo massive reorganization during meiotic maturation and fertilization. In sea urchin eggs, the actin cytoskeletal response to the fertilizing sperm is fast enough to accompany Ca2+ signals and to guide sperm's entry into the egg. Although recent work using live cell imaging technology confirmed changes in the actin polymerization status in fertilized eggs, as was previously shown using light and electron microscopy, it failed to provide experimental evidence of F-actin depolymerization a few seconds after insemination, which is concurrent with the sperm-induced Ca2+ release. In the present study, we applied Raman microspectroscopy to tackle this issue by examining the spectral profiles of the egg's subplasmalemmal regions before and after treating the eggs with actin drugs or fertilizing sperm. At both early (15 s) and late (15 min) time points after fertilization, specific peak shifts in the Raman spectra revealed change in the actin structure, and Raman imaging detected the cytoskeletal changes corresponding to the F-actin reorganization visualized with LifeAct-GFP in confocal microscopy. Our observation suggests that the application of Raman spectroscopy, which does not require microinjection of fluorescent probes and exogenous gene expression, may serve as an alternative or even advantageous method in disclosing rapid subtle changes in the subplasmalemmal actin cytoskeleton that are difficult to resolve.
Collapse
Affiliation(s)
- Maria Mangini
- Institute of Experimental Endocrinology and Oncology 'G. Salvatore', Second Unit, National Research Council, 80131Naples, Italy
| | - Nunzia Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121Naples, Italy
| | - Maria Antonietta Ferrara
- Institute of Applied Sciences and Intelligent Systems 'E. Caianiello', Unit of Naples, National Research Council, 80131Naples, Italy
| | - Giuseppe Coppola
- Institute of Applied Sciences and Intelligent Systems 'E. Caianiello', Unit of Naples, National Research Council, 80131Naples, Italy
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121Naples, Italy
| | - Anna Chiara De Luca
- Institute of Experimental Endocrinology and Oncology 'G. Salvatore', Second Unit, National Research Council, 80131Naples, Italy
| | - Luigia Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121Naples, Italy
| |
Collapse
|
6
|
Mangini M, Ferrara MA, Zito G, Managò S, Luini A, De Luca AC, Coppola G. Cancer metabolic features allow discrimination of tumor from white blood cells by label-free multimodal optical imaging. Front Bioeng Biotechnol 2023; 11:1057216. [PMID: 36815877 PMCID: PMC9928723 DOI: 10.3389/fbioe.2023.1057216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Circulating tumor cells (CTCs) are tumor cells that have penetrated the circulatory system preserving tumor properties and heterogeneity. Detection and characterization of CTCs has high potential clinical values and many technologies have been developed for CTC identification. These approaches remain challenged by the extraordinary rarity of CTCs and the difficulty of efficiently distinguishing cancer from the much larger number of white blood cells in the bloodstream. Consequently, there is still a need for efficient and rapid methods to capture the broad spectrum of tumor cells circulating in the blood. Herein, we exploit the peculiarities of cancer metabolism for discriminating cancer from WBCs. Using deuterated glucose and Raman microscopy we show that a) the known ability of cancer cells to take up glucose at greatly increased rates compared to non-cancer cells results in the lipid generation and accumulation into lipid droplets and, b) by contrast, leukocytes do not appear to generate visible LDs. The difference in LD abundance is such that it provides a reliable parameter for distinguishing cancer from blood cells. For LD sensitive detections in a cell at rates suitable for screening purposes, we test a polarization-sensitive digital holographic imaging (PSDHI) technique that detects the birefringent properties of the LDs. By using polarization-sensitive digital holographic imaging, cancer cells (prostate cancer, PC3 and hepatocarcinoma cells, HepG2) can be rapidly discriminated from leukocytes with reliability close to 100%. The combined Raman and PSDHI microscopy platform lays the foundations for the future development of a new label-free, simple and universally applicable cancer cells' isolation method.
Collapse
Affiliation(s)
- Maria Mangini
- Laboratory of Biophotonics and Advanced Microscopy, Institute of Experimental Endocrinology and Oncology “G. Salvatore”, Second Unit, National Research Council, Naples, Italy
| | - Maria Antonietta Ferrara
- Laboratory of Optics and Photonics, Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, Naples, Italy
| | - Gianluigi Zito
- Laboratory of Optics and Photonics, Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, Naples, Italy
| | - Stefano Managò
- Laboratory of Biophotonics and Advanced Microscopy, Institute of Experimental Endocrinology and Oncology “G. Salvatore”, Second Unit, National Research Council, Naples, Italy
| | - Alberto Luini
- Laboratory of Biophotonics and Advanced Microscopy, Institute of Experimental Endocrinology and Oncology “G. Salvatore”, Second Unit, National Research Council, Naples, Italy,*Correspondence: Alberto Luini, ; Anna Chiara De Luca, ; Giuseppe Coppola,
| | - Anna Chiara De Luca
- Laboratory of Biophotonics and Advanced Microscopy, Institute of Experimental Endocrinology and Oncology “G. Salvatore”, Second Unit, National Research Council, Naples, Italy,*Correspondence: Alberto Luini, ; Anna Chiara De Luca, ; Giuseppe Coppola,
| | - Giuseppe Coppola
- Laboratory of Optics and Photonics, Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, Naples, Italy,*Correspondence: Alberto Luini, ; Anna Chiara De Luca, ; Giuseppe Coppola,
| |
Collapse
|
7
|
Abramczyk H, Sobkiewicz B, Walczak-Jędrzejowska R, Marchlewska K, Surmacki J. Decoding the role of cytochrome c in metabolism of human spermatozoa by Raman imaging. Front Cell Dev Biol 2022; 10:983993. [PMID: 36506104 PMCID: PMC9732575 DOI: 10.3389/fcell.2022.983993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
The normal functioning of sperm cells requires cytochrome c in the redox balanced forms: reduced and oxidized. The oxidized form of cytochrome c is localized in the mitochondrial intermembrane space and is a part of the electron transport chain. This ensures that electron shuttling between the complex III, cytochrome c, and complex IV can occur leading to controlled effective oxidative phosphorylation (respiration) and ATP production needed for most steps in spermatozoal maturation, motility, hyperactivation and fertilization. We studied the biochemical composition of specific organelles in sperm cells by Raman imaging. The structures of the head consisting of the nucleus and acrosome, the midpiece representing mitochondria, and the tail characterized by the sperm axoneme surrounded by outer dense fiber and covered by the membrane were measured. Metabolic biochemical analysis of mitochondria, head and tail of sperm cells, and seminal plasma by using Raman imaging combined with chemometric classification method of Cluster Analysis has been obtained. Our results show that cytochrome c, which is a key protein that is needed to maintain life (respiration) and cell death (apoptosis), is located in sperm mitochondria in the oxidized or reduced form of the heme group. This work demonstrated that an application of Raman micro-spectroscopy can be extended to monitoring the redox state of mitochondrial cytochrome c in sperm cells.
Collapse
Affiliation(s)
- Halina Abramczyk
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Lodz, Poland,*Correspondence: Halina Abramczyk, ; Jakub Surmacki,
| | | | | | - Katarzyna Marchlewska
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland
| | - Jakub Surmacki
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Lodz, Poland,*Correspondence: Halina Abramczyk, ; Jakub Surmacki,
| |
Collapse
|
8
|
Mirsky SK, Barnea I, Shaked NT. Dynamic Tomographic Phase Microscopy by Double Six-Pack Holography. ACS PHOTONICS 2022; 9:1295-1303. [PMID: 35480489 PMCID: PMC9026267 DOI: 10.1021/acsphotonics.1c01804] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 05/25/2023]
Affiliation(s)
- Simcha K. Mirsky
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Itay Barnea
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Natan T. Shaked
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
9
|
Coppola G, Mangini M, Zito G, De Tommasi E, De Luca AC, Ferrara MA. Polarization Sensitive Digital Holographic Imaging in Biology. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202226604001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A new, simple digital holography-based polarization microscope for quantitative birefringence imaging of biological cells is presented. As a proof of concept, two different class of cells have been characterized by polarization sensitive digital holographic imaging (PSDHI). These two cases study reported are: differentiation of leukaemia cells and identification of reacted sperm cells. Although further experimentation is necessary, the suggested approach could represent a prospective label-free diagnostic tool for use in biological and medical research and diagnosis.
Collapse
|
10
|
Wang Y, Xu J, Cui D, Kong L, Chen S, Xie W, Zhang C. Classification and Identification of Archaea Using Single-Cell Raman Ejection and Artificial Intelligence: Implications for Investigating Uncultivated Microorganisms. Anal Chem 2021; 93:17012-17019. [PMID: 34910467 DOI: 10.1021/acs.analchem.1c03495] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Archaea can produce special cellular components such as polyhydroxyalkanoates, carotenoids, rhodopsin, and ether lipids, which have valuable applications in medicine and green energy production. Most of the archaeal species are uncultivated, posing challenges to investigating their biomarker components and biochemical properties. In this study, we applied Raman spectroscopy to examine the biological characteristics of nine archaeal isolates, including halophilic archaea (Haloferax larsenii, Haloarcula argentinensis, Haloferax mediterranei, Halomicrobium mukohataei, Halomicrobium salinus, Halorussus sp., Natrinema gari), thermophilic archaea (Sulfolobus acidocaldarius), and marine group I (MGI) archaea (Nitrosopumilus maritimus). Linear discriminant analysis of the Raman spectra allowed visualization of significant separations among the nine archaeal isolates. Machine-learning classification models based on support vector machine achieved accuracies of 88-100% when classifying the nine archaeal species. The predicted results were validated by DNA sequencing analysis of cells isolated from the mixture by Raman-activated cell sorting. Raman spectra of uncultured archaea (MGII) were also obtained based on Raman spectroscopy and fluorescence in situ hybridization. The results combining multiple Raman-based techniques indicated that MGII may have the ability to produce lipids distinct from other archaeal species. Our study provides a valuable approach for investigating and classifying archaea, especially uncultured species, at the single-cell level.
Collapse
Affiliation(s)
- Yi Wang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiabao Xu
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K
| | - Dongyu Cui
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lingchao Kong
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Songze Chen
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Xie
- School of Marine Science, Sun Yat-sen University, Zhuhai 519082, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen 518055, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China.,Shanghai Sheshan National Geophysical Observatory, Shanghai 200000, China
| |
Collapse
|
11
|
Sheng W, Liu Y, Yang H, Shi Y, Wang J. Polarization-sensitive imaging based on incoherent holography. OPTICS EXPRESS 2021; 29:28054-28065. [PMID: 34614944 DOI: 10.1364/oe.433601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
The polarization-sensitive imaging technology is proposed based on incoherent holography. The distribution of state of polarization (SoP) of the object light field can be reconstructed by measuring the phase difference and amplitude ratio of two components of the Jones vector on the basis of incoherent self-interference theory and the accurate point spread function (PSF) of the incoherent holographic system. In the analysis of Fresnel diffraction, we develop a new method to greatly simplify the calculation of the accurate PSF by means of imaging property of lens and symbolic mathematics tools. In the recording process, we utilize the automation of phase shift, photography, and synthesization of color hologram to greatly shorten the total recording time of a group of phase-shifted holograms. The experimental results show that the proposed technology can accurately realize polarization-sensitive imaging and it is much simpler for complete linearly polarized light.
Collapse
|
12
|
Zhang Z, Dai C, Shan G, Chen X, Liu H, Abdalla K, Kuznyetsova I, Moskovstev S, Huang X, Librach C, Jarvi K, Sun Y. Quantitative selection of single human sperm with high DNA integrity for intracytoplasmic sperm injection. Fertil Steril 2021; 116:1308-1318. [PMID: 34266663 DOI: 10.1016/j.fertnstert.2021.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To study at the single-cell level whether a sperm's motility and morphology parameters reflect its DNA integrity, and to establish a set of quantitative criteria for selecting single sperm with high DNA integrity. DESIGN Prospective study. SETTING In vitro fertilization center and university laboratories. PATIENT(S) Male patients undergoing infertility treatments. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) The motility and morphology parameters of each sperm were measured with the use of computer vision algorithms. The sperm was then aspirated and transferred for DNA fragmentation measurement by single-cell gel electrophoresis (comet assay). RESULT(S) We adapted the World Health Organization criteria, which were originally defined for semen analysis, and established a set of quantitative criteria for single-sperm selection in intracytoplasmic sperm injection. Sperm satisfying the criteria had significantly lower DNA fragmentation levels than the sample population. Both normal motility and normal morphology were required for a sperm to have low DNA fragmentation. The quantitative criteria were integrated into a software program for sperm selection. In blind tests in which our software and three embryologists selected sperm from the same patient samples, our software outperformed the embryologists and selected sperm with the highest DNA integrity. CONCLUSION(S) At the single-cell level, a sperm's motility and morphology parameters reflect its DNA integrity. The developed technique and criteria hold the potential to mitigate the risk factor of sperm DNA fragmentation in intracytoplasmic sperm injection.
Collapse
Affiliation(s)
- Zhuoran Zhang
- Department of Mechanical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Changsheng Dai
- Department of Mechanical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Guanqiao Shan
- Department of Mechanical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Xin Chen
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hang Liu
- Department of Mechanical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | - Xi Huang
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Keith Jarvi
- Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Yu Sun
- Department of Mechanical Engineering, University of Toronto, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Brogna R, Fan J, Sieme H, Wolkers WF, Oldenhof H. Drying and temperature induced conformational changes of nucleic acids and stallion sperm chromatin in trehalose preservation formulations. Sci Rep 2021; 11:14076. [PMID: 34234244 PMCID: PMC8263733 DOI: 10.1038/s41598-021-93569-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/23/2021] [Indexed: 12/27/2022] Open
Abstract
Even though dried sperm is not viable, it can be used for fertilization as long as its chromatin remains intact. In this study, we investigated drying- and temperature-induced conformational changes of nucleic acids and stallion sperm chromatin. Sperm was diluted in preservation formulations with and without sugar/albumin and subjected to convective drying at elevated temperatures on glass substrates. Accumulation of reactive oxygen species was studied during storage at different temperatures, and the sperm chromatin structure assay was used to assess DNA damage. Fourier transform infrared spectroscopy was used to identify dehydration and storage induced conformational changes in isolated DNA and sperm chromatin. Furthermore, hydrogen bonding in the preservation solutions associated with storage stability were investigated. Reactive oxygen species and DNA damage in dried sperm samples were found to accumulate with increasing storage temperature and storage duration. Non-reducing disaccharides (i.e., trehalose, sucrose) and albumin counteracted oxidative stress and preserved sperm chromatin during dried storage, whereas glucose increased DNA damage during storage. When sperm was dried in the presence of trehalose and albumin, no spectral changes were detected during storage at refrigeration temperatures, whereas under accelerated aging conditions, i.e., storage at 37 °C, spectral changes were detected indicating alterations in sperm chromatin structure.
Collapse
Affiliation(s)
- Raffaele Brogna
- Biostabilization Laboratory, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Hannover, Germany
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover, Bünteweg 15, 30559, Hannover, Germany
| | - Juezhu Fan
- Biostabilization Laboratory, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harald Sieme
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover, Bünteweg 15, 30559, Hannover, Germany
| | - Willem F Wolkers
- Biostabilization Laboratory, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Hannover, Germany
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover, Bünteweg 15, 30559, Hannover, Germany
| | - Harriëtte Oldenhof
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover, Bünteweg 15, 30559, Hannover, Germany.
| |
Collapse
|
14
|
Label-Free Evaluation of Chromatin Condensation in Human Normal Morphology Sperm Using Raman Spectroscopy. Reprod Sci 2021; 28:2527-2539. [PMID: 33877640 PMCID: PMC8346437 DOI: 10.1007/s43032-021-00494-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022]
Abstract
Chromatin condensation is one of the main factors essential for sperm function. Evaluation of chromatin condensation by current methods render the assessed sperm unsuitable for assisted reproduction. We examined the Raman spectra of normal morphology sperm to determine whether a non-invasive confocal Raman spectroscopy can detect spectral differences between groups having different levels of chromatin condensation. Semen samples from 85 donors who underwent ICSI were obtained. Chromomycin A3, aniline blue and acridine orange staining were performed to evaluate the protamine deficiency, histone retention and DNA fragmentation respectively. Raman spectra were obtained from 50 normal morphology sperm for each donor. Spectral analysis was performed using home written programs in LabVIEW software and samples were grouped based on chromomycin A3 staining. Raman peaks intensities at 670 cm-1, 731 cm-1, 785 cm-1, 858 cm-1, 1062 cm-1, 1098 cm-1, 1185 cm-1, 1372 cm-1, 1424 cm-1, 1450 cm-1, 1532 cm-1, 1618 cm-1 and 1673 cm-1 were significantly correlated with at least one of the sperm staining methods. The median intensity of the Raman peaks at 670 cm-1, 731 cm-1, 785 cm-1, 1062 cm-1, 1098 cm-1, 1185 cm-1, 1372 cm-1, 1424 cm-1, 1450 cm-1, 1532 cm-1, 1618 cm-1 and 1673 cm-1 show a significant difference between the CMA3≤41 and CMA3>41groups. The Raman spectroscopic measurements represent a promising diagnostic tool that has the ability to label-free detect sperm with chromatin abnormalities, such as improper chromatin condensation and DNA fragmentation to a certain degree similar to that of the existing staining techniques at the individual cell level.
Collapse
|
15
|
Haleem A, Javaid M, Khan IH. Holography applications toward medical field: An overview. Indian J Radiol Imaging 2020; 30:354-361. [PMID: 33273770 PMCID: PMC7694722 DOI: 10.4103/ijri.ijri_39_20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/03/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose: 3D Holography is a commercially available, disruptive innovation, which can be customised as per the requirements and is supporting Industry 4.0. The purpose of this paper is to study the potential applications of 3D holography in the medical field. This paper explores the concept of holography and its significant benefits in the medical field. Methods: The paper is derived through the study of various research papers on Holography and its applications in the medical field. The study tries to identify the direction of research &development and see how this innovative technology can be used effectively for better treatment of patients. Results: Holography uses digital imaging inputs and provides an extensive visualisation of the data for training doctors, surgeons and students. Holography converts information about the body into a digital format and has the potential to inform, promote and entertain the medical students and doctors. However, it needs a large amount of space for data storage and extensive software support for analysis and skills for customising. This technology seems good to solve a variety of medical issues by storing and using patient data in developing 3D holograms, which are useful to assist successful treatment and surgery. It seems useful in providing flexible solutions in the area of medical research. Finally, the paper identifies 13 significant applications of this technology in the medical field and discusses them appropriately. Conclusion: The paper explores holographic applications in medical research due to its extensive capability of image processing. Holographic images are non-contact 3D images having a large field of depth. A physician can now zoom the holographic image for a better view of the medical part. This innovative technology can create advancements in the diagnosis and treatment process, which can improve medical practice. It helps in quick detection of problems in various organs like brain, heart, liver, kidney etc. By using this technology, medical practitioners can see colourful organs at multiple angles with better accuracy. It opens up an innovative way of planning, testing of procedures and diagnosis. With technological developments, compact hardware and software are now available to help medical research and related applications.
Collapse
Affiliation(s)
- Abid Haleem
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India
| | - Mohd Javaid
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India
| | - Ibrahim Haleem Khan
- School of Engineering Sciences and Technology, Jamia Hamdard, New Delhi, India
| |
Collapse
|
16
|
Elumalai S, Managó S, De Luca AC. Raman Microscopy: Progress in Research on Cancer Cell Sensing. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5525. [PMID: 32992464 PMCID: PMC7582629 DOI: 10.3390/s20195525] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
In the last decade, Raman Spectroscopy (RS) was demonstrated to be a label-free, non-invasive and non-destructive optical spectroscopy allowing the improvement in diagnostic accuracy in cancer and analytical assessment for cell sensing. This review discusses how Raman spectra can lead to a deeper molecular understanding of the biochemical changes in cancer cells in comparison to non-cancer cells, analyzing two key examples, leukemia and breast cancer. The reported Raman results provide information on cancer progression and allow the identification, classification, and follow-up after chemotherapy treatments of the cancer cells from the liquid biopsy. The key obstacles for RS applications in cancer cell diagnosis, including quality, objectivity, number of cells and velocity of the analysis, are considered. The use of multivariant analysis, such as principal component analysis (PCA) and linear discriminate analysis (LDA), for an automatic and objective assessment without any specialized knowledge of spectroscopy is presented. Raman imaging for cancer cell mapping is shown and its advantages for routine clinical pathology practice and live cell imaging, compared to single-point spectral analysis, are debated. Additionally, the combination of RS with microfluidic devices and high-throughput screening for improving the velocity and the number of cells analyzed are also discussed. Finally, the combination of the Raman microscopy (RM) with other imaging modalities, for complete visualization and characterization of the cells, is described.
Collapse
Affiliation(s)
| | | | - Anna Chiara De Luca
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Via P. Castellino 111, 80131 Naples, Italy; (S.E.); (S.M.)
| |
Collapse
|
17
|
Polarization-Sensitive Digital Holographic Imaging for Characterization of Microscopic Samples: Recent Advances and Perspectives. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10134520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polarization-sensitive digital holographic imaging (PS-DHI) is a recent imaging technique based on interference among several polarized optical beams. PS-DHI allows simultaneous quantitative three-dimensional reconstruction and quantitative evaluation of polarization properties of a given sample with micrometer scale resolution. Since this technique is very fast and does not require labels/markers, it finds application in several fields, from biology to microelectronics and micro-photonics. In this paper, a comprehensive review of the state-of-the-art of PS-DHI techniques, the theoretical principles, and important applications are reported.
Collapse
|
18
|
Öhman J, Sjödahl M. Identification, tracking, and sizing of nano-sized particles using dual-view polarization-resolved digital holography and T-matrix modeling. APPLIED OPTICS 2020; 59:4548-4556. [PMID: 32400434 DOI: 10.1364/ao.390575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we demonstrate how polarization-resolved holography can be used to determine if a particle is spherical or not and to estimate the size information of nanoparticles. The T-matrix method is used to model the scattered light from both spheres and spheroids. A dual-view polarization-resolved imaging system is used in order to obtain polarization ratio angles (β1,β2). From the obtained β1 and β2, it is possible to estimate whether or not a particle is spherical. It is found that nonsphericity only has a minor effect up to around sizes of 120 nm, and for that range, a spherical approximation is valid. For larger particles, the orientation influences the polarization response greatly. The size of a nonspherical particle can be estimated from the polarization ratio angles. The upper limit we can estimate unambiguously is around 200 nm. Finally, the model is applied to experimental measurements of naturally occurring particles in purified water. From the measurements, it is possible to separate spherical from nonspherical particles and also give a rough estimate of the size.
Collapse
|