1
|
Wang FX, Mu G, Yu ZH, Qin ZS, Zhao X, Shi ZA, Fan X, Liu L, Chen Y, Zhou J. MiR-451 in Inflammatory Diseases: Molecular Mechanisms, Biomarkers, and Therapeutic Applications-A Comprehensive Review Beyond Oncology. Curr Issues Mol Biol 2025; 47:127. [PMID: 39996848 PMCID: PMC11854642 DOI: 10.3390/cimb47020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
MicroRNAs play crucial roles in regulating inflammatory responses and disease progression. Since its identification on chromosome 17q11.2 in 2005, miR-451 has emerged as a key regulator of multiple physiological and pathological processes. While its role in cancer has been extensively documented, accumulating evidence reveals miR-451's broader significance in inflammatory conditions through the regulation of NF-κB, AMPK, and PI3K signaling pathways. This comprehensive review systematically analyzes miR-451's multifaceted functions in inflammatory diseases, with particular focus on ischemia-reperfusion injury, arthritis, and acute organ injuries. We present compelling evidence for miR-451's potential as a diagnostic biomarker, demonstrating its distinctive expression patterns across various biological specimens and disease states. Furthermore, we elucidate how miR-451 modulates inflammatory responses through the regulation of immune cell populations, including microglia activation, macrophage polarization, and neutrophil chemotaxis. By integrating current evidence and bioinformatic analyses, we establish a theoretical framework linking miR-451's molecular mechanisms to its therapeutic applications. This review not only synthesizes the current understanding of miR-451 in inflammatory diseases but also provides critical insights for developing novel diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Fei-Xiang Wang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Guo Mu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Zi-Hang Yu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Zhen-Shan Qin
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Xing Zhao
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Zu-An Shi
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Xin Fan
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Ye Chen
- Department of Traditional Chinese Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China;
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; (F.-X.W.); (G.M.); (Z.-H.Y.); (Z.-S.Q.); (X.Z.); (Z.-A.S.); (X.F.); (L.L.)
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
2
|
Ellakwa DES, Abdelmalek MA, Mostafa MM, Ellakwa TE, Wadan AHS. MircoRNAs predict and modulate responses to chemotherapy in leukemic patients. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03675-7. [PMID: 39808312 DOI: 10.1007/s00210-024-03675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/24/2024] [Indexed: 01/16/2025]
Abstract
Leukemia covers a broad category of cancer malignancies that specifically affect bone marrow and blood cells. While different kinds of leukemia have been identified, effective treatments are still lacking for most forms, and even those treatments considered effective can lead to relapses. MicroRNAs, or miRNAs, are short endogenous non-coding single-stranded RNAs that help control the epigenetics of gene expression. Recently, a literature review proposed that miRNAs provided promising therapeutic targets for patients diagnosed with leukemia. Due to genetic abnormalities occurring during the maturation of white blood cells, studies commonly observed uncontrolled replication and decreased cell death, compared to healthy cells. This results in the activation of oncogenes, deactivation of tumor suppressor genes, and disruption of normal cellular functions. Although conventional cancer treatments significantly contribute to patient recovery, they can also impose many side effects. MiRNAs all significantly regulate angiogenesis, migration, apoptosis, carcinogenesis, and gene expression. Regarding chemotherapy, mounting research indicates that microRNAs may directly influence how responsive leukemia is to chemical treatments. This article reviews current studies on microRNAs, examining their influence on cancer advancement and spread, as well as their possible applications as diagnostic indicators and treatment targets in leukemia. Furthermore, we integrated the functions of microRNAs in cancer formation and progression with leukemia patient care, offering fresh insights into leukemia detection and management strategies.
Collapse
Affiliation(s)
- Doha El-Sayed Ellakwa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt.
- Department of Biochemistry, Faculty of Pharmacy, Sinai University, Kantra Branch, Ismailia, Egypt.
| | | | - Mostafa M Mostafa
- Department of Molecular and Cellular Physiology, Stritch School of Medicine, Loyola University Chicago, Chicago, USA
| | - Takwa E Ellakwa
- Physical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Al-Hassan Soliman Wadan
- Oral Biology Department, Faculty of Dentistry, Galala Plateau, Galala University, 15888), Attaka, Suez Governorate, Egypt
| |
Collapse
|
3
|
Wang H, Fleishman JS, Cheng S, Wang W, Wu F, Wang Y, Wang Y. Epigenetic modification of ferroptosis by non-coding RNAs in cancer drug resistance. Mol Cancer 2024; 23:177. [PMID: 39192329 DOI: 10.1186/s12943-024-02088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
The development of drug resistance remains a major challenge in cancer treatment. Ferroptosis, a unique type of regulated cell death, plays a pivotal role in inhibiting tumour growth, presenting new opportunities in treating chemotherapeutic resistance. Accumulating studies indicate that epigenetic modifications by non-coding RNAs (ncRNA) can determine cancer cell vulnerability to ferroptosis. In this review, we first summarize the role of chemotherapeutic resistance in cancer growth/development. Then, we summarize the core molecular mechanisms of ferroptosis, its upstream epigenetic regulation, and its downstream effects on chemotherapeutic resistance. Finally, we review recent advances in understanding how ncRNAs regulate ferroptosis and from such modulate chemotherapeutic resistance. This review aims to enhance general understanding of the ncRNA-mediated epigenetic regulatory mechanisms which modulate ferroptosis, highlighting the ncRNA-ferroptosis axis as a key druggable target in overcoming chemotherapeutic resistance.
Collapse
Affiliation(s)
- Hongquan Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China.
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Sihang Cheng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Weixue Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Fan Wu
- Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China.
| | - Yu Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China.
| |
Collapse
|
4
|
Wu A, Liu X, Fruhstorfer C, Jiang X. Clinical Insights into Structure, Regulation, and Targeting of ABL Kinases in Human Leukemia. Int J Mol Sci 2024; 25:3307. [PMID: 38542279 PMCID: PMC10970269 DOI: 10.3390/ijms25063307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024] Open
Abstract
Chronic myeloid leukemia is a multistep, multi-lineage myeloproliferative disease that originates from a translocation event between chromosome 9 and chromosome 22 within the hematopoietic stem cell compartment. The resultant fusion protein BCR::ABL1 is a constitutively active tyrosine kinase that can phosphorylate multiple downstream signaling molecules to promote cellular survival and inhibit apoptosis. Currently, tyrosine kinase inhibitors (TKIs), which impair ABL1 kinase activity by preventing ATP entry, are widely used as a successful therapeutic in CML treatment. However, disease relapses and the emergence of resistant clones have become a critical issue for CML therapeutics. Two main reasons behind the persisting obstacles to treatment are the acquired mutations in the ABL1 kinase domain and the presence of quiescent CML leukemia stem cells (LSCs) in the bone marrow, both of which can confer resistance to TKI therapy. In this article, we systemically review the structural and molecular properties of the critical domains of BCR::ABL1 and how understanding the essential role of BCR::ABL1 kinase activity has provided a solid foundation for the successful development of molecularly targeted therapy in CML. Comparison of responses and resistance to multiple BCR::ABL1 TKIs in clinical studies and current combination treatment strategies are also extensively discussed in this article.
Collapse
MESH Headings
- Humans
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Signal Transduction
Collapse
Affiliation(s)
- Andrew Wu
- Collings Stevens Chronic Leukemia Research Laboratory, Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (A.W.); (X.L.)
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xiaohu Liu
- Collings Stevens Chronic Leukemia Research Laboratory, Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (A.W.); (X.L.)
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Clark Fruhstorfer
- Collings Stevens Chronic Leukemia Research Laboratory, Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (A.W.); (X.L.)
| | - Xiaoyan Jiang
- Collings Stevens Chronic Leukemia Research Laboratory, Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (A.W.); (X.L.)
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
5
|
Bansal M, Ansari S, Verma M. Role of miRNAs to control the progression of Chronic Myeloid Leukemia by their expression levels. Med Oncol 2024; 41:55. [PMID: 38216843 DOI: 10.1007/s12032-023-02278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/30/2023] [Indexed: 01/14/2024]
Abstract
Chronic Myeloid Leukemia (CML) is a myeloproliferative disorder distinguished by a specific genetic anomaly known as a reciprocal translocation between chromosomes 9 and 22. This translocation causes fusion between the BCR and ABL regions. Consequently, BCR::ABL oncoprotein is formed, which plays a significant role in driving CML progression. Imatinib, a tyrosine kinase inhibitor (TKI), became the first line of drugs against CML. However, with continuous treatment, patients developed resistance against it. Indeed, to address this challenge, microRNA-based therapy emerges as a promising approach. miRNAs are 20-25 nucleotides long and hold great significance in various cellular processes, including cell differentiation, proliferation, migration, and apoptosis. In several malignancies, it has been reported that miRNAs might help to promote or prevent tumourigenesis and abnormal expression because they could act as both oncogenes/tumor suppressors. Recently, because of their vital regulatory function in maintaining cell homeostasis, miRNAs might be used to control CML progression and in developing new therapies for TKI-resistant patients. They might also act as potential prognostic, diagnostic, and therapeutic biomarkers based on their expression profiles. Various annotation tools and microarray-based expression profiles can be used to predict dysregulated miRNAs and their target genes. The main purpose of this review is to provide brief insights into the role of dysregulated miRNAs in CML pathogenesis and to emphasize their clinical relevance, such as their significant potential as therapeutics against CML. Utilizing these miRNAs as a therapeutic approach by inhibition or amplification of their activity could unlock new doors for the therapy of CML.
Collapse
MESH Headings
- Humans
- MicroRNAs/genetics
- Fusion Proteins, bcr-abl
- Drug Resistance, Neoplasm/genetics
- Imatinib Mesylate/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Apoptosis
Collapse
Affiliation(s)
- Manvi Bansal
- School of Biotechnology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Sana Ansari
- School of Biotechnology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Malkhey Verma
- School of Biotechnology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
6
|
Pinnenti M, Sami MA, Hassan U. Enabling biomedical technologies for chronic myelogenous leukemia (CML) biomarkers detection. BIOMICROFLUIDICS 2024; 18:011501. [PMID: 38283720 PMCID: PMC10817778 DOI: 10.1063/5.0172550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
Chronic myelogenous/myeloid leukemia (CML) is a type of cancer of bone marrow that arises from hematopoietic stem cells and affects millions of people worldwide. Eighty-five percent of the CML cases are diagnosed during chronic phase, most of which are detected through routine tests. Leukocytes, micro-Ribonucleic Acids, and myeloid markers are the primary biomarkers for CML diagnosis and are mainly detected using real-time reverse transcription polymerase chain reaction, flow cytometry, and genetic testing. Though multiple therapies have been developed to treat CML, early detection still plays a pivotal role in the overall patient survival rate. The current technologies used for CML diagnosis are costly and are confined to laboratory settings which impede their application in the point-of-care settings for early-stage detection of CML. This study provides detailed analysis and insights into the significance of CML, patient symptoms, biomarkers used for testing, and best possible detection techniques responsible for the enhancement in survival rates. A critical and detailed review is provided around potential microfluidic devices that can be adapted to detect the biomarkers associated with CML while enabling point-of-care testing for early diagnosis of CML to improve patient survival rates.
Collapse
Affiliation(s)
- Meenakshi Pinnenti
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Muhammad Ahsan Sami
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | | |
Collapse
|
7
|
Zhang X, Ma W, Xue W, Wang Y, Chen P, Li Q, Li YY, Hu X, Zhao Y, Zhou H. miR-181a plays the tumor-suppressor role in chronic myeloid leukemia CD34 + cells partially via SERPINE1. Cell Mol Life Sci 2023; 81:10. [PMID: 38103082 PMCID: PMC10725356 DOI: 10.1007/s00018-023-05036-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/07/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023]
Abstract
The formation of the BCR-ABL fusion gene drives human chronic myeloid leukemia (CML). The last 2 decades have witnessed that specific tyrosine kinase inhibitors (TKIs, e.g., imatinib mesylate, IM) against ABL1 improve disease treatment, although some patients still suffer from relapse and TKI resistance. Therefore, a better understanding of the molecular pathology of CML is still urgently needed. miR-181a-5p (miR-181a) acts as a tumor suppressor in CML; however, the molecular mechanism of miR-181a in CML stem/progenitor cells remains elusive. Herein, we showed that miR-181a inhibited the growth of CML CD34+ cells, including the quiescent subset, and sensitized them to IM treatment, while miR-181a inhibition by a sponge sequence collaborated with BCR-ABL to enhance the growth of normal CD34+ cells. Transcriptome data and biochemical analysis revealed that SERPINE1 was a bona fide and critical target of miR-181a, which deepened the understanding of the regulatory mechanism of SERPINE1. Genetic and pharmacological inhibition of SERPINE1 led to apoptosis mainly mediated by caspase-9 activation. The dual inhibition of SERPINE1 and BCR-ABL exhibited a significantly stronger inhibitory effect than a single agent. Taken together, this study demonstrates that a novel miR-181a/SERPINE1 axis modulates CML stem/progenitor cells, which likely provides an important approach to override TKI resistance.
Collapse
Affiliation(s)
- Xiuyan Zhang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China.
- The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, 215006, China.
| | - Wenjuan Ma
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
| | - Wen Xue
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
- The Affiliated Nanhua Hospital, Department of Clinical Research Institute, Hengyang Medical School, University of South China, Hengyang, 421002, China
| | - Yu Wang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
- Jianhu Country People's Hospital, Yancheng, 224700, China
| | - Pan Chen
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
| | - Quanxue Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yuan-Yuan Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Xiaohui Hu
- The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, 215006, China.
- National Clinical Research Center for Hematologic Diseases, Suzhou, 215006, China.
| | - Yun Zhao
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China.
- National Clinical Research Center for Hematologic Diseases, Suzhou, 215006, China.
- MOE Engineering Center of Hematological Disease, Soochow University, Suzhou, 215123, China.
| | - Haixia Zhou
- The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, 215006, China.
- National Clinical Research Center for Hematologic Diseases, Suzhou, 215006, China.
| |
Collapse
|
8
|
Wu A, Yen R, Grasedieck S, Lin H, Nakamoto H, Forrest DL, Eaves CJ, Jiang X. Identification of multivariable microRNA and clinical biomarker panels to predict imatinib response in chronic myeloid leukemia at diagnosis. Leukemia 2023; 37:2426-2435. [PMID: 37848633 DOI: 10.1038/s41375-023-02062-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
Imatinib Mesylate (imatinib) was once hailed as the magic bullet for chronic myeloid leukemia (CML) and remains a front-line therapy for CML to this day alongside other tyrosine kinase inhibitors (TKIs). However, TKI treatments are rarely curative and patients are often required to receive life-long treatment or otherwise risk relapse. Thus, there is a growing interest in identifying biomarkers in patients which can predict TKI response upon diagnosis. In this study, we analyze clinical data and differentially expressed miRNAs in CD34+ CML cells from 80 patients at diagnosis who were later classified as imatinib-responders or imatinib-nonresponders. A Cox Proportional Hazard (CoxPH) analysis identified 16 miRNAs that were associated with imatinib nonresponse and differentially expressed in these patients. We also trained a machine learning model with different combinations of the 16 miRNAs with and without clinical parameters and identified a panel with high predictive performance based on area-under-curve values of receiver-operating-characteristic and precision-recall curves. Interestingly, the multivariable panel consisting of both miRNAs and clinical features performed better than either miRNA or clinical panels alone. Thus, our findings may inform future studies on predictive biomarkers and serve as a tool to develop more optimized treatment plans for CML patients in the clinic.
Collapse
Affiliation(s)
- Andrew Wu
- Terry Fox Laboratory, British Columbia Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ryan Yen
- Terry Fox Laboratory, British Columbia Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sarah Grasedieck
- Michael Smith Laboratories, Dept of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Hanyang Lin
- Terry Fox Laboratory, British Columbia Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Helen Nakamoto
- Terry Fox Laboratory, British Columbia Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Donna L Forrest
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Leukemia/Bone Marrow Transplant Program of British Columbia, University of British Columbia, Vancouver, BC, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Xiaoyan Jiang
- Terry Fox Laboratory, British Columbia Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada.
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Lahlil R, Aries A, Scrofani M, Zanetti C, Hennequin D, Drénou B. Stem Cell Responsiveness to Imatinib in Chronic Myeloid Leukemia. Int J Mol Sci 2023; 24:16671. [PMID: 38068992 PMCID: PMC10706348 DOI: 10.3390/ijms242316671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative disease characterized by the presence of the BCR-ABL fusion gene, which results from the Philadelphia chromosome. Since the introduction of tyrosine kinase inhibitors (TKI) such as imatinib mesylate (IM), the clinical outcomes for patients with CML have improved significantly. However, IM resistance remains the major clinical challenge for many patients, underlining the need to develop new drugs for the treatment of CML. The basis of CML cell resistance to this drug is unclear, but the appearance of additional genetic alterations in leukemic stem cells (LSCs) is the most common cause of patient relapse. However, several groups have identified a rare subpopulation of CD34+ stem cells in adult patients that is present mainly in the bone marrow and is more immature and pluripotent; these cells are also known as very small embryonic-like stem cells (VSELs). The uncontrolled proliferation and a compromised differentiation possibly initiate their transformation to leukemic VSELs (LVSELs). Their nature and possible involvement in carcinogenesis suggest that they cannot be completely eradicated with IM treatment. In this study, we demonstrated that cells from CML patients with the VSELs phenotype (LVSELs) similarly harbor the fusion protein BCR-ABL and are less sensitive to apoptosis than leukemic HSCs after IM treatment. Thus, IM induces apoptosis and reduces the proliferation and mRNA expression of Ki67 more efficiently in LHSCs than in leukemic LVSELs. Finally, we found that the expression levels of some miRNAs are affected in LVSELs. In addition to the tumor suppressor miR-451, both miR-126 and miR-21, known to be responsible for LSC leukemia-initiating capacity, quiescence, and growth, appear to be involved in IM insensitivity of LVSELs CML cell population. Targeting IM-resistant CML leukemic stem cells by acting via the miRNA pathways may represent a promising therapeutic option.
Collapse
MESH Headings
- Adult
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/metabolism
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- MicroRNAs/metabolism
- Apoptosis
- Stem Cells/metabolism
- Neoplastic Stem Cells/metabolism
Collapse
Affiliation(s)
- Rachid Lahlil
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d’Altkirch, 68100 Mulhouse, France; (A.A.); (B.D.)
| | - Anne Aries
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d’Altkirch, 68100 Mulhouse, France; (A.A.); (B.D.)
| | - Maurice Scrofani
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d’Altkirch, 68100 Mulhouse, France; (A.A.); (B.D.)
| | - Céline Zanetti
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d’Altkirch, 68100 Mulhouse, France; (A.A.); (B.D.)
| | - Desline Hennequin
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d’Altkirch, 68100 Mulhouse, France; (A.A.); (B.D.)
| | - Bernard Drénou
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d’Altkirch, 68100 Mulhouse, France; (A.A.); (B.D.)
- Laboratoire d’Hématologie, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, Hôpital E. Muller, 20 Avenue de Dr. Laennec, 68100 Mulhouse, France
| |
Collapse
|
10
|
Leventić M, Opačak-Bernardi T, Rastija V, Matić J, Pavlović Saftić D, Ban Ž, Žinić B, Glavaš-Obrovac L. The Mechanism of Anti-Tumor Activity of 6-Morpholino- and 6-Amino-9-Sulfonylpurine Derivatives on Human Leukemia Cells. Molecules 2023; 28:6136. [PMID: 37630388 PMCID: PMC10458232 DOI: 10.3390/molecules28166136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The aim of this study was to explore the mechanism of antitumor effect of (E)-6-morpholino-9-(styrylsulfonyl)-9H-purine (6-Morpholino-SPD) and (E)-6-amino-9-(styrylsulfonyl)-9H-purine (6-Amino-SPD). The effects on apoptosis induction, mitochondrial potential, and accumulation of ROS in treated K562 cells were determined by flow cytometry. The RT-PCR method was used to measure the expression of Akt, CA IX, caspase 3, and cytochrome c genes, as well as selected miRNAs. Western blot analysis was used to determine the expression of Akt, cytochrome c, and caspase 3. The results demonstrate the potential of the tested derivatives as effective antitumor agents with apoptotic-inducing properties. In leukemic cells treated with 6-Amino-SPD, increased expression of caspase 3 and cytochrome c genes was observed, indicating involvement of the intrinsic mitochondrial pathway in the induction of apoptosis. Conversely, leukemic cells treated with 6-Morpholino-SPD showed reduced expression of these genes. The observed downregulation of miR-21 by 6-Morpholino-SPD may contribute to the induction of apoptosis and disruption of mitochondrial function. In addition, both derivatives exhibited increased expression of Akt and CA IX genes, suggesting activation of the Akt/HIF pathway. However, the exact mechanism and its relations to the observed overexpression of miR-210 need further investigation. The acceptable absorption and distribution properties predicted by ADMET analysis suggest favorable pharmacokinetic properties for these derivatives.
Collapse
Affiliation(s)
- Marijana Leventić
- Department of Medicinal Chemistry, Biochemistry and Laboratory Medicine, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Huttlerova 4, 31000 Osijek, Croatia; (M.L.); (T.O.-B.)
| | - Teuta Opačak-Bernardi
- Department of Medicinal Chemistry, Biochemistry and Laboratory Medicine, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Huttlerova 4, 31000 Osijek, Croatia; (M.L.); (T.O.-B.)
| | - Vesna Rastija
- Department of Agroecology and Environmental Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Josipa Matić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (D.P.S.); (Ž.B.); (B.Ž.)
| | - Dijana Pavlović Saftić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (D.P.S.); (Ž.B.); (B.Ž.)
| | - Željka Ban
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (D.P.S.); (Ž.B.); (B.Ž.)
| | - Biserka Žinić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (D.P.S.); (Ž.B.); (B.Ž.)
| | - Ljubica Glavaš-Obrovac
- Department of Medicinal Chemistry, Biochemistry and Laboratory Medicine, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Huttlerova 4, 31000 Osijek, Croatia; (M.L.); (T.O.-B.)
| |
Collapse
|
11
|
Wu SC, Lai SW, Lu XJ, Lai HF, Chen YG, Chen PH, Ho CL, Wu YY, Chiu YL. Profiling of miRNAs and their interfering targets in peripheral blood mononuclear cells from patients with chronic myeloid leukaemia. Front Oncol 2023; 13:1173970. [PMID: 37476380 PMCID: PMC10356106 DOI: 10.3389/fonc.2023.1173970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/16/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction MicroRNAs may be implicated in the acquisition of drug resistance in chronic myeloid leukemia as they regulate the expression of not only BCR-ABL1 but also genes associated with the activation of drug transfer proteins or essential signaling pathways. Methods To understand the impact of specifically expressed miRNAs in chronic myeloid leukemia and their target genes, we collected peripheral blood mononuclear cells (PBMC) from patients diagnosed with chronic myeloid leukemia (CML) and healthy donors to determine whole miRNA expression by small RNA sequencing and screened out 31 differentially expressed microRNAs (DE-miRNAs) with high expression. With the utilization of miRNA set enrichment analysis tools, we present here a comprehensive analysis of the relevance of DE-miRNAs to disease and biological function. Furthermore, the literature-based miRNA-target gene database was used to analyze the overall target genes of the DE-miRNAs and to define their associated biological responses. We further integrated DE-miRNA target genes to identify CML miRNA targeted gene signature singscore (CMTGSS) and used gene-set enrichment analysis (GSEA) to analyze the correlation between CMTGSS and Hallmark gene-sets in PBMC samples from clinical CML patients. Finally, the association of CMTGSS stratification with multiple CML cell lineage gene sets was validated in PBMC samples from CML patients using GSEA. Results Although individual miRNAs have been reported to have varying degrees of impact on CML, overall, our results show that abnormally upregulated miRNAs are associated with apoptosis and aberrantly downregulated miRNAs are associated with cell cycle. The clinical database shows that our defined DE-miRNAs are associated with the prognosis of CML patients. CMTGSS-based stratification analysis presented a tendency for miRNAs to affect cell differentiation in the blood microenvironment. Conclusion Collectively, this study defined differentially expressed miRNAs by miRNA sequencing from clinical samples and comprehensively analyzed the biological functions of the differential miRNAs in association with the target genes. The analysis of the enrichment of specific myeloid differentiated cells and immune cells also suggests the magnitude and potential targets of differentially expressed miRNAs in the clinical setting. It helps us to make links between the different results obtained from the multi-faceted studies to provide more potential research directions.
Collapse
Affiliation(s)
- Sheng-Cheng Wu
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital Penghu Branch, Magong City, Taiwan
| | - Shiue-Wei Lai
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Xin-Jie Lu
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| | - Hsing-Fan Lai
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| | - Yu-Guang Chen
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Po-Huang Chen
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Ching-Liang Ho
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Yi-Ying Wu
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| |
Collapse
|
12
|
Identification of key microRNAs as predictive biomarkers of Nilotinib response in chronic myeloid leukemia: a sub-analysis of the ENESTxtnd clinical trial. Leukemia 2022; 36:2443-2452. [PMID: 35999259 DOI: 10.1038/s41375-022-01680-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022]
Abstract
Despite the effectiveness of tyrosine kinase inhibitors (TKIs) against chronic myeloid leukemia (CML), they are not usually curative as some patients develop drug-resistance or are at risk of disease relapse when treatment is discontinued. Studies have demonstrated that primitive CML cells display unique miRNA profiles in response to TKI treatment. However, the utility of miRNAs in predicting treatment response is not yet conclusive. Here, we analyzed differentially expressed miRNAs in CD34+ CML cells pre- and post-nilotinib (NL) therapy from 58 patients enrolled in the Canadian sub-analysis of the ENESTxtnd phase IIIb clinical trial which correlated with sensitivity of CD34+ cells to NL treatment in in vitro colony-forming cell (CFC) assays. We performed Cox Proportional Hazard (CoxPH) analysis and applied machine learning algorithms to generate multivariate miRNA panels which can predict NL response at treatment-naïve or post-treatment time points. We demonstrated that a combination of miR-145 and miR-708 are effective predictors of NL response in treatment-naïve patients whereas miR-150 and miR-185 were significant classifiers at 1-month and 3-month post-NL therapy. Interestingly, incorporation of NL-CFC output in these panels enhanced predictive performance. Thus, this novel predictive model may be developed into a prognostic tool for use in the clinic.
Collapse
|
13
|
Implication of microRNAs in Carcinogenesis with Emphasis on Hematological Malignancies and Clinical Translation. Int J Mol Sci 2022; 23:ijms23105838. [PMID: 35628648 PMCID: PMC9143361 DOI: 10.3390/ijms23105838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs, that are involved in the multistep process of carcinogenesis, contributing to all established hallmarks of cancer. In this review, implications of miRNAs in hematological malignancies and their clinical utilization fields are discussed. As components of the complex regulatory network of gene expression, influenced by the tissue microenvironment and epigenetic modifiers, miRNAs are “micromanagers” of all physiological processes including the regulation of hematopoiesis and metabolic pathways. Dysregulated miRNA expression levels contribute to both the initiation and progression of acute leukemias, the metabolic reprogramming of malignantly transformed hematopoietic precursors, and to the development of chemoresistance. Since they are highly stable and can be easily quantified in body fluids and tissue specimens, miRNAs are promising biomarkers for the early detection of hematological malignancies. Besides novel opportunities for differential diagnosis, miRNAs can contribute to advanced chemoresistance prediction and prognostic stratification of acute leukemias. Synthetic oligonucleotides and delivery vehicles aim the therapeutic modulation of miRNA expression levels. However, major challenges such as efficient delivery to specific locations, differences of miRNA expression patterns between pediatric and adult hematological malignancies, and potential side effects of miRNA-based therapies should be considered.
Collapse
|
14
|
Al Hamad M. Contribution of BCR-ABL molecular variants and leukemic stem cells in response and resistance to tyrosine kinase inhibitors: a review. F1000Res 2022; 10:1288. [PMID: 35284066 PMCID: PMC8886173 DOI: 10.12688/f1000research.74570.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 11/20/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm generated by reciprocal chromosomal translocation, t (9; 22) (q34; q11) in the transformed hematopoietic stem cell. Tyrosine kinase inhibitors (TKIs) target the mature proliferating BCR-ABL cells, the major CML driver, and increase overall and disease-free survival. However, mutant clones, pre-existing or due to therapy, develop resistance against TKIs. BCR-ABL1 oncoprotein activates various molecular pathways including the RAS/RAF/MEK/ERK pathway, JAK2/STAT pathway, and PI3K/AKT/mTOR pathway. Stimulation of these pathways in TKI resistant CML patients, make them a new target. Moreover, a small proportion of CML cells, leukemic stem cells (LSCs), persist during the TKI therapy and sustain the disease in the patient. Engraftment of LSCs in the bone marrow niche and dysregulation of miRNA participate greatly in the TKI resistance. Current efforts are needed for determining the reason behind TKI resistance, identification, and elimination of CML LSC might be of great need for cancer cure.
Collapse
Affiliation(s)
- Mohammad Al Hamad
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Dammam, 31441, Saudi Arabia
| |
Collapse
|
15
|
Small Non-Coding RNAs in Leukemia. Cancers (Basel) 2022; 14:cancers14030509. [PMID: 35158777 PMCID: PMC8833386 DOI: 10.3390/cancers14030509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
In 2020, more than 60,500 people were diagnosed with leukemia in the USA, and more than 23,000 died. The incidence of leukemia is still rising, and drug resistance development is a serious concern for patients' wellbeing and survival. In the past two decades, small non-coding RNAs have been studied to evaluate their functions and possible role in cancer pathogenesis. Small non-coding RNAs are short RNA molecules involved in several cellular processes by regulating the expression of genes. An increasing body of evidence collected by many independent studies shows that the expression of these molecules is tissue specific, and that their dysregulation alters the expression of genes involved in tumor development, progression and drug response. Indeed, small non-coding RNAs play a pivotal role in the onset, staging, relapse and drug response of hematological malignancies and cancers in general. These findings strongly suggest that small non-coding RNAs could function as biomarkers and possible targets for therapy. Thus, in this review, we summarize the regulatory mechanisms of small non-coding RNA expression in different types of leukemia and assess their potential clinical implications.
Collapse
|
16
|
Gonçalves AC, Richiardone E, Jorge J, Polónia B, Xavier CPR, Salaroglio IC, Riganti C, Vasconcelos MH, Corbet C, Sarmento-Ribeiro AB. Impact of cancer metabolism on therapy resistance - Clinical implications. Drug Resist Updat 2021; 59:100797. [PMID: 34955385 DOI: 10.1016/j.drup.2021.100797] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite an increasing arsenal of anticancer therapies, many patients continue to have poor outcomes due to the therapeutic failures and tumor relapses. Indeed, the clinical efficacy of anticancer therapies is markedly limited by intrinsic and/or acquired resistance mechanisms that can occur in any tumor type and with any treatment. Thus, there is an urgent clinical need to implement fundamental changes in the tumor treatment paradigm by the development of new experimental strategies that can help to predict the occurrence of clinical drug resistance and to identify alternative therapeutic options. Apart from mutation-driven resistance mechanisms, tumor microenvironment (TME) conditions generate an intratumoral phenotypic heterogeneity that supports disease progression and dismal outcomes. Tumor cell metabolism is a prototypical example of dynamic, heterogeneous, and adaptive phenotypic trait, resulting from the combination of intrinsic [(epi)genetic changes, tissue of origin and differentiation dependency] and extrinsic (oxygen and nutrient availability, metabolic interactions within the TME) factors, enabling cancer cells to survive, metastasize and develop resistance to anticancer therapies. In this review, we summarize the current knowledge regarding metabolism-based mechanisms conferring adaptive resistance to chemo-, radio-and immunotherapies as well as targeted therapies. Furthermore, we report the role of TME-mediated intratumoral metabolic heterogeneity in therapy resistance and how adaptations in amino acid, glucose, and lipid metabolism support the growth of therapy-resistant cancers and/or cellular subpopulations. We also report the intricate interplay between tumor signaling and metabolic pathways in cancer cells and discuss how manipulating key metabolic enzymes and/or providing dietary changes may help to eradicate relapse-sustaining cancer cells. Finally, in the current era of personalized medicine, we describe the strategies that may be applied to implement metabolic profiling for tumor imaging, biomarker identification, selection of tailored treatments and monitoring therapy response during the clinical management of cancer patients.
Collapse
Affiliation(s)
- Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Elena Richiardone
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
| | - Joana Jorge
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Bárbara Polónia
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | | | - Chiara Riganti
- Department of Oncology, School of Medicine, University of Torino, Italy
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy of the University of Porto, Porto, Portugal
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium.
| | - Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Hematology Service, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.
| |
Collapse
|
17
|
Al Hamad M. Contribution of BCR-ABL molecular variants and leukemic stem cells in response and resistance to tyrosine kinase inhibitors: a review. F1000Res 2021; 10:1288. [PMID: 35284066 PMCID: PMC8886173 DOI: 10.12688/f1000research.74570.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 08/28/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm generated by reciprocal chromosomal translocation, t (9; 22) (q34; q11) in the transformed hematopoietic stem cell. Tyrosine kinase inhibitors (TKIs) target the mature proliferating BCR-ABL cells, the major CML driver, and increase overall and disease-free survival. However, mutant clones, pre-existing or due to therapy, develop resistance against TKIs. BCR-ABL1 oncoprotein activates various molecular pathways including the RAS/RAF/MEK/ERK pathway, JAK2/STAT pathway, and PI3K/AKT/mTOR pathway. Stimulation of these pathways in TKI resistant CML patients, make them a new target. Moreover, a small proportion of CML cells, leukemic stem cells (LSCs), persist during the TKI therapy and sustain the disease in the patient. Engraftment of LSCs in the bone marrow niche and dysregulation of miRNA participate greatly in the TKI resistance. Current efforts are needed for determining the reason behind TKI resistance, identification, and elimination of CML LSC might be of great need for cancer cure.
Collapse
Affiliation(s)
- Mohammad Al Hamad
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Dammam, 31441, Saudi Arabia
| |
Collapse
|
18
|
Abdulmawjood B, Costa B, Roma-Rodrigues C, Baptista PV, Fernandes AR. Genetic Biomarkers in Chronic Myeloid Leukemia: What Have We Learned So Far? Int J Mol Sci 2021; 22:12516. [PMID: 34830398 PMCID: PMC8626020 DOI: 10.3390/ijms222212516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic Myeloid Leukemia (CML) is a rare malignant proliferative disease of the hematopoietic system, whose molecular hallmark is the Philadelphia chromosome (Ph). The Ph chromosome originates an aberrant fusion gene with abnormal kinase activity, leading to the buildup of reactive oxygen species and genetic instability of relevance in disease progression. Several genetic abnormalities have been correlated with CML in the blast phase, including chromosomal aberrations and common altered genes. Some of these genes are involved in the regulation of cell apoptosis and proliferation, such as the epidermal growth factor receptor (EGFR), tumor protein p53 (TP53), or Schmidt-Ruppin A-2 proto-oncogene (SRC); cell adhesion, e.g., catenin beta 1 (CTNNB1); or genes associated to TGF-β, such as SKI like proto-oncogene (SKIL), transforming growth factor beta 1 (TGFB1) or transforming growth factor beta 2 (TGFB2); and TNF-α pathways, such as Tumor necrosis factor (TNFA) or Nuclear factor kappa B subunit 1 (NFKB1). The involvement of miRNAs in CML is also gaining momentum, where dysregulation of some critical miRNAs, such as miRNA-451 and miRNA-21, which have been associated to the molecular modulation of pathogenesis, progression of disease states, and response to therapeutics. In this review, the most relevant genomic alterations found in CML will be addressed.
Collapse
Affiliation(s)
- Bilal Abdulmawjood
- i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (B.A.); (B.C.); (C.R.-R.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Beatriz Costa
- i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (B.A.); (B.C.); (C.R.-R.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Catarina Roma-Rodrigues
- i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (B.A.); (B.C.); (C.R.-R.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Pedro V. Baptista
- i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (B.A.); (B.C.); (C.R.-R.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (B.A.); (B.C.); (C.R.-R.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| |
Collapse
|
19
|
Resistance to Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia-From Molecular Mechanisms to Clinical Relevance. Cancers (Basel) 2021; 13:cancers13194820. [PMID: 34638304 PMCID: PMC8508378 DOI: 10.3390/cancers13194820] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Chronic myeloid leukemia (CML) is a myeloproliferative neoplasia associated with a molecular alteration, the fusion gene BCR-ABL1, that encodes the tyrosine kinase oncoprotein BCR-ABL1. This led to the development of tyrosine kinase inhibitors (TKI), with Imatinib being the first TKI approved. Although the vast majority of CML patients respond to Imatinib, resistance to this targeted therapy contributes to therapeutic failure and relapse. Here we review the molecular mechanisms and other factors (e.g., patient adherence) involved in TKI resistance, the methodologies to access these mechanisms, and the possible therapeutic approaches to circumvent TKI resistance in CML. Abstract Resistance to targeted therapies is a complex and multifactorial process that culminates in the selection of a cancer clone with the ability to evade treatment. Chronic myeloid leukemia (CML) was the first malignancy recognized to be associated with a genetic alteration, the t(9;22)(q34;q11). This translocation originates the BCR-ABL1 fusion gene, encoding the cytoplasmic chimeric BCR-ABL1 protein that displays an abnormally high tyrosine kinase activity. Although the vast majority of patients with CML respond to Imatinib, a tyrosine kinase inhibitor (TKI), resistance might occur either de novo or during treatment. In CML, the TKI resistance mechanisms are usually subdivided into BCR-ABL1-dependent and independent mechanisms. Furthermore, patients’ compliance/adherence to therapy is critical to CML management. Techniques with enhanced sensitivity like NGS and dPCR, the use of artificial intelligence (AI) techniques, and the development of mathematical modeling and computational prediction methods could reveal the underlying mechanisms of drug resistance and facilitate the design of more effective treatment strategies for improving drug efficacy in CML patients. Here we review the molecular mechanisms and other factors involved in resistance to TKIs in CML and the new methodologies to access these mechanisms, and the therapeutic approaches to circumvent TKI resistance.
Collapse
|
20
|
Abdelghany WA, Emam M, Elnagar U, Helmy R, Korayem OH, Hassan NM. Micro-RNA Biogenesis Genes (AGO1 and GEMIN4) Single Nucleotide Variants of Bad Prognosis and Poor Therapeutic Response in Egyptian Chronic Myeloid Leukemia Patients: Case–control Study. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Chronic myeloid leukemia (CML) is one of the most common hematological tumors. Gene candidate studies cleared the association of single genetic variants (SNVs) to the risk and progression in CML. MicroRNA biogenesis genes disruption contributes a fundamental role in carcinogenesis.
AIM: We aimed to determine the association between rs636832 and rs2740348 SNVs of AGO1 gene and GEMIN4 gene, respectively, and the risk and prognosis in CML Egyptian patients with 5 years survival estimation.
METHODS: The study was conducted on 110 newly diagnosed CML patients and 110 age and sex healthy matched controls. Real-time polymerase chain reaction utilizing TaqMan probes was operated to demonstrate genetic modalities of rs636832 and rs2740348.
RESULTS: No significance difference was observed between the cases and controls regarding the genotypic and allelic frequencies for both variants. On the other hand, the rs636832 GG genotype was more evident at a younger age of diagnosis and associated with the poor grades of the Sokal and Eutos scores. As well, rs2740348 CC genotype was encountered in high Eutos score levels. Regarding the response therapy, rs636832 GG genotype was overrepresented in the resistance to Imatinib while rs2740348 CC genotype was prevalent in the resistance to both Imatinib and Nilotinib. Overall survival was of no statistical significance for both variants.
CONCLUSION: Our study revealed that the major homozygous genotypes of both variants were associated with bad prognostic clinical scores and poor response to therapy but with no role in CML risk.
Collapse
|
21
|
[CRISPR/Cas9-mediated microRNA-21 knockout increased imatinib sensitivity in chronic myeloid leukemia cells]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:243-249. [PMID: 33910311 PMCID: PMC8081948 DOI: 10.3760/cma.j.issn.0253-2727.2021.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
目的 观察microRNA-21(miR-21)敲除对耐伊马替尼的人慢性髓性白血病细胞株K562/G01细胞在增殖、药物敏感性等方面的影响,初步探讨miR-21影响K562/G01细胞伊马替尼敏感性的可能机制。 方法 运用CRISPR/Cas9技术敲除K562/G01细胞的miR-21,经PCR筛选、Sanger测序鉴定和实时定量PCR检测获得miR-21敲除的单细胞克隆。扩增培养后,采用MTT法、细胞克隆形成实验检测miR-21敲除对K562/G01细胞增殖的影响。使用伊马替尼处理细胞后,用MTT法和Annexin Ⅴ-APC/7-AAD双染流式细胞检测法观察敲除miR-21后K562/G01细胞对伊马替尼的敏感性的变化。Western blot法检测miR-21敲除前后K562/G01细胞PTEN、AKT、p-AKT、PI3K、p-PI3K、P210BCR-ABL、p-P210BCR-ABL蛋白表达量的变化。 结果 成功构建了3个miR-21敲除的K562/G01单细胞克隆,CRISPR/Cas9介导的突变效率为7.12%~8.11%。miR-21敲除使K562/G01细胞的增殖受抑,野生型和1#、2#、6#单细胞克隆的克隆形成率依次为(57.67±8.25)%、(26.94±5.36)%、(7.17±2.11)%、(31.50±3.65)%,差异有统计学意义(P<0.05)。miR-21敲除使K562/G01细胞对伊马替尼的敏感性增加,野生型和1#、2#、6#单细胞克隆对伊马替尼的IC50值分别为(21.92±1.36)µmol/ml、(3.98±0.39)µmol/ml、(5.38±1.01)µmol/ml、(9.24±1.36)µmol/ml,差异有统计学意义(P<0.05)。miR-21敲除后,其靶基因PTEN的蛋白表达水平未见明显变化,但PI3K、AKT信号分子的活化受到抑制,并且P210BCR-ABL、p-P210BCR-ABL蛋白表达也下调。 结论 miR-21敲除抑制K562/G01细胞增殖,提高其对伊马替尼的敏感性,这可能是通过抑制PI3K/AKT信号通路和BCR-ABL表达实现的。
Collapse
|
22
|
Minciacchi VR, Kumar R, Krause DS. Chronic Myeloid Leukemia: A Model Disease of the Past, Present and Future. Cells 2021; 10:cells10010117. [PMID: 33435150 PMCID: PMC7827482 DOI: 10.3390/cells10010117] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic myeloid leukemia (CML) has been a "model disease" with a long history. Beginning with the first discovery of leukemia and the description of the Philadelphia Chromosome and ending with the current goal of achieving treatment-free remission after targeted therapies, we describe here the journey of CML, focusing on molecular pathways relating to signaling, metabolism and the bone marrow microenvironment. We highlight current strategies for combination therapies aimed at eradicating the CML stem cell; hopefully the final destination of this long voyage.
Collapse
MESH Headings
- Epigenesis, Genetic
- History, 20th Century
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/history
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Models, Biological
- Molecular Targeted Therapy
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Tumor Microenvironment/genetics
Collapse
Affiliation(s)
- Valentina R. Minciacchi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt am Main, Germany; (V.R.M.); (R.K.)
| | - Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt am Main, Germany; (V.R.M.); (R.K.)
| | - Daniela S. Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt am Main, Germany; (V.R.M.); (R.K.)
- German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- Frankfurt Cancer Institute, 60596 Frankfurt, Germany
- Faculty of Medicine, Medical Clinic II, Johann Wolfgang Goethe University, 60596 Frankfurt, Germany
- Correspondence: ; Tel.: +49-69-63395-500; Fax: +49-69-63395-519
| |
Collapse
|
23
|
Klümper T, Bruckmueller H, Diewock T, Kaehler M, Haenisch S, Pott C, Bruhn O, Cascorbi I. Expression differences of miR-142-5p between treatment-naïve chronic myeloid leukemia patients responding and non-responding to imatinib therapy suggest a link to oncogenic ABL2, SRI, cKIT and MCL1 signaling pathways critical for development of therapy resistance. Exp Hematol Oncol 2020; 9:26. [PMID: 32999756 PMCID: PMC7519530 DOI: 10.1186/s40164-020-00183-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
Background Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by constitutive activity of the tyrosine kinase BCR-ABL1. Although the introduction of tyrosine kinase inhibitors (TKIs) has substantially improved patients’ prognosis, drug resistance remains one of the major challenges in CML therapy. MicroRNAs (miRNAs), a class of short non-coding RNAs acting as post-transcriptional regulators, are implicated in CML progression and drug resistance. The aim of the present study was to analyze the miRNA expression profiles of 45 treatment-naïve CML patients in chronic phase (28 peripheral blood and 17 bone marrow samples) with respect to future response to imatinib therapy. Methods TaqMan low density arrays were used to analyze the miRNA expression pattern of the patient samples. For selected microRNAs, reporter gene assays were performed to study their ability to regulate CML associated target genes. Results Significant lower expression levels of miR-142-5p were identified in both, peripheral blood and bone marrow samples of future non-responders suggesting a potential tumor suppressor role of this miRNA. This was supported by reporter gene assays that identified the survival, proliferation and invasion promoting CML related genes ABL2, cKIT, MCL1 and SRI as targets of miR-142-5p and miR-365a-3p, the latter identified as potential biomarker in peripheral blood samples. Conclusion MiR-142-5p and to a certain extend also miR-365a-3p were able to discriminate treatment-naïve CML patients not responding to imatinib in the course of their treatment from patients, who responded to therapy. However, further large-scale studies should clarify if the identified miRNAs have the potential as predictive biomarkers for TKI resistance.
Collapse
Affiliation(s)
- Theresa Klümper
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Henrike Bruckmueller
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Tobias Diewock
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Sierk Haenisch
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Christiane Pott
- Department of Medicine II, Haematology and Oncology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Oliver Bruhn
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
24
|
Upregulation of Akt/Raptor signaling is associated with rapamycin resistance of breast cancer cells. Chem Biol Interact 2020; 330:109243. [PMID: 32861747 DOI: 10.1016/j.cbi.2020.109243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 08/03/2020] [Accepted: 08/25/2020] [Indexed: 01/14/2023]
Abstract
mTOR inhibitors are considered today to be one of the most promising anticancer drugs. Here to study the mechanism of the acquired resistance of MCF-7 breast cancer cells to mTOR inhibitors two different models of the cell resistance were used: rapamycin-resistant MCF-7/Rap subline developed under long-term rapamycin treatment, and metformin-resistant MCF-7/M subline obtained by long-term metformin treatment. We have found that both resistant sublines were characterized by common features: increased expression of mTOR-interacting Raptor protein, increased phosphorylation of Akt, and activation of growth-related transcriptional factor AP-1. Cell response to mTOR inhibitors was partially restored under treatment with PI3K inhibitor wortmannin supporting the direct connection between Akt activation and poor cell response to therapeutic drugs. Transfection of mir-181c, one of the positive regulators of Akt and mTOR, led to an increase in the cell resistance to both mTOR inhibitors, rapamycin and metformin, which correlated with Raptor overexpression and activation of Akt/AP-1 signaling. In general, the effect of Raptor overexpression in the resistant cells, as well as the ability of mir-181c to modulate the Raptor expression, can open novel perspectives in the treatment of rapalogues-resistant cancers, based on the drugs design targeting mir-181c/Raptor axis.
Collapse
|
25
|
Carrà G, Cartellà A, Maffeo B, Morotti A. Strategies For Targeting Chronic Myeloid Leukaemia Stem Cells. BLOOD AND LYMPHATIC CANCER-TARGETS AND THERAPY 2019; 9:45-52. [PMID: 31807112 PMCID: PMC6842740 DOI: 10.2147/blctt.s228815] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/19/2019] [Indexed: 02/06/2023]
Abstract
Chronic Myeloid Leukaemia is a myeloproliferative disorder driven by the t(9;22) chromosomal translocation coding for the chimeric protein BCR-ABL. CML treatment represents the paradigm of molecular therapy of cancer. Since the development of the tyrosine kinase inhibitor of the BCR-ABL kinase, the clinical approach to CML has dramatically changed, with a stunning improvement in the quality of life and response rates of patients. However, it remains clear that tyrosine kinase inhibitors (TKIs) are unable to target the most immature cellular component of CML, the CML stem cell. This review summarizes new insights into the mechanisms of resistance to TKIs.
Collapse
Affiliation(s)
- Giovanna Carrà
- Department Of Clinical And Biological Sciences, University Of Turin, Orbassano 10043, Italy
| | - Antonio Cartellà
- Department Of Clinical And Biological Sciences, University Of Turin, Orbassano 10043, Italy
| | - Beatrice Maffeo
- Department Of Clinical And Biological Sciences, University Of Turin, Orbassano 10043, Italy
| | - Alessandro Morotti
- Department Of Clinical And Biological Sciences, University Of Turin, Orbassano 10043, Italy
| |
Collapse
|