1
|
Li CL, Moi SH, Lin HS, Hou MF, Chen FM, Shih SL, Kan JY, Kao CN, Wu YC, Kao LC, Chen YH, Lee YC, Chiang CP. Comprehensive Transcriptomic and Proteomic Analyses Identify a Candidate Gene Set in Cross-Resistance for Endocrine Therapy in Breast Cancer. Int J Mol Sci 2022; 23:ijms231810539. [PMID: 36142451 PMCID: PMC9501051 DOI: 10.3390/ijms231810539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Endocrine therapy (ET) of selective estrogen receptor modulators (SERMs), selective estrogen receptor downregulators (SERDs), and aromatase inhibitors (AIs) has been used as the gold standard treatment for hormone-receptor-positive (HR+) breast cancer. Despite its clinical benefits, approximately 30% of patients develop ET resistance, which remains a major clinical challenge in patients with HR+ breast cancer. The mechanisms of ET resistance mainly focus on mutations in the ER and related pathways; however, other targets still exist from ligand-independent ER reactivation. Moreover, mutations in the ER that confer resistance to SERMs or AIs seldom appear in SERDs. To date, little research has been conducted to identify a critical target that appears in both SERMs/SERDs and AIs. In this study, we conducted comprehensive transcriptomic and proteomic analyses from two cohorts of The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) to identify the critical targets for both SERMs/SERDs and AIs of ET resistance. From a treatment response cohort with treatment response for the initial ET regimen and an endocrine therapy cohort with survival outcomes, we identified candidate gene sets that appeared in both SERMs/SERDs and AIs of ET resistance. The candidate gene sets successfully differentiated progress/resistant groups (PD) from complete response groups (CR) and were significantly correlated with survival outcomes in both cohorts. In summary, this study provides valuable clinical implications for the critical roles played by candidate gene sets in the diagnosis, mechanism, and therapeutic strategy for both SERMs/SERDs and AIs of ET resistance for the future.
Collapse
Affiliation(s)
- Chung-Liang Li
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Sin-Hua Moi
- Center of Cancer Program Development, E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Huei-Shan Lin
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Fang-Ming Chen
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Shen-Liang Shih
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Jung-Yu Kan
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chieh-Ni Kao
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Yi-Chia Wu
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Surgery, Division of Plastic Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Li-Chun Kao
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Ying-Hsuan Chen
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Yi-Chen Lee
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chih-Po Chiang
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan
- Correspondence: or ; Tel.: +886-7-312-1101 (ext. 2260)
| |
Collapse
|
2
|
Asghari A, Wall K, Gill M, Vecchio ND, Allahbakhsh F, Wu J, Deng N, Zheng WJ, Wu H, Umetani M, Maroufy V. A novel group of genes that cause endocrine resistance in breast cancer identified by dynamic gene expression analysis. Oncotarget 2022; 13:600-613. [PMID: 35401937 PMCID: PMC8986262 DOI: 10.18632/oncotarget.28225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/25/2022] [Indexed: 11/25/2022] Open
Abstract
Breast cancer (BC) is the most common type of cancer diagnosed in women. Among female cancer deaths, BC is the second leading cause of death worldwide. For estrogen receptor-positive (ER-positive) breast cancers, endocrine therapy is an effective therapeutic approach. However, in many cases, an ER-positive tumor becomes unresponsive to endocrine therapy, and tumor regrowth occurs after treatment. While some genetic mutations contribute to resistance in some patients, the underlying causes of resistance to endocrine therapy are mostly undetermined. In this study, we utilized a recently developed statistical approach to investigate the dynamic behavior of gene expression during the development of endocrine resistance and identified a novel group of genes whose time course expression significantly change during cell modelling of endocrine resistant BC development. Expression of a subset of these genes was also differentially expressed in microarray analysis of endocrine-resistant and endocrine-sensitive tumor samples. Surprisingly, a subset of those genes was also differentially genes expressed in triple-negative breast cancer (TNBC) as compared with ER-positive BC. The findings suggest shared genetic mechanisms may underlie the development of endocrine resistant BC and TNBC. Our findings identify 34 novel genes for further study as potential therapeutic targets for treatment of endocrine-resistant BC and TNBC.
Collapse
Affiliation(s)
- Arvand Asghari
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
- These authors contributed equally to this work
| | - Katherine Wall
- Department of Biostatistics and Data Science, School of Public Health, UTHealth, Houston, TX 77030, USA
- These authors contributed equally to this work
| | - Michael Gill
- Department of Biostatistics and Data Science, School of Public Health, UTHealth, Houston, TX 77030, USA
| | - Natascha Del Vecchio
- Chicago Center for HIV Elimination, University of Chicago, Chicago, IL 60637, USA
| | - Farnaz Allahbakhsh
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Jacky Wu
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Nan Deng
- Clinical Cancer Prevention Department, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - W. Jim Zheng
- School of Biomedical Informatics, UTHealth, Houston, TX 77030, USA
| | - Hulin Wu
- Department of Biostatistics and Data Science, School of Public Health, UTHealth, Houston, TX 77030, USA
| | - Michihisa Umetani
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
- Health Research Institute, University of Houston, Houston, TX 77204, USA
| | - Vahed Maroufy
- Department of Biostatistics and Data Science, School of Public Health, UTHealth, Houston, TX 77030, USA
| |
Collapse
|
3
|
Curcumin sensitizes carboplatin treatment in triple negative breast cancer through reactive oxygen species induced DNA repair pathway. Mol Biol Rep 2022; 49:3259-3270. [PMID: 35076853 DOI: 10.1007/s11033-022-07162-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/18/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND As patients with triple-negative breast cancer (TNBC) have a very weak response to hormone inhibition or anti-HER2 therapy, traditional chemotherapy is commonly used in these patients. Recently, carboplatin has been approved for the clinical treatment of TNBC. However, several patients exhibit resistance to carboplatin treatment. Therefore, strategies to enhance the antitumor effect of carboplatin need to be explored. In our study, we investigated the function of curcumin in increasing the response to carboplatin. METHODS AND RESULTS MTT and colony formation assays were used to evaluate cell viability after carboplatin and curcumin treatment. In addition, we conducted flow cytometric and Western blot analyses to examine cellular apoptosis. Subsequently, molecular and biochemical experiments were used to explore the mechanism by which curcumin sensitized TNBC to carboplatin treatment. We demonstrated that different TNBC cells responded differently to carboplatin. Low-dose carboplatin killed CAL-51 cells but barely influenced CAL-51-R and MDA-MB-231 cells. To improve the sensitivity of resistant TNBC cells to carboplatin, combined treatment with curcumin was applied and was found to inhibit proliferation and induce apoptosis. Mechanistically, curcumin exerted its anticancer effect by increasing reactive oxygen species (ROS) production, which downregulated the DNA repair protein RAD51, leading to upregulation of γH2AX. As expected, ROS scavenger NAC reversed the inhibitory effect on growth and DNA repair pathway activity mediated by curcumin. CONCLUSION Collectively, our data demonstrate that curcumin sensitizes TNBC to the anticancer effect of carboplatin by increasing ROS-induced DNA damage, thus providing an effective combination treatment strategy for TNBC.
Collapse
|
4
|
Rajagopal T, Seshachalam A, Rathnam KK, Talluri S, Venkatabalasubramanian S, Dunna NR. Homologous recombination DNA repair gene RAD51, XRCC2 & XRCC3 polymorphisms and breast cancer risk in South Indian women. PLoS One 2022; 17:e0259761. [PMID: 35061678 PMCID: PMC8782413 DOI: 10.1371/journal.pone.0259761] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Homologous recombination repair (HRR) accurately repairs the DNA double-strand breaks (DSBs) and is crucial for genome stability. Genetic polymorphisms in crucial HRR pathway genes might affect genome stability and promote tumorigenesis. Up to our knowledge, the present study is the first to investigate the impact of HRR gene polymorphisms on BC development in South Indian women. The present population-based case-control study investigated the association of polymorphisms in three key HRR genes (XRCC2-Arg188His, XRCC3-Thr241Met and RAD51-G135C) with BC risk. MATERIALS AND METHODS Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was used for genotyping the HRR variants in 491 BC cases and 493 healthy women. RESULTS We observed that the XRCC3 Met allele was significantly associated with BC risk [OR:1.27 (95% CI: 1.02-1.60); p = 0.035]. In addition, the homozygous mutant (C/C) genotype of RAD51 G135C variant conferred 2.19 fold elevated risk of BC [OR: 2.19 (95% CI: 1.06-4.54); p = 0.034]. Stratified analysis of HRR variants and BC clinicopathological features revealed that the XRCC3-Thr241Met and RAD51-G135C variants are associated with BC progression. Combined SNP analysis revealed that the individuals with RAD51-C/C, XRCC2-Arg/Arg, and XRCC3-Thr/Thr genotype combination have three-fold increased BC risk. CONCLUSION The present study imparts additional evidence that genetic variants in crucial HRR pathway genes might play a pivotal role in modulating BC risk in South Indian women.
Collapse
Affiliation(s)
- Taruna Rajagopal
- Cancer Genomics Laboratory, Department of Biotechnology, School of Chemical and Biotechnology, SASTRA–Deemed University, Thanjavur, India
| | - Arun Seshachalam
- Department of Medical and Paediatric Oncology, Dr.G.V.N Cancer Institute, Singarathope, Trichy, India
| | - Krishna Kumar Rathnam
- Department of Hemato Oncology–Medical Oncology and Bone Marrow Transplantation, Meenakshi Mission Hospital & Research Centre, Madurai, India
| | - Srikanth Talluri
- Dana Farber Cancer Institute, Boston, MA, United States of America
- Veterans Administration Boston Healthcare System, West Roxbury, MA, United States of America
| | | | - Nageswara Rao Dunna
- Cancer Genomics Laboratory, Department of Biotechnology, School of Chemical and Biotechnology, SASTRA–Deemed University, Thanjavur, India
| |
Collapse
|
5
|
EGFR-mediated Rad51 expression potentiates intrinsic resistance in prostate cancer via EMT and DNA repair pathways. Life Sci 2021; 286:120031. [PMID: 34627777 DOI: 10.1016/j.lfs.2021.120031] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/25/2021] [Accepted: 10/01/2021] [Indexed: 02/02/2023]
Abstract
AIM To study the role of EGFR signaling in regulation of intrinsic resistance in prostate cancer. MATERIALS AND METHODS Radioresistant prostate carcinoma DU145 and PC-3 cells were used to study the effect of shRNA-mediated knockdown of EGFR on intrinsic radioresistance mechanisms. Semi-quantitative PCR, western blotting, growth kinetics, colony formation, transwell migration, invasion and trypan blue assays along with inhibitors erlotinib, NU7441, B02, PD98059 and LY294002 were used. KEY FINDINGS EGFR knock-down induced morphological alterations along with reduction in clonogenic potential and cell proliferation in DU145 cells. Migratory potential of prostate cancer cells were reduced concomitant with upregulation of epithelial marker, E-cadherin and decreased expression of mesenchymal markers, vimentin and snail. Further, EGFR knock-down decreased the expression of Rad51 and DNA-PK at mRNA as well as protein levels. Likewise, erlotinib, an EGFR inhibitor, and NU7441, a DNA-PK inhibitor increased the expression of E-cadherin and decreased the level of vimentin. Both these inhibitors also decreased the levels of DNA damage regulatory protein Rad51. Further, Rad51 inhibitor, B02, inhibited the clonogenic potential, cell migration and reduced the expression of vimentin, Ku70 and Ku80, and also, B02 radiosensitized DU145 cells. EGFR-regulated expression of Rad51 was found to be mediated via PI3K/Akt and Erk1/2 pathways. SIGNIFICANCE EGFR was found to regulate DNA damage repair, survival and EMT responses in prostate cancer cells through transcriptional regulation of Rad51. A novel role of EGFR-Erk1/2/Akt-Rad51 axis through modulation of EMT and DNA repair pathways in prostate cancer resistance mechanisms is suggested.
Collapse
|
6
|
Kang K, Choi Y, Moon H, You C, Seo M, Kwon G, Yun J, Beck B, Kang K. Epigenomic Analysis of RAD51 ChIP-seq Data Reveals cis-regulatory Elements Associated with Autophagy in Cancer Cell Lines. Cancers (Basel) 2021; 13:cancers13112547. [PMID: 34067336 PMCID: PMC8196894 DOI: 10.3390/cancers13112547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary RAD51 is a key enzyme involved in homologous recombination during DNA double-strand break repair. However, recent studies suggest that non-canonical roles of RAD51 may exist. The aim of our study was to assess regulatory roles of RAD51 by reanalyzing RAD51 ChIP-seq data in GM12878, HepG2, K562, and MCF-7 cell lines. We identified 5137, 2611, 7192, and 3498 RAD51-associated cis-regulatory elements in GM12878, HepG2, K562, and MCF-7 cell lines, respectively. Intriguingly, gene ontology analysis revealed that promoters of the autophagy pathway-related genes were most significantly occupied by RAD51 in all four cell lines, predicting a non-canonical role of RAD51 in regulating autophagy-related genes. Abstract RAD51 is a recombinase that plays a pivotal role in homologous recombination. Although the role of RAD51 in homologous recombination has been extensively studied, it is unclear whether RAD51 can be involved in gene regulation as a co-factor. In this study, we found evidence that RAD51 may contribute to the regulation of genes involved in the autophagy pathway with E-box proteins such as USF1, USF2, and/or MITF in GM12878, HepG2, K562, and MCF-7 cell lines. The canonical USF binding motif (CACGTG) was significantly identified at RAD51-bound cis-regulatory elements in all four cell lines. In addition, genome-wide USF1, USF2, and/or MITF-binding regions significantly coincided with the RAD51-associated cis-regulatory elements in the same cell line. Interestingly, the promoters of genes associated with the autophagy pathway, such as ATG3 and ATG5, were significantly occupied by RAD51 and regulated by RAD51 in HepG2 and MCF-7 cell lines. Taken together, these results unveiled a novel role of RAD51 and provided evidence that RAD51-associated cis-regulatory elements could possibly be involved in regulating autophagy-related genes with E-box binding proteins.
Collapse
Affiliation(s)
- Keunsoo Kang
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Korea; (H.M.); (M.S.); (J.Y.)
- Correspondence: (K.K.); (K.K.); Tel.: +82-41-550-3456 (K.K.); +82-43-261-2295 (K.K.)
| | - Yoonjung Choi
- Deargen Inc., 193, Munji-ro, Yuseong-gu, Daejeon 34051, Korea; (Y.C.); (B.B.)
| | - Hyeonjin Moon
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Korea; (H.M.); (M.S.); (J.Y.)
| | - Chaelin You
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Korea; (C.Y.); (G.K.)
| | - Minjin Seo
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Korea; (H.M.); (M.S.); (J.Y.)
| | - Geunho Kwon
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Korea; (C.Y.); (G.K.)
| | - Jahyun Yun
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Korea; (H.M.); (M.S.); (J.Y.)
| | - Boram Beck
- Deargen Inc., 193, Munji-ro, Yuseong-gu, Daejeon 34051, Korea; (Y.C.); (B.B.)
| | - Kyuho Kang
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Korea; (C.Y.); (G.K.)
- Correspondence: (K.K.); (K.K.); Tel.: +82-41-550-3456 (K.K.); +82-43-261-2295 (K.K.)
| |
Collapse
|
7
|
Lin M, Wang YN, Ye Y, Xiong Z, Guo F, Chen H. DNAJC12 as a Mediator Between ESR1 and ERBB4 in Breast Carcinoma Cells. Front Oncol 2021; 11:582277. [PMID: 33718139 PMCID: PMC7943744 DOI: 10.3389/fonc.2021.582277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 01/05/2021] [Indexed: 02/05/2023] Open
Abstract
Mutation of the DNAJC12 gene is typically associated with non-progressive Parkinsonism, but is also detectable in breast carcinoma where its contribution and mechanisms are unexplored. In breast carcinoma, ESR1 was positively correlated with DNAJC12 and ERBB4, and DNAJC12 was positively correlated with ERBB4. We used the GEO2R tool to compare differential gene expression of MCF-7 cells, following ESR1 knockdown (GEO database, E-GEOD-27473 array), and found decreased expression of DNAJC12 and ERBB4 in ESR1-silenced MCF-7 cells. The number of identical genes having correlativity with ESR1, DNAJC12, or ERBB4 was 12,165 (66.41%). These results suggest that ESR1 can promote the expression of DNAJC12 and ERBB4, and DNAJC12 can enhance the expression of ERBB4 in MCF-7 cells, implying that there may be a regulatory network among these three genes.
Collapse
Affiliation(s)
- Mianjie Lin
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, China
| | - Ya-Nan Wang
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Yixin Ye
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Zhelei Xiong
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Fengbiao Guo
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Haibin Chen
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, China
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
- *Correspondence: Haibin Chen,
| |
Collapse
|
8
|
Hamadneh L, Abuarqoub R, Alhusban A, Bahader M. Upregulation of PI3K/AKT/PTEN pathway is correlated with glucose and glutamine metabolic dysfunction during tamoxifen resistance development in MCF-7 cells. Sci Rep 2020; 10:21933. [PMID: 33318536 PMCID: PMC7736849 DOI: 10.1038/s41598-020-78833-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Tamoxifen resistance is emerging as a big challenge in endocrine therapy of luminal A breast cancer patients. In this study, we aimed to determine the molecular changes of PI3K/AKT/PTEN signaling pathway during tamoxifen-resistance development using gradually increased doses of tamoxifen in one model, while fixing tamoxifen treatment dose at 35 μM for several times in the second model. An upregulation of AKT/PI3K genes was noticed at 30 μM tamoxifen concentration in cells treated with a gradual increase of tamoxifen doses. In the second model, significant upregulation of AKT1 was seen in cells treated with 35 μM tamoxifen for three times. All genes studied showed a significant increase in expression in resistant cells treated with 50 µM and 35 µM six times tamoxifen. These genes’ upregulation was accompanied by PTEN and GSK3 ß genes’ down-regulation, and it was in correlation to the changes in the metabolic rate of glucose in tamoxifen-resistant models. A significant increase in glucose consumption rate from culture media was observed in tamoxifen resistant cells with the highest consumption rate reported in the first day of culturing. Increased glucose consumption rates were also correlated with GLUL significant gene expression and non-significant change in c-MYC gene expression that may lead to increased endogenous glutamine synthesis. As a result, several molecular and metabolic changes precede acquired tamoxifen resistance could be used as resistance biomarkers or targets to reverse tamoxifen resistance.
Collapse
Affiliation(s)
- Lama Hamadneh
- Faculty of Pharmacy, AL-Zaytoonah University of Jordan, Amman, 11733, Jordan.
| | - Rama Abuarqoub
- Faculty of Pharmacy, AL-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Ala Alhusban
- Faculty of Pharmacy, AL-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Mohamad Bahader
- Faculty of Pharmacy, AL-Zaytoonah University of Jordan, Amman, 11733, Jordan
| |
Collapse
|
9
|
Abstract
AbstractThe human protein Rad51 is double-edged in cancer contexts: on one hand, preventing tumourigenesis by eliminating potentially carcinogenic DNA damage and, on the other, promoting tumours by introducing new mutations. Understanding mechanistic details of Rad51 in homologous recombination (HR) and repair could facilitate design of novel methods, including CRISPR, for Rad51-targeted cancer treatment. Despite extensive research, however, we do not yet understand the mechanism of HR in sufficient detail, partly due to complexity, a large number of Rad51 protein units being involved in the exchange of long DNA segments. Another reason for lack of understanding could be that current recognition models of DNA interactions focus only on hydrogen bond-directed base pair formation. A more complete model may need to include, for example, the kinetic effects of DNA base stacking and unstacking (‘longitudinal breathing’). These might explain how Rad51 can recognize sequence identity of DNA over several bases long stretches with high accuracy, despite the fact that a single base mismatch could be tolerated if we consider only the hydrogen bond energy. We here propose that certain specific hydrophobic effects, recently discovered destabilizing stacking of nucleobases, may play a central role in this context for the function of Rad51.
Collapse
|
10
|
Madigan LI, Dinh P, Graham JD. Neoadjuvant endocrine therapy in locally advanced estrogen or progesterone receptor-positive breast cancer: determining the optimal endocrine agent and treatment duration in postmenopausal women-a literature review and proposed guidelines. Breast Cancer Res 2020; 22:77. [PMID: 32690069 PMCID: PMC7370425 DOI: 10.1186/s13058-020-01314-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction For patients with locally advanced estrogen receptor or progesterone receptor-positive breast cancer, neoadjuvant endocrine therapy (NET) facilitates down-staging of the tumor and increased rates of breast-conserving surgery. However, NET remains under-utilized, and there are very limited clinical guidelines governing which therapeutic agent to use, or the optimal duration of treatment in postmenopausal women. This literature review aims to discuss the evidence surrounding (1) biomarkers for patient selection for NET, (2) the optimal neoadjuvant endocrine agent for postmenopausal women with locally advanced breast cancer, and (3) the optimal duration of NET. In addition, we make initial recommendations towards developing a clinical guideline for the prescribing of NET. Method A wide-ranging search of online electronic databases was conducted using a truncated PIC search strategy to identify articles that were relevant to these aims and revealed a number of key findings. Results Randomized trials have consistently demonstrated that aromatase inhibitors are more effective than tamoxifen, in terms of objective response rate and rate of BCS, and should be used as first-line NET. The three available aromatase inhibitors have so far been demonstrated to be biologically equivalent, with the choice of aromatase inhibitor not having been shown to affect clinical outcomes. There is increasing evidence for extending the duration of NET beyond 3 to 4 months, to at least 6 months or until maximal clinical response is achieved. While on-treatment levels of the proliferation marker Ki67 are predictive of long-term outcome, the choice of adjuvant therapy in patients who have received NET and then surgery is best guided by the preoperative endocrine prognostic index, or PEPI, which incorporates Ki67 with other clinical parameters. Conclusion This study reveals that in appropriately selected patients, NET can provide equivalent clinical benefit to neoadjuvant chemotherapy in the same cohort, if suitable treatments and durations are chosen. Our findings highlight the need for better defined biomarkers both for guiding patient selection and for measuring outcomes. Development of standard guidelines for the prescribing of NET has the potential to improve both clinical outcomes and quality of life in this patient cohort.
Collapse
Affiliation(s)
- Lauren I Madigan
- Sydney Medical School - Westmead, The University of Sydney, Sydney, Australia.,Present Address: South Eastern Sydney Local Health District, and St. George and Sutherland Clinical Schools, UNSW Medicine, Sydney, Australia
| | - Phuong Dinh
- Sydney Medical School - Westmead, The University of Sydney, Sydney, Australia.,Westmead Breast Cancer Institute, Westmead Hospital, Westmead, Australia
| | - J Dinny Graham
- Sydney Medical School - Westmead, The University of Sydney, Sydney, Australia. .,Westmead Breast Cancer Institute, Westmead Hospital, Westmead, Australia. .,The Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia.
| |
Collapse
|