1
|
Storti G, Foti R, Foti R, Palmesano M, Patacchiola M, Incognito D, Cervelli G, Longo B, Scioli MG, Fiorelli E, Terriaca S, Lisa A, Kim BS, Orlandi A, Cervelli V. A Comprehensive Exploration of the Biological Effects of Adipose-Derived Stem Cells in the Treatment of Systemic Sclerosis. Cells 2025; 14:458. [PMID: 40136706 PMCID: PMC11941144 DOI: 10.3390/cells14060458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease characterized by vasculopathy and tissue fibrosis affecting the skin and internal organs. Genetic and environmental factors influence susceptibility, severity, and onset. Current treatments are limited and not always effective, leading researchers to investigate new approaches, such as the use of adipose-derived mesenchymal stem cells (ADSCs) through fat grafting. This review seeks to understand how ADSCs may impact the development and progression of SSc, with a particular focus on how these cells could alter immune responses and reduce fibrosis. ADSCs have been found to affect various immune cells, including T cells, B cells, macrophages, and dendritic cells, by releasing cytokines, chemokines, and growth factors. These interactions generally suppress inflammation and promote a regulatory immune environment. Additionally, ADSCs can influence the extracellular matrix, helping to prevent fibrosis through signaling molecules like exosomes. ADSCs show promise as a treatment for SSc due to their ability to modulate the immune system and reduce fibrosis. Early clinical studies are encouraging, but more research is needed to fully understand how they work and to develop effective treatment protocols.
Collapse
Affiliation(s)
- Gabriele Storti
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.S.); (M.P.); (M.P.); (B.L.); (V.C.)
| | - Riccardo Foti
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.S.); (M.P.); (M.P.); (B.L.); (V.C.)
| | - Roberta Foti
- Division of Rheumatology, A.O.U. “Policlinico-San Marco”, 95123 Catania, Italy;
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy
| | - Marco Palmesano
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.S.); (M.P.); (M.P.); (B.L.); (V.C.)
- PhD Program in Applied Medical Surgical Sciences, Department of Surgical Sciences, University of Rome “Tor Vergata”, Viale Oxford 81, 00133 Rome, Italy;
| | - Martina Patacchiola
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.S.); (M.P.); (M.P.); (B.L.); (V.C.)
| | - Dalila Incognito
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98122 Messina, Italy;
| | - Giulio Cervelli
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Benedetto Longo
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.S.); (M.P.); (M.P.); (B.L.); (V.C.)
| | - Maria Giovanna Scioli
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Elena Fiorelli
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Sonia Terriaca
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Andrea Lisa
- PhD Program in Applied Medical Surgical Sciences, Department of Surgical Sciences, University of Rome “Tor Vergata”, Viale Oxford 81, 00133 Rome, Italy;
- Department of Plastic and Reconstructive Surgery, European Institute of Oncology, IRCCS, 20139 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
| | - Bong Sung Kim
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8006 Zurich, Switzerland;
| | - Augusto Orlandi
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Valerio Cervelli
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.S.); (M.P.); (M.P.); (B.L.); (V.C.)
| |
Collapse
|
2
|
Yang H, Cheong S, He Y, Lu F. Mesenchymal stem cell-based therapy for autoimmune-related fibrotic skin diseases-systemic sclerosis and sclerodermatous graft-versus-host disease. Stem Cell Res Ther 2023; 14:372. [PMID: 38111001 PMCID: PMC10729330 DOI: 10.1186/s13287-023-03543-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/23/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) and sclerodermatous graft-versus-host disease (Scl-GVHD)-characterized by similar developmental fibrosis, vascular abnormalities, and innate and adaptive immune response, resulting in severe skin fibrosis at the late stage-are chronic autoimmune diseases of connective tissue. The significant immune system dysfunction, distinguishing autoimmune-related fibrosis from mere skin fibrosis, should be a particular focus of treating autoimmune-related fibrosis. Recent research shows that innovative mesenchymal stem cell (MSC)-based therapy, with the capacities of immune regulation, inflammation suppression, oxidation inhibition, and fibrosis restraint, shows great promise in overcoming the disease. MAIN BODY This review of recent studies aims to summarize the therapeutic effect and theoretical mechanisms of MSC-based therapy in treating autoimmune-related fibrotic skin diseases, SSc and Scl-GVHD, providing novel insights and references for further clinical applications. It is noteworthy that the efficacy of MSCs is not reliant on their migration into the skin. Working on the immune system, MSCs can inhibit the chemotaxis and infiltration of immune cells to the skin by down-regulating the expression of skin chemokines and chemokine receptors and reducing the inflammatory and pro-fibrotic mediators. Furthermore, to reduce levels of oxidative stress, MSCs may improve vascular abnormalities, and enhance the antioxidant defenses through inducible nitric oxide synthase, thioredoxin 1, as well as other mediators. The oxidative stress environment does not weaken MSCs and may even strengthen certain functions. Regarding fibrosis, MSCs primarily target the transforming growth factor-β signaling pathway to inhibit fibroblast activation. Here, miRNAs may play a critical role in ECM remodeling. Clinical studies have demonstrated the safety of these approaches, though outcomes have varied, possibly owing to the heterogeneity of MSCs, the disorders themselves, and other factors. Nevertheless, the research clearly reveals the immense potential of MSCs in treating autoimmune-related fibrotic skin diseases. CONCLUSION The application of MSCs presents a promising approach for treating autoimmune-related fibrotic skin diseases: SSc and Scl-GVHD. Therapies involving MSCs and MSC extracellular vesicles have been found to operate through three primary mechanisms: rebalancing the immune and inflammatory disorders, resisting oxidant stress, and inhibiting overactivated fibrosis (including fibroblast activation and ECM remodeling). However, the effectiveness of these interventions requires further validation through extensive clinical investigations, particularly randomized control trials and phase III/IV clinical trials. Additionally, the hypothetical mechanism underlying these therapies could be elucidated through further research.
Collapse
Affiliation(s)
- Han Yang
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Sousan Cheong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Yunfan He
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| | - Feng Lu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
3
|
Adipose Tissue and Adipose-Tissue-Derived Cell Therapies for the Treatment of the Face and Hands of Patients Suffering from Systemic Sclerosis. Biomedicines 2023; 11:biomedicines11020348. [PMID: 36830886 PMCID: PMC9953720 DOI: 10.3390/biomedicines11020348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023] Open
Abstract
Adipose tissue is recognized as a valuable source of cells with angiogenic, immunomodulatory, reparative and antifibrotic properties and emerged as a therapeutic alternative for the regeneration and repair of damaged tissues. The use of adipose-tissue-based therapy is expanding in autoimmune diseases, particularly in Systemic Sclerosis (SSc), a disease in which hands and face are severely affected, leading to disability and a decrease in quality of life. Combining the advantage of an abundant supply of fat tissue and a high abundance of stem/stromal cells, fat grafting and adipose tissue-derived cell-based therapies are attractive therapeutic options in SSc. This review aims to synthesize the evidence to determine the effects of the use of these biological products for face and hands treatment in the context of SSc. This highlights several points: the need to use relevant effectiveness criteria taking into account the clinical heterogeneity of SSc in order to facilitate assessment and comparison of innovative therapies; second, it reveals some impacts of the disease on fat-grafting success; third, an important heterogeneity was noticed regarding the manufacturing of the adipose-derived products and lastly, it shows a lack of robust evidence from controlled trials comparing adipose-derived products with standard care.
Collapse
|
4
|
Xue E, Minniti A, Alexander T, Del Papa N, Greco R. Cellular-Based Therapies in Systemic Sclerosis: From Hematopoietic Stem Cell Transplant to Innovative Approaches. Cells 2022; 11:3346. [PMID: 36359742 PMCID: PMC9658618 DOI: 10.3390/cells11213346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 08/28/2023] Open
Abstract
Systemic sclerosis (SSc) is a systemic disease characterized by autoimmune responses, vasculopathy and tissue fibrosis. The pathogenic mechanisms involve a wide range of cells and soluble factors. The complexity of interactions leads to heterogeneous clinical features in terms of the extent, severity, and rate of progression of skin fibrosis and internal organ involvement. Available disease-modifying drugs have only modest effects on halting disease progression and may be associated with significant side effects. Therefore, cellular therapies have been developed aiming at the restoration of immunologic self-tolerance in order to provide durable remissions or to foster tissue regeneration. Currently, SSc is recommended as the 'standard indication' for autologous hematopoietic stem cell transplantation by the European Society for Blood and Marrow Transplantation. This review provides an overview on cellular therapies in SSc, from pre-clinical models to clinical applications, opening towards more advanced cellular therapies, such as mesenchymal stem cells, regulatory T cells and potentially CAR-T-cell therapies.
Collapse
Affiliation(s)
- Elisabetta Xue
- Hematopoietic and Bone Marrow Transplant Unit, San Raffaele Hospital, 20132 Milan, Italy
| | - Antonina Minniti
- Department of Rheumatology, ASST G. Pini-CTO, 20122 Milan, Italy
| | - Tobias Alexander
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | | | - Raffaella Greco
- Hematopoietic and Bone Marrow Transplant Unit, San Raffaele Hospital, 20132 Milan, Italy
| | | |
Collapse
|
5
|
Jones OY, McCurdy D. Cell Based Treatment of Autoimmune Diseases in Children. Front Pediatr 2022; 10:855260. [PMID: 35615628 PMCID: PMC9124972 DOI: 10.3389/fped.2022.855260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022] Open
Abstract
Mesenchymal stem cells have recently been recoined as medicinal signaling cells (MSC) for their ability to promote tissue homeostasis through immune modulation, angiogenesis and tropism. During the last 20 years, there has been a plethora of publications using MSC in adults and to lesser extent neonates on a variety of illnesses. In parts of the world, autologous and allogeneic MSCs have been purified and used to treat a range of autoimmune conditions, including graft versus host disease, Crohn's disease, multiple sclerosis, refractory systemic lupus erythematosus and systemic sclerosis. Generally, these reports are not part of stringent clinical trials but are of note for good outcomes with minimal side effects. This review is to summarize the current state of the art in MSC therapy, with a brief discussion of cell preparation and safety, insights into mechanisms of action, and a review of published reports of MSC treatment of autoimmune diseases, toward the potential application of MSC in treatment of children with severe autoimmune diseases using multicenter clinical trials and treatment algorithms.
Collapse
Affiliation(s)
- Olcay Y. Jones
- Division of Pediatric Rheumatology, Department of Pediatrics, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Deborah McCurdy
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
6
|
Volkmann ER, Chai-Ho W. Allogeneic mesenchymal stromal cell transplantation for systemic sclerosis. THE LANCET. RHEUMATOLOGY 2022; 4:e74-e75. [PMID: 38288739 PMCID: PMC10954215 DOI: 10.1016/s2665-9913(21)00388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 03/22/2024]
Affiliation(s)
- Elizabeth R Volkmann
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | - Wanxing Chai-Ho
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Kuca-Warnawin E, Olesińska M, Szczȩsny P, Kontny E. Impact and Possible Mechanism(s) of Adipose Tissue-Derived Mesenchymal Stem Cells on T-Cell Proliferation in Patients With Rheumatic Disease. Front Physiol 2022; 12:749481. [PMID: 35095547 PMCID: PMC8793746 DOI: 10.3389/fphys.2021.749481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Objectives: Systemic lupus erythematosus (SLE) and systemic sclerosis (SSc) are chronic wasting, incurable rheumatic diseases of autoimmune background, in which T cells play a critical pathogenic role. Autologous adipose tissue-derived mesenchymal stem cells (ASCs) may represent an alternative therapeutic option for SLE and SSc patients, but the biology of these cells is poorly understood. Methods: Herein, we evaluated the anti-proliferative impact of ASCs of healthy donors (HD/ASCs, 5 reference cell lines), SLE patients (n = 20), and SSc patients (n = 20) on T lymphocytes. To assess the direct and indirect pathway of ASCs action, peripheral blood mononuclear cells (PBMCs) and purified CD4+ T cells of HD were activated and co-cultured in cell-to-cell contact (C-C) and transwell (T-W) conditions with untreated or cytokine (TNF + IFNΥ, TI)-licensed ASCs, then analyzed by flow cytometry to rate the proliferation response of CD8+ and/or CD4+ T cells. The concentrations of kynurenines, prostaglandin E2 (PGE2), interleukin 10 (IL-10), and transforming growth factor β (TGFβ) were measured from culture supernatants. Specific inhibitors of these factors (1-MT, indomethacin, and cytokine-neutralizing antibody) were used to assess their contribution to anti-proliferative ASCs action. Results: All tested ASCs significantly decreased the number of proliferating CD4+ and CD8+ T cells, the number of division/proliferating cell (PI), and fold expansion (RI), and similarly upregulated kynurenines and PGE2, but not cytokine levels, in the co-cultures with both types of target cells. However, TI-treated SLE/ASCs and SSc/ASCs exerted a slightly weaker inhibitory effect on CD4+ T-cell replication than their respective HD/ASCs. All ASCs acted mainly via soluble factors. Their anti-proliferative effect was stronger, and kynurenine levels were higher in the T-W condition than the C-C condition. Blocking experiments indicated an involvement of kynurenine pathway in inhibiting the number of proliferating cells, PI, and RI values as well as PGE2 role in decreasing the number of proliferating cells. TGFβ did not contribute to ASCs anti-proliferative capabilities, while IL-10 seems to be involved in such activity of only SLE/ASCs. Conclusion: The results indicate that SLE/ASCs and SSc/ASCs retain their capability to restrain the expansion of allogeneic CD4+ and CD8+ T cells and act by similar mechanisms as ASCs of healthy donors and thus may have therapeutic value.
Collapse
Affiliation(s)
- Ewa Kuca-Warnawin
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Marzena Olesińska
- Clinic of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Piotr Szczȩsny
- Clinic of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Ewa Kontny
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| |
Collapse
|
8
|
Wang M, Zhou T, Zhang Z, Liu H, Zheng Z, Xie H. Current therapeutic strategies for respiratory diseases using mesenchymal stem cells. MedComm (Beijing) 2021; 2:351-380. [PMID: 34766151 PMCID: PMC8554668 DOI: 10.1002/mco2.74] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) have a great potential to proliferate, undergo multi-directional differentiation, and exert immunoregulatory effects. There is already much enthusiasm for their therapeutic potentials for respiratory inflammatory diseases. Although the mechanism of MSCs-based therapy has been well explored, only a few articles have summarized the key advances in this field. We hereby provide a review over the latest progresses made on the MSCs-based therapies for four types of inflammatory respiratory diseases, including idiopathic pulmonary fibrosis, acute respiratory distress syndrome, chronic obstructive pulmonary disease, and asthma, and the uncovery of their underlying mechanisms from the perspective of biological characteristics and functions. Furthermore, we have also discussed the advantages and disadvantages of the MSCs-based therapies and prospects for their optimization.
Collapse
Affiliation(s)
- Ming‐yao Wang
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Ting‐yue Zhou
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Zhi‐dong Zhang
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Hao‐yang Liu
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Zhi‐yao Zheng
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Hui‐qi Xie
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| |
Collapse
|
9
|
Klein B, Günther C. Type I Interferon Induction in Cutaneous DNA Damage Syndromes. Front Immunol 2021; 12:715723. [PMID: 34381458 PMCID: PMC8351592 DOI: 10.3389/fimmu.2021.715723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
Type I interferons (IFNs) as part of the innate immune system have an outstanding importance as antiviral defense cytokines that stimulate innate and adaptive immune responses. Upon sensing of pattern recognition particles (PRPs) such as nucleic acids, IFN secretion is activated and induces the expression of interferon stimulated genes (ISGs). Uncontrolled constitutive activation of the type I IFN system can lead to autoinflammation and autoimmunity, which is observed in autoimmune disorders such as systemic lupus erythematodes and in monogenic interferonopathies. They are caused by mutations in genes which are involved in sensing or metabolism of intracellular nucleic acids and DNA repair. Many authors described mechanisms of type I IFN secretion upon increased DNA damage, including the formation of micronuclei, cytosolic chromatin fragments and destabilization of DNA binding proteins. Hereditary cutaneous DNA damage syndromes, which are caused by mutations in proteins of the DNA repair, share laboratory and clinical features also seen in autoimmune disorders and interferonopathies; hence a potential role of DNA-damage-induced type I IFN secretion seems likely. Here, we aim to summarize possible mechanisms of IFN induction in cutaneous DNA damage syndromes with defects in the DNA double-strand repair and nucleotide excision repair. We review recent publications referring to Ataxia teleangiectasia, Bloom syndrome, Rothmund–Thomson syndrome, Werner syndrome, Huriez syndrome, and Xeroderma pigmentosum. Furthermore, we aim to discuss the role of type I IFN in cancer and these syndromes.
Collapse
Affiliation(s)
- Benjamin Klein
- Department of Dermatology, Venereology and Allergology, University Medicine Leipzig, Leipzig, Germany
| | - Claudia Günther
- Department of Dermatology, University Hospital and Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
10
|
Di Benedetto P, Ruscitti P, Berardicurti O, Vomero M, Navarini L, Dolo V, Cipriani P, Giacomelli R. Endothelial-to-mesenchymal transition in systemic sclerosis. Clin Exp Immunol 2021; 205:12-27. [PMID: 33772754 DOI: 10.1111/cei.13599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by significant vascular alterations and multi-organ fibrosis. Microvascular alterations are the first event of SSc and injured endothelial cells (ECs) may transdifferentiate towards myofibroblasts, the cells responsible for fibrosis and collagen deposition. This process is identified as endothelial-to-mesenchymal transition (EndMT), and understanding of its development is pivotal to identify early pathogenetic events and new therapeutic targets for SSc. In this review, we have highlighted the molecular mechanisms of EndMT and summarize the evidence of the role played by EndMT during the development of progressive fibrosis in SSc, also exploring the possible therapeutic role of its inhibition.
Collapse
Affiliation(s)
- P Di Benedetto
- Clinical Pathology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - P Ruscitti
- Division of Rheumatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - O Berardicurti
- Division of Rheumatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - M Vomero
- Unit of Rheumatology and Clinical Immunology, University of Rome 'Campus Biomedico', Rome, Italy
| | - L Navarini
- Unit of Rheumatology and Clinical Immunology, University of Rome 'Campus Biomedico', Rome, Italy
| | - V Dolo
- Clinical Pathology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - P Cipriani
- Division of Rheumatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - R Giacomelli
- Unit of Rheumatology and Clinical Immunology, University of Rome 'Campus Biomedico', Rome, Italy
| |
Collapse
|
11
|
Rosa I, Romano E, Fioretto BS, Matucci-Cerinic M, Manetti M. Adipose-derived stem cells: Pathophysiologic implications vs therapeutic potential in systemic sclerosis. World J Stem Cells 2021; 13:30-48. [PMID: 33584978 PMCID: PMC7859990 DOI: 10.4252/wjsc.v13.i1.30] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) residing in the stromal vascular fraction (SVF) of white adipose tissue are recently emerging as an alternative tool for stem cell-based therapy in systemic sclerosis (SSc), a complex connective tissue disorder affecting the skin and internal organs with fibrotic and vascular lesions. Several preclinical and clinical studies have reported promising therapeutic effects of fat grafting and autologous SVF/ADSC-based local treatment for facial and hand cutaneous manifestations of SSc patients. However, currently available data indicate that ADSCs may represent a double-edged sword in SSc, as they may exhibit a pro-fibrotic and anti-adipogenic phenotype, possibly behaving as an additional pathogenic source of pro-fibrotic myofibroblasts through the adipocyte-to-myofibroblast transition process. Thus, in the perspective of a larger employ of SSc-ADSCs for further therapeutic applications, it is important to definitely unravel whether these cells present a comparable phenotype and similar immunosuppressive, anti-inflammatory, anti-fibrotic and pro-angiogenic properties in respect to healthy ADSCs. In light of the dual role that ADSCs seem to play in SSc, this review will provide a summary of the most recent insights into the preclinical and clinical studies employing SVF and ADSCs for the treatment of the disease and, at the same time, will focus on the main findings highlighting the possible involvement of these stem cells in SSc-related fibrosis pathogenesis.
Collapse
Affiliation(s)
- Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence 50134, Italy
| | - Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence 50134, Italy.
| |
Collapse
|
12
|
Haematopoietic stem cell transplantation in systemic sclerosis: Challenges and perspectives. Autoimmun Rev 2020; 19:102662. [PMID: 32942028 DOI: 10.1016/j.autrev.2020.102662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Systemic Sclerosis is chronic progressive autoimmune disease, characterised by microangiopathy and fibrosis. Due to disease heterogeneity, in terms of extent, severity, and rate of progression, optimal therapeutic interventions are still lacking. Haematopoietic stem cells may be a new therapeutic option in this disease and, although the results of the first trials are encouraging, several issues remain to be addressed. On these bases, the stem cells transplantation is an area of active investigation, and an overview of the current available literature may help to define the role of this therapeutic strategy. Although the promising results, some unmet needs remain, including the transplantation protocols and their effects on immune system, the selection of the ideal patient and the pre-transplant cardiopulmonary evaluations. An improvement in these fields will allow us to optimize the haematopoietic stem cell therapies in SSc.
Collapse
|
13
|
Mortazavi-Jahromi SS, Aslani M, Mirshafiey A. A comprehensive review on miR-146a molecular mechanisms in a wide spectrum of immune and non-immune inflammatory diseases. Immunol Lett 2020; 227:8-27. [PMID: 32810557 DOI: 10.1016/j.imlet.2020.07.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/10/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are single-strand endogenous and non-coding RNA molecules with a length of about 22 nucleotides, which regulate genes expression, through modulating the translation and stability of their target mRNAs. miR-146a is one of the most studied miRNAs, due to its central role in immune system homeostasis and control of the innate and acquired immune responses. Accordingly, abnormal expression or function of miR-146a results in the incidence and progression of immune and non-immune inflammatory diseases. Its deregulated expression pattern and inefficient function have been reported in a wide spectrum of these illnesses. Based on the existing evidence, this miRNA qualifies as an ideal biomarker for diagnosis, prognosis, and activity evaluation of immune and non-immune inflammatory disorders. Moreover, much attention has recently been paid to therapeutic potential of miR-146a and several researchers have assessed the effects of different drugs on expression and function of this miRNA at diverse experimental, animal, besides human levels, reporting motivating results in the treatment of the diseases. Here, in this comprehensive review, we provide an overview of miR-146a role in the pathogenesis and progression of several immune and non-immune inflammatory diseases such as Rheumatoid arthritis, Systemic lupus erythematosus, Inflammatory bowel disease, Multiple sclerosis, Psoriasis, Graves' disease, Atherosclerosis, Hepatitis, Chronic obstructive pulmonary disease, etc., discuss about its eligibility for being a desirable biomarker for these disorders, and also highlight its therapeutic potential. Understanding these mechanisms underlies the selecting and designing the proper therapeutic targets and medications, which eventually facilitate the treatment process.
Collapse
Affiliation(s)
| | - Mona Aslani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Tsai CY, Hsieh SC, Wu TH, Li KJ, Shen CY, Liao HT, Wu CH, Kuo YM, Lu CS, Yu CL. Pathogenic Roles of Autoantibodies and Aberrant Epigenetic Regulation of Immune and Connective Tissue Cells in the Tissue Fibrosis of Patients with Systemic Sclerosis. Int J Mol Sci 2020; 21:ijms21093069. [PMID: 32349208 PMCID: PMC7246753 DOI: 10.3390/ijms21093069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Systemic sclerosis (SSc) is a multi-system autoimmune disease with tissue fibrosis prominent in the skin and lung. In this review, we briefly describe the autoimmune features (mainly autoantibody production and cytokine profiles) and the potential pathogenic contributors including genetic/epigenetic predisposition, and environmental factors. We look in detail at the cellular and molecular bases underlying tissue-fibrosis which include trans-differentiation of fibroblasts (FBs) to myofibroblasts (MFBs). We also state comprehensively the pro-inflammatory and pro-fibrotic cytokines relevant to MFB trans-differentiation, vasculopathy-associated autoantibodies, and fibrosis-regulating microRNAs in SSc. It is conceivable that tissue fibrosis is mainly mediated by an excessive production of TGF-β, the master regulator, from the skewed Th2 cells, macrophages, fibroblasts, myofibroblasts, and keratinocytes. After binding with TGF-β receptors on MFB, the downstream Wnt/β-catenin triggers canonical Smad 2/3 and non-canonical Smad 4 signaling pathways to transcribe collagen genes. Subsequently, excessive collagen fiber synthesis and accumulation as well as tissue fibrosis ensue. In the later part of this review, we discuss limited data relevant to the role of long non-coding RNAs (lncRNAs) in tissue-fibrosis in SSc. It is expected that these lncRNAs may become the useful biomarkers and therapeutic targets for SSc in the future. The prospective investigations in the development of novel epigenetic modifiers are also suggested.
Collapse
Affiliation(s)
- Chang-Youh Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, #201 Sec. 2, Shih-Pai Road, Taipei 11217, Taiwan;
- Correspondence: (C.-Y.T.); (C.-L.Y.); Fax: +886-2-28717483 (C.-Y.T.); +886-2-23957801 (C.-L.Y.)
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan; (S.-C.H.); (K.-J.L.); (C.-Y.S.); (C.-H.W.); (Y.-M.K.); (C.-S.L.)
| | - Tsai-Hung Wu
- Division of Nephrology, Taipei Veterans General Hospital & National Yang-Ming University, #201 Sec. 2, Shih-Pai Road, Taipei 11217, Taiwan;
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan; (S.-C.H.); (K.-J.L.); (C.-Y.S.); (C.-H.W.); (Y.-M.K.); (C.-S.L.)
| | - Chieh-Yu Shen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan; (S.-C.H.); (K.-J.L.); (C.-Y.S.); (C.-H.W.); (Y.-M.K.); (C.-S.L.)
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, #201 Sec. 2, Shih-Pai Road, Taipei 11217, Taiwan;
| | - Cheng-Han Wu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan; (S.-C.H.); (K.-J.L.); (C.-Y.S.); (C.-H.W.); (Y.-M.K.); (C.-S.L.)
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Yu-Min Kuo
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan; (S.-C.H.); (K.-J.L.); (C.-Y.S.); (C.-H.W.); (Y.-M.K.); (C.-S.L.)
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Cheng-Shiun Lu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan; (S.-C.H.); (K.-J.L.); (C.-Y.S.); (C.-H.W.); (Y.-M.K.); (C.-S.L.)
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan; (S.-C.H.); (K.-J.L.); (C.-Y.S.); (C.-H.W.); (Y.-M.K.); (C.-S.L.)
- Correspondence: (C.-Y.T.); (C.-L.Y.); Fax: +886-2-28717483 (C.-Y.T.); +886-2-23957801 (C.-L.Y.)
| |
Collapse
|
15
|
Abstract
Mesenchymal stromal or stem cells (MSC) possess strong immunomodulatory properties. Due to their impressive potential to differentiate into various cell types they are capable of inducing mechanisms of tissue repair. Experimental data have demonstrated impaired MSC function in several rheumatic diseases in vitro; however, the relevance of these phenomena for the pathogenesis of rheumatic disorders has not been convincingly demonstrated. Nevertheless, allogeneic MSC transplantation (MSCT), and possibly autologous MSCT as well, could prove to be an interesting instrument for the treatment of autoimmune rheumatic diseases. The first clinical trials have demonstrated positive effects in systemic lupus erythematosus, systemic sclerosis and Sjogren's syndrome; however, questions regarding the long-term benefits and safety as well as the best source, the optimal cultivation technique and the most effective way of application of MSC are still unanswered.
Collapse
|
16
|
Ciechomska M, Wojtas B, Swacha M, Olesinska M, Benes V, Maslinski W. Global miRNA and mRNA expression profiles identify miRNA-26a-2-3p-dependent repression of IFN signature in systemic sclerosis human monocytes. Eur J Immunol 2020; 50:1057-1066. [PMID: 32087087 DOI: 10.1002/eji.201948428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/23/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022]
Abstract
Dysregulation in type I IFN and IFN-stimulated genes (ISGs) induced by monocytes is one of the key features of systemic sclerosis (SSc) pathogenesis. Abnormalities in microRNA (miRNA) expression are related to excessive IFN production, however the role of miRNA remains largely elusive in SSc monocytes. This study explores global miRNA-mRNA profiling of SSc monocytes and functional attenuation of IFN and ISGs by specific miRNAs. Global sequencing of mRNA (mRNA-seq) and miRNA (miRNA-seq) samples were performed simultaneously on healthy controls and SSc monocytes. Following computational analysis, selected miRNAs-mRNA candidates were validated, correlated with clinical parameters, and tested by functional assays. Transcriptomics data and qPCR analysis confirmed IFN signature in SSc but not in rheumatoid arthritis monocytes. Based on miRNA-seq analysis, five miRNAs were selected for further validation. Only the expression patterns of miRNA-26a-2-3p and miRNA-485-3p were confirmed and negatively correlated with clinical parameters. Exogenous delivery of miRNA-26a-2-3p to TLR-stimulated monocytic THP-1 cells specifically inhibited ISGs but not inflammasome activity in functional assays. In conclusion, our miRNA-mRNA co-sequencing and functional analysis identify miRNA-26a-2-3p as a new candidate, which is predicated to negatively regulate ISGs. This implies that reduced expression of miRNA-26a-2-3 may be involved in pathogenic IFN signature in SSc monocytes.
Collapse
Affiliation(s)
- Marzena Ciechomska
- National Institute of Geriatrics Rheumatology and Rehabilitation, Warsaw, Poland
| | - Bartosz Wojtas
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Monika Swacha
- National Institute of Geriatrics Rheumatology and Rehabilitation, Warsaw, Poland
| | - Marzena Olesinska
- National Institute of Geriatrics Rheumatology and Rehabilitation, Warsaw, Poland
| | - Vladimir Benes
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
17
|
VELIER M, SIMONCINI S, ABELLAN M, FRANCOIS P, EAP S, LAGRANGE A, BERTRAND B, DAUMAS A, GRANEL B, DELORME B, DIGNAT GEORGE F, MAGALON J, SABATIER F. Adipose-Derived Stem Cells from Systemic Sclerosis Patients Maintain Pro-Angiogenic and Antifibrotic Paracrine Effects In Vitro. J Clin Med 2019; 8:E1979. [PMID: 31739569 PMCID: PMC6912239 DOI: 10.3390/jcm8111979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
Innovative therapies based on autologous adipose-derived stem/stromal cells (ASC) are currently being evaluated for treatment of systemic sclerosis (SSc). Although paracrine angiogenic and antifibrotic effects are considered the predominant mechanisms of ASC therapeutic potential, the impact of SSc on ASC paracrine functions remains controversial. In this study, phenotype, senescence, differentiation potential, and molecular profile were determined in ASC from SSc patients (SSc-ASC) (n = 7) and healthy donors (HD-ASC) (n = 7). ASC were co-cultured in indirect models with dermal fibroblasts (DF) from SSc patients or endothelial cells to assess their pro-angiogenic and antifibrotic paracrine effects. The angiogenic activity of endothelial cells was measured in vitro using tube formation and spheroid assays. DF collagen and alpha smooth muscle actin (αSMA) content were quantified after five days of co-culture with ASC. Differentiation capacity, senescence, and mRNA profiles did not differ significantly between SSc-ASC and HD-ASC. SSc-ASC retained the ability to stimulate angiogenesis through paracrine mechanisms; however, functional assays revealed reduced potential compared to HD-ASC. DF fibrosis markers were significantly decreased after co-culture with SSc-ASC. Together, these results indicate that SSc effects do not significantly compromise the angiogenic and the antifibrotic paracrine properties of ASC, thereby supporting further development of ASC-based autologous therapies for SSc treatment.
Collapse
Affiliation(s)
- Mélanie VELIER
- Aix Marseille University, INSERM, INRA, C2VN, 13005 Marseille, France
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 13005 Marseille, France
| | | | - Maxime ABELLAN
- Plastic Surgery Department, Hôpital de la Conception, AP-HM, 13005 Marseille, France
| | - Pauline FRANCOIS
- Aix Marseille University, INSERM, INRA, C2VN, 13005 Marseille, France
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 13005 Marseille, France
| | - Sandy EAP
- R&D Department, Macopharma, 59420 Mouvaux, France
| | | | - Baptiste BERTRAND
- Plastic Surgery Department, Hôpital de la Conception, AP-HM, 13005 Marseille, France
| | - Aurélie DAUMAS
- Aix Marseille University, INSERM, INRA, C2VN, 13005 Marseille, France
- Internal Medicine Department, Hôpital Nord & Hôpital de la Timone, AP-HM, 13005 Marseille, France
| | - Brigitte GRANEL
- Aix Marseille University, INSERM, INRA, C2VN, 13005 Marseille, France
- Internal Medicine Department, Hôpital Nord & Hôpital de la Timone, AP-HM, 13005 Marseille, France
| | | | | | - Jérémy MAGALON
- Aix Marseille University, INSERM, INRA, C2VN, 13005 Marseille, France
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 13005 Marseille, France
| | - Florence SABATIER
- Aix Marseille University, INSERM, INRA, C2VN, 13005 Marseille, France
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 13005 Marseille, France
| |
Collapse
|