1
|
Lamba M, Singh PR, Bandyopadhyay A, Goswami A. Synthetic 18F labeled biomolecules that are selective and promising for PET imaging: major advances and applications. RSC Med Chem 2024; 15:1899-1920. [PMID: 38911154 PMCID: PMC11187557 DOI: 10.1039/d4md00033a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/14/2024] [Indexed: 06/25/2024] Open
Abstract
The concept of positron emission tomography (PET) based imaging was developed more than 40 years ago. It has been a widely adopted technique for detecting and staging numerous diseases in clinical settings, particularly cancer, neuro- and cardio-diseases. Here, we reviewed the evolution of PET and its advantages over other imaging modalities in clinical settings. Primarily, this review discusses recent advances in the synthesis of 18F radiolabeled biomolecules in light of the widely accepted performance for effective PET. The discussion particularly emphasizes the 18F-labeling chemistry of carbohydrates, lipids, amino acids, oligonucleotides, peptides, and protein molecules, which have shown promise for PET imaging in recent decades. In addition, we have deliberated on how 18F-labeled biomolecules enable the detection of metabolic changes at the cellular level and the selective imaging of gross anatomical localization via PET imaging. In the end, the review discusses the future perspective of PET imaging to control disease in clinical settings. We firmly believe that collaborative multidisciplinary research will further widen the comprehensive applications of PET approaches in the clinical management of cancer and other pathological outcomes.
Collapse
Affiliation(s)
- Manisha Lamba
- Department of Chemistry, Indian Institute of Technology Birla Farms Ropar Punjab-140001 India
| | - Prasoon Raj Singh
- Department of Chemistry, Indian Institute of Technology Birla Farms Ropar Punjab-140001 India
| | - Anupam Bandyopadhyay
- Department of Chemistry, Indian Institute of Technology Birla Farms Ropar Punjab-140001 India
| | - Avijit Goswami
- Department of Chemistry, Indian Institute of Technology Birla Farms Ropar Punjab-140001 India
| |
Collapse
|
2
|
Failla M, Floresta G, Abbate V. Peptide-based positron emission tomography probes: current strategies for synthesis and radiolabelling. RSC Med Chem 2023; 14:592-623. [PMID: 37122545 PMCID: PMC10131587 DOI: 10.1039/d2md00397j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
In medical imaging, techniques such as magnetic resonance imaging, contrast-enhanced computerized tomography, and positron emission tomography (PET) are extensively available and routinely used for disease diagnosis and treatment. Peptide-based targeting PET probes are usually small peptides with high affinity and specificity to specific cellular and tissue targets opportunely engineered for acting as PET probes. For instance, either the radioisotope (e.g., 18F, 11C) can be covalently linked to the peptide-probe or another ligand that strongly complexes the radioisotope (e.g., 64Cu, 68Ga) through multiple coordinative bonds can be chemically conjugated to the peptide delivery moiety. The main advantages of these probes are that they are cheaper than classical antibody-based PET tracers and can be efficiently chemically modified to be radiolabelled with virtually any radionuclide making them very attractive for clinical use. The goal of this review is to report and summarize recent technologies in peptide PET-based molecular probes synthesis and radiolabelling with the most used radioisotopes in 2022.
Collapse
Affiliation(s)
- Mariacristina Failla
- Department of Drug Science and Technology, University of Turin Via P. Giuria 9 10125 Turin Italy
| | - Giuseppe Floresta
- King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building London SE1 9NH UK
- Department of Drug and Health Sciences, University of Catania Catania Italy
| | - Vincenzo Abbate
- King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building London SE1 9NH UK
| |
Collapse
|
3
|
Zhong X, Yan J, Ding X, Su C, Xu Y, Yang M. Recent Advances in Bioorthogonal Click Chemistry for Enhanced PET and SPECT Radiochemistry. Bioconjug Chem 2023; 34:457-476. [PMID: 36811499 DOI: 10.1021/acs.bioconjchem.2c00583] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Due to their high reaction rate and reliable selectivity, bioorthogonal click reactions have been extensively investigated in numerous research fields, such as nanotechnology, drug delivery, molecular imaging, and targeted therapy. Previous reviews on bioorthogonal click chemistry for radiochemistry mainly focus on 18F-labeling protocols employed to produce radiotracers and radiopharmaceuticals. In fact, besides fluorine-18, other radionuclides such as gallium-68, iodine-125, and technetium-99m are also used in the field of bioorthogonal click chemistry. Herein, to provide a more comprehensive perspective, we provide a summary of recent advances in radiotracers prepared using bioorthogonal click reactions, including small molecules, peptides, proteins, antibodies, and nucleic acids as well as nanoparticles based on these radionuclides. The combination of pretargeting with imaging modalities or nanoparticles, as well as the clinical translations study, are also discussed to illustrate the effects and potential of bioorthogonal click chemistry for radiopharmaceuticals.
Collapse
Affiliation(s)
- Xinlin Zhong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Xiang Ding
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Chen Su
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214002, P. R. China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Min Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
4
|
Abstract
18F-Labeling methods for the preparation of 18F-labeled molecular probes can be classified into electrophilic fluorination, nucleophilic fluorination, metal-F coordination, and 18F/19F isotope exchange. Isotope exchange-based 18F-labeling methods demonstrate mild conditions featuring water resistance and facile high-performance liquid chromatography-free purification in direct 18F-labeling of substrates. This paper systematically reviews isotope exchange-based 18F-labeling methods sorted by the adjacent atom bonding with F, i.e., carbon and noncarbon atoms (Si, B, P, S, Ga, Fe, etc.). The respective isotope exchange mechanism, radiolabeling condition, radiochemical yield, molar activity, and stability of the 18F-product are mainly discussed for each isotope exchange-based 18F-labeling method as well as the cutting-edge application of the corresponding 18F-labeled molecular probes.
Collapse
Affiliation(s)
- Tao Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Shengji Lv
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhaobiao Mou
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhenru Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Taotao Dong
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Zijing Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
5
|
Otaru S, Paulus A, Imlimthan S, Kuurne I, Virtanen H, Liljenbäck H, Tolvanen T, Auchynnikava T, Roivainen A, Helariutta K, Sarparanta M, Airaksinen AJ. Development of [ 18F]AmBF 3 Tetrazine for Radiolabeling of Peptides: Preclinical Evaluation and PET Imaging of [ 18F]AmBF 3-PEG 7-Tyr 3-Octreotide in an AR42J Pancreatic Carcinoma Model. Bioconjug Chem 2022; 33:1393-1404. [PMID: 35709482 PMCID: PMC9305971 DOI: 10.1021/acs.bioconjchem.2c00231] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Radiolabeled peptides have emerged as highly specific agents for targeting receptors expressed in tumors for therapeutic and diagnostic purposes. Peptides developed for positron emission tomography (PET) are typically radiolabeled using prosthetic groups or bifunctional chelators for fast "kit-like" incorporation of the radionuclide into the structure. A novel [18F]alkylammoniomethyltrifluoroborate ([18F]AmBF3) tetrazine (Tz), [18F]AmBF3-Tz, was developed for the [18F]fluorination of trans-cyclooctene (TCO)-modified biomolecules using Tyr3-octreotides (TOCs) as model peptides. [18F]AmBF3-Tz (Am = 15.4 ± 9.2 GBq/μmol, n = 14) was evaluated in healthy mice by ex vivo biodistribution and PET/computed tomography (CT), where the radiolabel in the prosthetic group was found stable in vivo, indicated by the low bone uptake in tibia (0.4 ± 0.1% ID/g, t = 270 min). TCO-TOCs tailored with polyethylene glycol (PEG) linkers were radiolabeled with [18F]AmBF3-Tz, forming two new tracers, [18F]AmBF3-PEG4-TOC (Am = 2.8 ± 1.8 GBq/μmol, n = 3) and [18F]AmBF3-PEG7-TOC (Am of 6.0 ± 3.4 GBq/μmol, n = 13), which were evaluated by cell uptake studies and ex vivo biodistribution in subcutaneous AR42J rat pancreatic carcinoma tumor-bearing nude mice. The tracer demonstrating superior behavior ex vivo, the [18F]AmBF3-PEG7-TOC, was further evaluated with PET/CT, where the tracer provided clear tumor visualization (SUVbaseline = 1.01 ± 0.07, vs SUVblocked = 0.76 ± 0.04) at 25 min post injection. The novel AmBF3-Tz demonstrated that it offers potential as a prosthetic group for rapid radiolabeling of biomolecules in mild conditions using bioorthogonal chemistry.
Collapse
Affiliation(s)
- Sofia Otaru
- Radiochemistry,
Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Andreas Paulus
- Radiochemistry,
Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Surachet Imlimthan
- Radiochemistry,
Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Iida Kuurne
- Radiochemistry,
Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Helena Virtanen
- Turku
PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
| | - Heidi Liljenbäck
- Turku
PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
- Turku
Center for Disease Modeling, Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland
| | - Tuula Tolvanen
- Turku
PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
- Department
of Medical Physics, Turku University Hospital, FI-20521 Turku, Finland
| | - Tatsiana Auchynnikava
- Turku
PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
- Department
of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Anne Roivainen
- Turku
PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
- Turku
Center for Disease Modeling, Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland
| | - Kerttuli Helariutta
- Radiochemistry,
Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Mirkka Sarparanta
- Radiochemistry,
Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Anu J. Airaksinen
- Radiochemistry,
Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
- Turku
PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
- Department
of Chemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
6
|
A novel AIE fluorescent probe for β-galactosidase detection and imaging in living cells. Anal Chim Acta 2022; 1198:339554. [DOI: 10.1016/j.aca.2022.339554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/22/2022]
|
7
|
Matias M, Pinho JO, Penetra MJ, Campos G, Reis CP, Gaspar MM. The Challenging Melanoma Landscape: From Early Drug Discovery to Clinical Approval. Cells 2021; 10:3088. [PMID: 34831311 PMCID: PMC8621991 DOI: 10.3390/cells10113088] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is recognized as the most dangerous type of skin cancer, with high mortality and resistance to currently used treatments. To overcome the limitations of the available therapeutic options, the discovery and development of new, more effective, and safer therapies is required. In this review, the different research steps involved in the process of antimelanoma drug evaluation and selection are explored, including information regarding in silico, in vitro, and in vivo experiments, as well as clinical trial phases. Details are given about the most used cell lines and assays to perform both two- and three-dimensional in vitro screening of drug candidates towards melanoma. For in vivo studies, murine models are, undoubtedly, the most widely used for assessing the therapeutic potential of new compounds and to study the underlying mechanisms of action. Here, the main melanoma murine models are described as well as other animal species. A section is dedicated to ongoing clinical studies, demonstrating the wide interest and successful efforts devoted to melanoma therapy, in particular at advanced stages of the disease, and a final section includes some considerations regarding approval for marketing by regulatory agencies. Overall, considerable commitment is being directed to the continuous development of optimized experimental models, important for the understanding of melanoma biology and for the evaluation and validation of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Jacinta O. Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria João Penetra
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Gonçalo Campos
- CICS–UBI–Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal;
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| |
Collapse
|
8
|
Yang H, Gao F, McNeil B, Zhang C, Yuan Z, Zeisler S, Kumlin J, Zeisler J, Bénard F, Ramogida C, Schaffer P. Synthesis of DOTA-pyridine chelates for 64Cu coordination and radiolabeling of αMSH peptide. EJNMMI Radiopharm Chem 2021; 6:3. [PMID: 33438075 PMCID: PMC7803858 DOI: 10.1186/s41181-020-00119-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/26/2020] [Indexed: 12/02/2022] Open
Abstract
Background 64Cu is one of the few radioisotopes that can be used for both imaging and therapy, enabling theranostics with identical chemical composition. Development of stable chelators is essential to harness the potential of this isotope, challenged by the presence of endogenous copper chelators. Pyridyl type chelators show good coordination ability with copper, prompting the present study of a series of chelates DOTA-xPy (x = 1–4) that sequentially substitute carboxyl moieties with pyridyl moieties on a DOTA backbone. Results We found that the presence of pyridyl groups significantly increases 64Cu labeling conversion yield, with DOTA-2Py, −3Py and -4Py quantitatively complexing 64Cu at room temperature within 5 min (1 × 10− 4 M). [64Cu]Cu-DOTA-xPy (x = 2–4) exhibited good stability in human serum up to 24 h. When challenged with 1000 eq. of NOTA, no transmetallation was observed for all three 64Cu complexes. DOTA-xPy (x = 1–3) were conjugated to a cyclized α-melanocyte-stimulating hormone (αMSH) peptide by using one of the pendant carboxyl groups as a bifunctional handle. [64Cu]Cu-DOTA-xPy-αMSH retained good serum stability (> 96% in 24 h) and showed high binding affinity (Ki = 2.1–3.7 nM) towards the melanocortin 1 receptor. Conclusion DOTA-xPy (x = 1–3) are promising chelators for 64Cu. Further in vivo evaluation is necessary to assess the full potential of these chelators as a tool to enable further theranostic radiopharmaceutical development. Supplementary Information The online version contains supplementary material available at 10.1186/s41181-020-00119-4.
Collapse
Affiliation(s)
- Hua Yang
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada
| | - Feng Gao
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada
| | - Brooke McNeil
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada.,Department of Chemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC, V5A 1S6, Canada
| | - Chengcheng Zhang
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Ave, Vancouver, BC, V5Z 1L3, Canada
| | - Zheliang Yuan
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada
| | - Stefan Zeisler
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada
| | - Joel Kumlin
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada
| | - Jutta Zeisler
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Ave, Vancouver, BC, V5Z 1L3, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Ave, Vancouver, BC, V5Z 1L3, Canada.,Department of Radiology, University of British Columbia, 2775 Laurel St, Vancouver, BC, V5Z 1M9, Canada
| | - Caterina Ramogida
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada.,Department of Chemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC, V5A 1S6, Canada
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada. .,Department of Chemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC, V5A 1S6, Canada. .,Department of Radiology, University of British Columbia, 2775 Laurel St, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
9
|
Yang H, Zhang C, Yuan Z, Rodriguez-Rodriguez C, Robertson A, Radchenko V, Perron R, Gendron D, Causey P, Gao F, Bénard F, Schaffer P. Synthesis and Evaluation of a Macrocyclic Actinium-225 Chelator, Quality Control and In Vivo Evaluation of 225 Ac-crown-αMSH Peptide. Chemistry 2020; 26:11435-11440. [PMID: 32588455 DOI: 10.1002/chem.202002999] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 12/16/2022]
Abstract
Targeted alpha-therapy (TAT) has great potential for treating a broad range of late-stage cancers by delivering a focused and lethal radiation dose to tumors. Actinium-225 (225 Ac) is an emerging alpha emitter suitable for TAT; however, the availability of chelators for Ac remains limited to a small number of examples (DOTA and macropa). Herein, we report a new Ac macrocyclic chelator named 'crown', which binds quantitatively and rapidly (<10 min) to Ac at ambient temperature. We synthesized 225 Ac-crown-αMSH, a peptide targeting the melanocortin 1 receptor (MC1R), specifically expressed in primary and metastatic melanoma. Biodistribution of 225 Ac-crown-αMSH showed favorable tumor-to-background ratios at 2 h post injection in a preclinical model. In addition, we demonstrated dramatically different biodistrubution patterns of 225 Ac-crown-αMSH when subjected to different latency times before injection. A combined quality control methodology involving HPLC, gamma spectroscopy and radioTLC is recommended.
Collapse
Affiliation(s)
- Hua Yang
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada
| | | | - Zheliang Yuan
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada.,Key Laboratory of the Ministry of Education for, Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Cristina Rodriguez-Rodriguez
- Faculty of Pharmaceutical Sciences, Department of Physics and Astronomy and Centre for Comparative, Medicine, University of British Columbia, Vancouver, BC, V6T 1W5, Canada
| | | | - Valery Radchenko
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada.,Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Randy Perron
- Canadian Nuclear Laboratories, Chalk River, ON, K0J 1J0, Canada
| | - Denise Gendron
- Canadian Nuclear Laboratories, Chalk River, ON, K0J 1J0, Canada
| | - Patrick Causey
- Canadian Nuclear Laboratories, Chalk River, ON, K0J 1J0, Canada
| | - Feng Gao
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada
| | - François Bénard
- BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.,Department of Radiology, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada.,Department of Radiology, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.,Department of Chemistry, Simon Fraser University, Burnaby, V5A 1S6, Canada
| |
Collapse
|
10
|
Lau J, Rousseau E, Kwon D, Lin KS, Bénard F, Chen X. Insight into the Development of PET Radiopharmaceuticals for Oncology. Cancers (Basel) 2020; 12:E1312. [PMID: 32455729 PMCID: PMC7281377 DOI: 10.3390/cancers12051312] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
While the development of positron emission tomography (PET) radiopharmaceuticals closely follows that of traditional drug development, there are several key considerations in the chemical and radiochemical synthesis, preclinical assessment, and clinical translation of PET radiotracers. As such, we outline the fundamentals of radiotracer design, with respect to the selection of an appropriate pharmacophore. These concepts will be reinforced by exemplary cases of PET radiotracer development, both with respect to their preclinical and clinical evaluation. We also provide a guideline for the proper selection of a radionuclide and the appropriate labeling strategy to access a tracer with optimal imaging qualities. Finally, we summarize the methodology of their evaluation in in vitro and animal models and the road to clinical translation. This review is intended to be a primer for newcomers to the field and give insight into the workflow of developing radiopharmaceuticals.
Collapse
Affiliation(s)
- Joseph Lau
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Etienne Rousseau
- Department of Nuclear Medicine and Radiobiology, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Daniel Kwon
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (K.-S.L.); (F.B.)
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (K.-S.L.); (F.B.)
| | - François Bénard
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (K.-S.L.); (F.B.)
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
11
|
Zhang C, Zhang Z, Zeisler J, Colpo N, Lin KS, Bénard F. Selective Cyclized α-Melanocyte-Stimulating Hormone Derivative with Multiple N-Methylations for Melanoma Imaging with Positron Emission Tomography. ACS OMEGA 2020; 5:10767-10773. [PMID: 32455196 PMCID: PMC7240809 DOI: 10.1021/acsomega.0c00310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
In this study, we designed and evaluated a novel α-melanocyte-stimulating hormone derivative with four N-methylations for melanocortin 1 receptor-targeted melanoma imaging with positron emission tomography (PET). The resulting peptide, DOTA-Pip-Nle4-Cyclo[Asp5-N-Me-His6-d-Phe7-N-Me-Arg8-N-Me-Trp9-N-Me-Lys10]αMSH4-10-NH2 (CCZ01099), showed high receptor selectivity, greatly improved stability, and rapid internalization. [68Ga]Ga-CCZ01099 showed clear tumor visualization and excellent tumor-to-normal tissue contrast with PET imaging in a preclinical melanoma model. Therefore, CCZ01099 is a promising compound for imaging and potentially radioligand therapy for melanoma.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Department
of Molecular Oncology, BC Cancer, 675 W 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Zhengxing Zhang
- Department
of Molecular Oncology, BC Cancer, 675 W 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Jutta Zeisler
- Department
of Molecular Oncology, BC Cancer, 675 W 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Nadine Colpo
- Department
of Molecular Oncology, BC Cancer, 675 W 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Kuo-Shyan Lin
- Department
of Molecular Oncology, BC Cancer, 675 W 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
- Department
of Radiology, University of British Columbia, 2775 Laurel Street, Vancouver, British Columbia V5Z 1M9, Canada
| | - François Bénard
- Department
of Molecular Oncology, BC Cancer, 675 W 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
- Department
of Radiology, University of British Columbia, 2775 Laurel Street, Vancouver, British Columbia V5Z 1M9, Canada
| |
Collapse
|
12
|
Nonnekens J, Schottelius M. "Luke! Luke! Don't! It's a trap!"-spotlight on bias in animal experiments in nuclear oncology. Eur J Nucl Med Mol Imaging 2020; 47:1024-1026. [PMID: 32040610 PMCID: PMC7101285 DOI: 10.1007/s00259-020-04717-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Julie Nonnekens
- Department of Molecular Genetics, Department of Radiology and Nuclear Medicine, Oncode Institute, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands.
| | - Margret Schottelius
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine, Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
13
|
Abstract
Radioisotopes can be produced artificially from stable nuclei through the interaction with particles or highly energetic photons. In combination with modern detection and counting techniques, radioisotopes and radiochemical methods uniquely contribute to the health sciences. This Collection showcases salient aspects of medical radioisotope science ranging from the production, recovery and purification of radioisotopes to the methods used to attach them to biomolecules. The Collection also presents studies that highlight the importance of radiochemistry in the assessment of environmental radioactivity.
Collapse
|