1
|
Daghino S, Murat C, De Mita S, Martino E, Perotto S. Comparative genomics reveals substantial divergence in metal sensitive and metal tolerant isolates of the ericoid mycorrhizal fungus Oidiodendron maius. MYCORRHIZA 2025; 35:24. [PMID: 40116937 PMCID: PMC11928401 DOI: 10.1007/s00572-025-01191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/13/2025] [Indexed: 03/23/2025]
Abstract
Some heavy metal tolerant fungal isolates capable of forming ericoid mycorrhiza can also confer increased metal tolerance to the host plant. One of these fungal isolates, Oidiodendron maius Zn, has been characterized and a few molecular mechanisms underlying its metal tolerant phenotype have been identified. Here, we investigate the genomic divergences between the available genome of O. maius Zn and the genomes of metal tolerant and sensitive isolates of O. maius, with the aim of identifying genes or intergenic regions possibly involved in the display of the tolerance. The resequenced genomes of 8 tolerant and 10 sensitive isolates were mapped on the reference, O. maius Zn, yielding 357 gene models from the reference that were either missing or too polymorphic to be identified in the genomes of the sensitive isolates. These regions included genes with functions related to defense mechanisms and with unknown functions. One third of the predicted gene models turned out to be highly polymorphic, including many enriched GO terms, i.e. DNA/RNA metabolism and modification, chromosome/chromatin organization, protein biosynthesis, metabolism and function, energy consumption/transfer and mitochondrion. Overall, our findings indicate that the tolerant phenotype in O. maius likely arises from multiple genetic adaptations rather than a singular mechanism.
Collapse
Affiliation(s)
- Stefania Daghino
- Institute for Sustainable Plant Protection, CNR, Strada Delle Cacce 73, 10135, Turin, Italy
| | - Claude Murat
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
| | - Stéphane De Mita
- INRAE, CIRAD, PHIM, Univ Montpellier, Institut Agro, IRD, Montpellier, France
| | - Elena Martino
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France.
- Department of Life Sciences and Systems Biology, University of Torino, V. le Mattioli 25, 10125, Turin, Italy.
| | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Torino, V. le Mattioli 25, 10125, Turin, Italy
| |
Collapse
|
2
|
Cheng Y, Chen X, Liu W, Yang L, Wu J, Wang Y, Yu W, Zhou J, Fayyaz P, Luo ZB, Deng S, Shi W. Homolog of Human placenta-specific gene 8, PcPLAC8-10, enhances cadmium uptake by Populus roots. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132349. [PMID: 37657324 DOI: 10.1016/j.jhazmat.2023.132349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023]
Abstract
Cadmium (Cd) pollution of soil occurs worldwide. Phytoremediation is an effective approach for cleaning up Cd polluted soil. Fast growing Populus species with high Cd uptake capacities are desirable for phytoremediation. Thus, it is important to elucidate the molecular functions of genes involved in Cd uptake by poplars. In this study, PcPLAC8-10, a homolog of Human placenta-specific gene 8 (PLAC8) implicated in Cd transport was functionally characterized in Populus × canescens. PcPLAC8-10 was transcriptionally induced in Cd-treated roots and it encoded a plasma membrane-localized transporter. PcPLAC8-10 exhibited Cd uptake activity when expressed in yeast cells. No difference in growth was observed between wild type (WT) and PcPLAC8-10-overexpressing poplars. PcPLAC8-10-overexpressing poplars exhibited increases in net Cd2+ influxes by 192% and Cd accumulation by 57% in the roots. However, similar reductions in biomass were found in WT and transgenic poplars when exposed to Cd. The complete motif of CCXXXXCPC in PcPLAC8-10 was essential for its Cd transport activity. These results suggest that PcPLAC8-10 is a plasma membrane-localized transporter responsible for Cd uptake in the roots and the complete CCXXXXCPC motif of PcPLAC8-10 plays a key role in its Cd transport activity in poplars.
Collapse
Affiliation(s)
- Yao Cheng
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Xin Chen
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Wenzhe Liu
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Lingyu Yang
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Jiangting Wu
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Yang Wang
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Wenjian Yu
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Jing Zhou
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Payam Fayyaz
- Forest, Range and Watershed Management Department, Agriculture and Natural Resources Faculty, Yasouj University, Yasuj 75919 63179, Islamic Republic of Iran
| | - Zhi-Bin Luo
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China; Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091, PR China; Comprehensive Experimental Center of Chinese Academy of Forestry in Yellow River Delta, Dongying, Shandong Province 257000, PR China.
| | - Shurong Deng
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China.
| | - Wenguang Shi
- National Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China.
| |
Collapse
|
3
|
Ran C, Zhang Y, Chang F, Yang X, Liu Y, Wang Q, Zhu W. Genome-Wide Analyses of SlFWL Family Genes and Their Expression Profiles under Cold, Heat, Salt and Drought Stress in Tomato. Int J Mol Sci 2023; 24:11783. [PMID: 37511542 PMCID: PMC10380795 DOI: 10.3390/ijms241411783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/04/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
PLAC8 is a cysteine-rich protein that serves as a central mediator of tumor evolution in mammals. PLAC8 motif-containing proteins widely distribute in fungi, algae, higher plants and animals that have been described to be implicated in fruit size, cell number and the transport of heavy metals such as cadmium or zinc. In tomatoes, FW2.2 is a PLAC8 motif-containing gene that negatively controls fruit size by regulating cell division and expansion in the carpel ovary during fruit development. However, despite FW2.2, other FWL (FW2.2-Like) genes in tomatoes have not been investigated. In this study, we identified the 21 SlFWL genes, including FW2.2, examined their expression profiles under various abiotic adversity-related conditions. The SlFWL gene structures and motif compositions are conserved, indicating that tomato SlFWL genes may have similar roles. Cis-acting element analysis revealed that the SlFWL genes may participate in light and abiotic stress responses, and they also interacted with a variety of phytohormone-responsive proteins and plant development elements. Phylogenetic analyses were performed on five additional plant species, including Arabidopsis, pepper, soybean, rice and maize, these genes were classified into five subfamilies. Based on the results of collinearity analyses, the SlFWL genes have a tighter homologous evolutionary relationship with soybean, and these orthologous FWL gene pairs might have the common ancestor. Expression profiling of SlFWL genes show that they were all responsive to abiotic stresses, each subgroup of genes exhibited a different expression trend. Our findings provide a strong foundation for investigating the function and abiotic stress responses of the SlFWL family genes.
Collapse
Affiliation(s)
- Chunxia Ran
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yingying Zhang
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Feifei Chang
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xuedong Yang
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yahui Liu
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Quanhua Wang
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Weimin Zhu
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
4
|
PLAC8 Overexpression Promotes Lung Cancer Cell Growth via Wnt/ β-Catenin Signaling. J Immunol Res 2022; 2022:8854196. [PMID: 35497881 PMCID: PMC9054485 DOI: 10.1155/2022/8854196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/26/2022] [Accepted: 04/02/2022] [Indexed: 11/24/2022] Open
Abstract
The PLAC8 expression in lung cancer tissues and in vitro grown lung cancer cells, as well as the involvement of the Wnt/β-Catenin signaling pathway, was investigated in this process. PLAC8 protein expression in human lung cancer tissues and lung tumor cells of different strains was discovered using immunohistochemistry staining and Western blot, respectively. Animal models of PLAC8 overexpression and knockdown were created using lentivirus. The development in tumor tissue was seen both in vitro and vivo. The Wnt/β-Catenin signaling pathway played an important part in this process, as shown by the dual luciferase reporter gene system. PLAC8 expression was elevated in lung cancer tissues and plasma and decreased in plasma after lung tumor resection. PLAC8 upregulation promotes cell proliferation in vivo and in vitro, while PLAC8 downregulation inhibits cell viability and proliferation. The results of the dual luciferase reporter gene system suggest that PLAC8 can significantly activate the Wnt/β-Catenin signaling pathway in cells and can conduct signaling through it. A potential treatment targeting the prognosis of lung cancer patients may be PLAC8 overexpression, which promotes the lung cancer cell proliferation through controlling the Wnt/β-Catenin signaling pathway.
Collapse
|
5
|
Tse LV, Meganck RM, Araba KC, Yount BL, Shaffer KM, Hou YJ, Munt JE, Adams LE, Wykoff JA, Morowitz JM, Dong S, Magness ST, Marzluff WF, Gonzalez LM, Ehre C, Baric RS. Genomewide CRISPR knockout screen identified PLAC8 as an essential factor for SADS-CoVs infection. Proc Natl Acad Sci U S A 2022; 119:e2118126119. [PMID: 35476513 PMCID: PMC9170153 DOI: 10.1073/pnas.2118126119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/16/2022] [Indexed: 01/27/2023] Open
Abstract
Zoonotic transmission of coronaviruses poses an ongoing threat to human populations. Endemic outbreaks of swine acute diarrhea syndrome coronavirus (SADS-CoV) have caused severe economic losses in the pig industry and have the potential to cause human outbreaks. Currently, there are no vaccines or specific antivirals against SADS-CoV, and our limited understanding of SADS-CoV host entry factors could hinder prompt responses to a potential human outbreak. Using a genomewide CRISPR knockout screen, we identified placenta-associated 8 protein (PLAC8) as an essential host factor for SADS-CoV infection. Knockout of PLAC8 abolished SADS-CoV infection, which was restored by complementing PLAC8 from multiple species, including human, rhesus macaques, mouse, pig, pangolin, and bat, suggesting a conserved infection pathway and susceptibility of SADS-CoV among mammals. Mechanistically, PLAC8 knockout does not affect viral entry; rather, knockout cells displayed a delay and reduction in viral subgenomic RNA expression. In a swine primary intestinal epithelial culture (IEC) infection model, differentiated cultures have high levels of PLAC8 expression and support SADS-CoV replication. In contrast, expanding IECs have low levels of PLAC8 expression and are resistant to SADS-CoV infection. PLAC8 expression patterns translate in vivo; the immunohistochemistry of swine ileal tissue revealed high levels of PLAC8 protein in neonatal compared to adult tissue, mirroring the known SADS-CoV pathogenesis in neonatal piglets. Overall, PLAC8 is an essential factor for SADS-CoV infection and may serve as a promising target for antiviral development for potential pandemic SADS-CoV.
Collapse
Affiliation(s)
- Longping V. Tse
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Rita M. Meganck
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Kenza C. Araba
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Boyd L. Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Kendall M. Shaffer
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Yixuan J. Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Jennifer E. Munt
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Lily E. Adams
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Jason A. Wykoff
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Jeremy M. Morowitz
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Stephanie Dong
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Scott T. Magness
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, NC 27514
| | - William F. Marzluff
- Integrated Program for Biological and Genome Sciences, Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Liara M. Gonzalez
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606
| | - Camille Ehre
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| |
Collapse
|
6
|
Metalloprotein-Specific or Critical Amino Acid Residues: Perspectives on Plant-Precise Detoxification and Recognition Mechanisms under Cadmium Stress. Int J Mol Sci 2022; 23:ijms23031734. [PMID: 35163656 PMCID: PMC8836122 DOI: 10.3390/ijms23031734] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/15/2022] Open
Abstract
Cadmium (Cd) pollution in cultivated land is caused by irresistible geological factors and human activities; intense diffusion and migration have seriously affected the safety of food crops. Plants have evolved mechanisms to control excessive influx of Cd in the environment, such as directional transport, chelation and detoxification. This is done by some specific metalloproteins, whose key amino acid motifs have been investigated by scientists one by one. The application of powerful cell biology, crystal structure science, and molecular probe targeted labeling technology has identified a series of protein families involved in the influx, transport and detoxification of the heavy metal Cd. This review summarizes them as influx proteins (NRAMP, ZIP), chelating proteins (MT, PDF), vacuolar proteins (CAX, ABCC, MTP), long-distance transport proteins (OPT, HMA) and efflux proteins (PCR, ABCG). We selected representative proteins from each family, and compared their amino acid sequence, motif structure, subcellular location, tissue specific distribution and other characteristics of differences and common points, so as to summarize the key residues of the Cd binding target. Then, we explain its special mechanism of action from the molecular structure. In conclusion, this review is expected to provide a reference for the exploration of key amino acid targets of Cd, and lay a foundation for the intelligent design and breeding of crops with high/low Cd accumulation.
Collapse
|
7
|
Mao M, Cheng Y, Yang J, Chen Y, Xu L, Zhang X, Li Z, Chen C, Ju S, Zhou J, Wang L. Multifaced roles of PLAC8 in cancer. Biomark Res 2021; 9:73. [PMID: 34627411 PMCID: PMC8501656 DOI: 10.1186/s40364-021-00329-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
The role of PLAC8 in tumorigenesis has been gradually elucidated with the development of research. Although there are common molecular mechanisms that enforce cell growth, the impact of PLAC8 is varied and can, in some instances, have opposite effects on tumorigenesis. To systematically understand the role of PLAC8 in tumors, the molecular functions of PLAC8 in cancer will be discussed by focusing on how PLAC8 impacts tumorigenesis when it arises within tumor cells and how these roles can change in different stages of cancer progression with the ultimate goal of suppressing PLAC8-relevant cancer behavior and related pathologies. In addition, we highlight the diversity of PLAC8 in different tumors and its functional output beyond cancer cell growth. The comprehension of PLAC8's molecular function might provide new target and lead to the development of novel anticancer therapies.
Collapse
Affiliation(s)
- Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, 310000, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Zhejiang, 310000, Hangzhou, China
| | - Yifan Cheng
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, 318000, People's Republic of China
| | - Jingjing Yang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, 310000, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Zhejiang, 310000, Hangzhou, China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, 310000, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Zhejiang, 310000, Hangzhou, China
| | - Ling Xu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, 310000, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Zhejiang, 310000, Hangzhou, China
| | - Xun Zhang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, 310000, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Zhejiang, 310000, Hangzhou, China
| | - Zhaoqing Li
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, 310000, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Zhejiang, 310000, Hangzhou, China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, 310000, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Zhejiang, 310000, Hangzhou, China
| | - Siwei Ju
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, 310000, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Zhejiang, 310000, Hangzhou, China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, 310000, Hangzhou, China. .,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Zhejiang, 310000, Hangzhou, China.
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, 310000, Hangzhou, China. .,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Zhejiang, 310000, Hangzhou, China.
| |
Collapse
|
8
|
Moulis JM. Cellular Dynamics of Transition Metal Exchange on Proteins: A Challenge but a Bonanza for Coordination Chemistry. Biomolecules 2020; 10:E1584. [PMID: 33233467 PMCID: PMC7700505 DOI: 10.3390/biom10111584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Transition metals interact with a large proportion of the proteome in all forms of life, and they play mandatory and irreplaceable roles. The dynamics of ligand binding to ions of transition metals falls within the realm of Coordination Chemistry, and it provides the basic principles controlling traffic, regulation, and use of metals in cells. Yet, the cellular environment stands out against the conditions prevailing in the test tube when studying metal ions and their interactions with various ligands. Indeed, the complex and often changing cellular environment stimulates fast metal-ligand exchange that mostly escapes presently available probing methods. Reducing the complexity of the problem with purified proteins or in model organisms, although useful, is not free from pitfalls and misleading results. These problems arise mainly from the absence of the biosynthetic machinery and accessory proteins or chaperones dealing with metal / metal groups in cells. Even cells struggle with metal selectivity, as they do not have a metal-directed quality control system for metalloproteins, and serendipitous metal binding is probably not exceptional. The issue of metal exchange in biology is reviewed with particular reference to iron and illustrating examples in patho-physiology, regulation, nutrition, and toxicity.
Collapse
Affiliation(s)
- Jean-Marc Moulis
- Alternative Energies and Atomic Energy Commission—Fundamental Research Division—Interdisciplinary Research Institute of Grenoble (CEA-IRIG), University of Grenoble Alpes, F-38000 Grenoble, France;
- National Institute of Health and Medical Research, University of Grenoble Alpes, Inserm U1055, F-38000 Grenoble, France
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Inserm U1055, F-38000 Grenoble, France
| |
Collapse
|
9
|
Sutela S, Forgia M, Vainio EJ, Chiapello M, Daghino S, Vallino M, Martino E, Girlanda M, Perotto S, Turina M. The virome from a collection of endomycorrhizal fungi reveals new viral taxa with unprecedented genome organization. Virus Evol 2020; 6:veaa076. [PMID: 33324490 PMCID: PMC7724248 DOI: 10.1093/ve/veaa076] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutualistic plant-associated fungi are recognized as important drivers in plant evolution, diversity, and health. The discovery that mycoviruses can take part and play important roles in symbiotic tripartite interactions has prompted us to study the viromes associated with a collection of ericoid and orchid mycorrhizal (ERM and ORM, respectively) fungi. Our study, based on high-throughput sequencing of transcriptomes (RNAseq) from fungal isolates grown in axenic cultures, revealed in both ERM and ORM fungi the presence of new mycoviruses closely related to already classified virus taxa, but also new viruses that expand the boundaries of characterized RNA virus diversity to previously undescribed evolutionary trajectories. In ERM fungi, we provide first evidence of a bipartite virus, distantly related to narnaviruses, that splits the RNA-dependent RNA polymerase (RdRP) palm domain into two distinct proteins, encoded by each of the two segments. Furthermore, in one isolate of the ORM fungus Tulasnella spp. we detected a 12 kb genomic fragment coding for an RdRP with features of bunyavirus-like RdRPs. However, this 12 kb genomic RNA has the unique features, for Bunyavirales members, of being tri-cistronic and carrying ORFs for the putative RdRP and putative nucleocapsid in ambisense orientation on the same genomic RNA. Finally, a number of ORM fungal isolates harbored a group of ambisense bicistronic viruses with a genomic size of around 5 kb, where we could identify a putative RdRP palm domain that has some features of plus strand RNA viruses; these new viruses may represent a new lineage in the Riboviria, as they could not be reliably assigned to any of the branches in the recently derived monophyletic tree that includes most viruses with an RNA genome.
Collapse
Affiliation(s)
- Suvi Sutela
- Natural Resources Institute Finland (Luke), Forest Health and Biodiversity Group, Latokartanonkaari 9, Helsinki FI-00790, Finland
| | - Marco Forgia
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Torino 10135, Italy
| | - Eeva J Vainio
- Natural Resources Institute Finland (Luke), Forest Health and Biodiversity Group, Latokartanonkaari 9, Helsinki FI-00790, Finland
| | - Marco Chiapello
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Torino 10135, Italy
| | - Stefania Daghino
- Department of Life Science and Systems Biology, University of Torino, Viale Mattioli 25, Torino 10125, Italy
| | - Marta Vallino
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Torino 10135, Italy
| | - Elena Martino
- Department of Life Science and Systems Biology, University of Torino, Viale Mattioli 25, Torino 10125, Italy
| | - Mariangela Girlanda
- Department of Life Science and Systems Biology, University of Torino, Viale Mattioli 25, Torino 10125, Italy
| | - Silvia Perotto
- Department of Life Science and Systems Biology, University of Torino, Viale Mattioli 25, Torino 10125, Italy
| | - Massimo Turina
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Torino 10135, Italy
| |
Collapse
|
10
|
Valandro F, Menguer PK, Cabreira-Cagliari C, Margis-Pinheiro M, Cagliari A. Programmed cell death (PCD) control in plants: New insights from the Arabidopsis thaliana deathosome. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110603. [PMID: 32900441 DOI: 10.1016/j.plantsci.2020.110603] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/28/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Programmed cell death (PCD) is a genetically controlled process that leads to cell suicide in both eukaryotic and prokaryotic organisms. In plants PCD occurs during development, defence response and when exposed to adverse conditions. PCD acts controlling the number of cells by eliminating damaged, old, or unnecessary cells to maintain cellular homeostasis. Unlike in animals, the knowledge about PCD in plants is limited. The molecular network that controls plant PCD is poorly understood. Here we present a review of the current mechanisms involved with the genetic control of PCD in plants. We also present an updated version of the AtLSD1 deathosome, which was previously proposed as a network controlling HR-mediated cell death in Arabidopsis thaliana. Finally, we discuss the unclear points and open questions related to the AtLSD1 deathosome.
Collapse
Affiliation(s)
- Fernanda Valandro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | - Paloma Koprovski Menguer
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | | | - Márcia Margis-Pinheiro
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | - Alexandro Cagliari
- Programa de Pós-Graduação em Ambiente e Sustentabilidade, Universidade Estadual do Rio Grande do Sul, RS, Brazil; Universidade Estadual do Rio Grande do Sul (UERGS), RS, Brazil.
| |
Collapse
|
11
|
Jiménez DJ, Wang Y, Chaib de Mares M, Cortes-Tolalpa L, Mertens JA, Hector RE, Lin J, Johnson J, Lipzen A, Barry K, Mondo SJ, Grigoriev IV, Nichols NN, van Elsas JD. Defining the eco-enzymological role of the fungal strain Coniochaeta sp. 2T2.1 in a tripartite lignocellulolytic microbial consortium. FEMS Microbiol Ecol 2020; 96:5643886. [PMID: 31769802 DOI: 10.1093/femsec/fiz186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022] Open
Abstract
Coniochaeta species are versatile ascomycetes that have great capacity to deconstruct lignocellulose. Here, we explore the transcriptome of Coniochaeta sp. strain 2T2.1 from wheat straw-driven cultures with the fungus growing alone or as a member of a synthetic microbial consortium with Sphingobacterium multivorum w15 and Citrobacter freundii so4. The differential expression profiles of carbohydrate-active enzymes indicated an onset of (hemi)cellulose degradation by 2T2.1 during the initial 24 hours of incubation. Within the tripartite consortium, 63 transcripts of strain 2T2.1 were differentially expressed at this time point. The presence of the two bacteria significantly upregulated the expression of one galactose oxidase, one GH79-like enzyme, one multidrug transporter, one laccase-like protein (AA1 family) and two bilirubin oxidases, suggesting that inter-kingdom interactions (e.g. amensalism) take place within this microbial consortium. Overexpression of multicopper oxidases indicated that strain 2T2.1 may be involved in lignin depolymerization (a trait of enzymatic synergism), while S. multivorum and C. freundii have the metabolic potential to deconstruct arabinoxylan. Under the conditions applied, 2T2.1 appears to be a better degrader of wheat straw when the two bacteria are absent. This conclusion is supported by the observed suppression of its (hemi)cellulolytic arsenal and lower degradation percentages within the microbial consortium.
Collapse
Affiliation(s)
- Diego Javier Jiménez
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Carrera 1 No 18A-12, Bogotá, Colombia
| | - Yanfang Wang
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7 9747AG, Groningen, The Netherlands
| | - Maryam Chaib de Mares
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7 9747AG, Groningen, The Netherlands
| | - Larisa Cortes-Tolalpa
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7 9747AG, Groningen, The Netherlands
| | - Jeffrey A Mertens
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois 61604, USA
| | - Ronald E Hector
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois 61604, USA
| | - Junyan Lin
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jenifer Johnson
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Stephen J Mondo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Bioagricultural Science and Pest Management Department, Colorado State University, Fort Collins, Colorado 80521, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California 94720-3102, USA
| | - Nancy N Nichols
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois 61604, USA
| | - Jan Dirk van Elsas
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7 9747AG, Groningen, The Netherlands
| |
Collapse
|
12
|
Casarrubia S, Martino E, Daghino S, Kohler A, Morin E, Khouja HR, Murat C, Barry KW, Lindquist EA, Martin FM, Perotto S. Modulation of Plant and Fungal Gene Expression Upon Cd Exposure and Symbiosis in Ericoid Mycorrhizal Vaccinium myrtillus. Front Microbiol 2020; 11:341. [PMID: 32210940 PMCID: PMC7075258 DOI: 10.3389/fmicb.2020.00341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/17/2020] [Indexed: 01/09/2023] Open
Abstract
The success of Ericaceae in stressful habitats enriched in heavy metals has been ascribed to the distinctive abilities of their mycorrhizal fungal partners to withstand heavy metal stress and to enhance metal tolerance in the host plant. Whereas heavy metal tolerance has been extensively investigated in some ericoid mycorrhizal (ERM) fungi, the molecular and cellular mechanisms that extend tolerance to the host plant are currently unknown. Here, we show a reduced Cd content in Cd-exposed mycorrhizal roots of Vaccinium myrtillus colonized by a metal tolerant isolate of the fungus Oidiodendron maius as compared to non-mycorrhizal roots. To better understand this phenotype, we applied Next Generation Sequencing technologies to analyze gene expression in V. myrtillus and O. maius Zn grown under normal and Cd-stressed conditions, in the free living and in the mycorrhizal status. The results clearly showed that Cd had a stronger impact on plant gene expression than symbiosis, whereas fungal gene expression was mainly regulated by symbiosis. The higher abundance of transcripts coding for stress related proteins in non-mycorrhizal roots may be related to the higher Cd content. Regulated plant metal transporters have been identified that may play a role in reducing Cd content in mycorrhizal roots exposed to this metal.
Collapse
Affiliation(s)
- Salvatore Casarrubia
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Elena Martino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
| | - Stefania Daghino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
| | | | - Claude Murat
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
| | - Kerrie W. Barry
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Erika A. Lindquist
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Francis M. Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|