1
|
Conti F. Dietary Protocols to Promote and Improve Restful Sleep: A Narrative Review. Nutr Rev 2025:nuaf062. [PMID: 40418260 DOI: 10.1093/nutrit/nuaf062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025] Open
Abstract
Humans spend approximately one third of their life asleep but, as counterintuitive as it may sound, sleep is far from being a quiet state of inactivity. Sleep provides the opportunity to perform numerous biological and physiological functions that are essential to health and wellbeing, including memory consolidation, physical recovery, immunoregulation, and emotional processing. Yet, sleep deprivation, chronic sleep restriction, and various types of sleep disorders are all too common in modern society. Failure to meet the recommended 7-9 hours of restful sleep per night is known to increase the risk of several health conditions, reason why regular and adequate sleep should be seen as a priority instead of an unnecessary commodity easily traded as required by the commitments of our busy lives. While both the quantity and the quality of sleep can be largely improved with relatively straightforward practices dictated by good sleep hygiene, emerging research suggests that dietary and supplementation protocols focused on certain foods, nutrients, and biochemical compounds with sleep-promoting properties can act as subsidiary sleep aids in complementing these behavioral changes. The scope of this narrative review is to summarize the available evidence on the potential benefits of selected nutraceuticals in the context of circadian rhythm and sleep disturbances, namely melatonin, magnesium, omega-3 fatty acids, tart cherry juice, kiwifruit, apigenin, valerian root, L-theanine, glycine, ashwagandha, myoinositol, Rhodiola rosea, and phosphatidylserine. A comprehensive recapitulation of the relevant literature is provided, alongside corresponding evidence-based nutritional protocols to promote and improve restful sleep.
Collapse
Affiliation(s)
- Federica Conti
- Madsen Building, School of Physics, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Ansarin A, Ansarin K, Shakerkhatibi M, Kohneloo AJ, Sabeti Z. Impact of environmental and lifestyle factors on adolescent sleep health in urban and semiurban areas. Sleep Health 2025:S2352-7218(25)00065-8. [PMID: 40307149 DOI: 10.1016/j.sleh.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/02/2025] [Accepted: 03/07/2025] [Indexed: 05/02/2025]
Abstract
OBJECTIVES This study examines the impact of lifestyle factors on adolescent sleep health across urban and semiurban settings. METHODS A cross-sectional survey was conducted among 1459 adolescents aged 14-19years from Tabriz (urban) and Hadishahr (semiurban), two cities with contrasting environmental conditions. Sleep duration and sleep deprivation were assessed using self-reported data, alongside key sociodemographic, behavioral, and health-related factors. RESULTS The results showed that adolescents in urban area were significantly more likely to experience shorter sleep durations (OR=0.63, 95% CI [0.48, 0.83]) and sleep deprivation (OR=0.66, 95% CI [0.51, 0.85]) compared to those in semiurban environments. Age was positively associated with short sleep (OR=1.21, 95% CI [1.07, 1.38]), while smoking (OR=1.46, 95% CI [1.02, 2.08]) and chronic cough (OR=1.35, 95% CI [1.01, 1.80]) were also linked to reduced sleep duration. In contrast, semiurban residents slept an average of 20minutes longer than urban residents (β=0.34, 95% CI [0.17, 0.51]). Sleep deprivation was strongly associated with lower Parent's income (OR=0.78, 95% CI [0.61, 0.98]) and daytime fatigue (OR=1.58, 95% CI [1.26, 2.00]). CONCLUSIONS The study highlights the need for public health interventions that address environmental barriers to healthy sleep, particularly in urban settings, to mitigate the long-term health risks associated with sleep deprivation.
Collapse
Affiliation(s)
- Atefeh Ansarin
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Ansarin
- Rahat Breath and Sleep Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Shakerkhatibi
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aarefeh Jafarzadeh Kohneloo
- Department of Statistics and Epidemiology, Faculty of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Sabeti
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Woelders T, Didikoglu A, Bickerstaff L, Brown TM, Lucas RJ. Pupillometric and perceptual approaches provide independent estimates of melanopsin activity in humans. Sleep 2025; 48:zsae289. [PMID: 39672888 PMCID: PMC11808064 DOI: 10.1093/sleep/zsae289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/03/2024] [Indexed: 12/15/2024] Open
Abstract
STUDY OBJECTIVES Melanopsin-expressing retinal ganglion cells, which provide light information to time sleep and entrain circadian clocks, also influence perceived brightness raising the possibility that psychophysical paradigms could be used to explore the origins and implications of variability in melanopic sensitivity. We aimed to develop accessible psychophysical tests of melanopic vision and relate outcomes with a pupillometric measure of melanopsin function (post-illumination pupil response) and prior light exposure. METHODS Individually calibrated pairs of isoluminant stimuli differing in melanopic radiance from a four primary source were presented sequentially with superimposed random color offsets in a two alternative forced choice brightness preference paradigm to 41 naïve adult participants with personal light exposure data for the prior 7 days and post-illumination pupil response measures defined by comparing maintained pupil constriction for luminance matched "red" vs "blue" pulses. RESULTS Across participants we observed the expected tendency to report positive melanopsin contrast stimuli as "brighter" (one-tailed t-test p < 0.001), but with substantial inter-individual variability in both sensitivity (melanopsin contrast at criterion preference p = 0.75) and amplitude (preference at maximum melanopic contrast). There was little correlation between these psychophysical outcomes and post-illumination pupil response magnitude, or between either psychophysical or post-illumination pupil response measures and light history metrics (pairwise Pearson correlation coefficients -0.5> < 0.5). Random forest machine learning failed to satisfactorily predict outcome for either psychophysical or post-illumination pupil response measures based upon these inputs. CONCLUSIONS Our findings reveal that estimates of melanopic function provided by perceptual and pupillometric paradigms can be largely independent of one another and of recent history of light exposure.
Collapse
Affiliation(s)
- Tom Woelders
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology Medicine and Health, Centre for Biological Timing, University of Manchester, Manchester, UK
| | - Altug Didikoglu
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology Medicine and Health, Centre for Biological Timing, University of Manchester, Manchester, UK
- Department of Neuroscience, Izmir Institute of Technology, Gulbahce, Urla, Izmir, Turkey
| | - Lucien Bickerstaff
- Max Planck Institute for Biological Cybernetics, Translational Sensory & Circadian Neuroscience, Tübingen, Germany
- Department Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Timothy M Brown
- Division of Diabetes Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology Medicine and Health, Centre for Biological Timing, University of Manchester, Manchester, UK
| | - Robert J Lucas
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology Medicine and Health, Centre for Biological Timing, University of Manchester, Manchester, UK
| |
Collapse
|
4
|
Zauner J, Udovicic L, Spitschan M. Power analysis for personal light exposure measurements and interventions. PLoS One 2024; 19:e0308768. [PMID: 39661605 PMCID: PMC11633969 DOI: 10.1371/journal.pone.0308768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/30/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Light exposure regulates the human circadian system and more widely affects health, well-being, and performance. With the rise in field studies on light exposure's effects, the amount of data collected through wearable loggers and dosimeters has also grown. These data are more complex than stationary laboratory measurements. Determining sample sizes in field studies is challenging, as the literature shows a wide range of sample sizes (between 2 and 1,887 from a recent review of the field and approaching 105 participants in first studies using large-scale 'biobank' databases). Current decisions on sample size for light exposure data collection lack a specific basis rooted in power analysis. Therefore, there is a need for clear guidance on selecting sample sizes. METHODS Here, we introduce a novel procedure based on hierarchical bootstrapping for calculating statistical power and required sample size for wearable light and optical radiation logging data and derived summary metrics, taking into account the hierarchical data structure (mixed-effects model) through stepwise resampling. Alongside this method, we publish a dataset that serves as one possible basis to perform these calculations: one week of continuous data in winter and summer, respectively, for 13 early-day shift-work participants (collected in Dortmund, Germany; lat. 51.514° N, lon. 7.468° E). RESULTS Applying our method on the dataset for twelve different summary metrics (luminous exposure, geometric mean, and standard deviation, timing/time above/below threshold, mean/midpoint of darkest/brightest hours, intradaily variability) with a target comparison across winter and summer, reveals required sample sizes ranging from as few as 3 to more than 50. About half of the metrics-those that focus on the bright time of day-showed sufficient power already with the smallest sample. In contrast, metrics centered around the dark time of the day and daily patterns required higher sample sizes: mean timing of light below mel EDI of 10 lux (5), intradaily variability (17), mean of darkest 5 hours (24), and mean timing of light above mel EDI of 250 lux (45). The geometric standard deviation and the midpoint of the darkest 5 hours lacked sufficient power within the tested sample size. CONCLUSIONS Our novel method provides an effective technique for estimating sample size in light exposure studies. It is specific to the used light exposure or dosimetry metric and the effect size inherent in the light exposure data at the basis of the bootstrap. Notably, the method goes beyond typical implementations of bootstrapping to appropriately address the structure of the data. It can be applied to other datasets, enabling comparisons across scenarios beyond seasonal differences and activity patterns. With an ever-growing pool of data from the emerging literature, the utility of this method will increase and provide a solid statistical basis for the selection of sample sizes.
Collapse
Affiliation(s)
- Johannes Zauner
- Department Health and Sports Sciences, Technical University of Munich, TUM School of Medicine and Health, Chronobiology & Health, Munich, Germany
- Max Planck Institute for Biological Cybernetics, Max Planck Research Group Translational Sensory & Circadian Neuroscience, Tübingen, Germany
| | - Ljiljana Udovicic
- Federal Institute for Occupational Safety and Health (BAuA), Dortmund, Germany
| | - Manuel Spitschan
- Department Health and Sports Sciences, Technical University of Munich, TUM School of Medicine and Health, Chronobiology & Health, Munich, Germany
- Max Planck Institute for Biological Cybernetics, Max Planck Research Group Translational Sensory & Circadian Neuroscience, Tübingen, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany
- TUMCREATE Ltd., Singapore, Singapore
| |
Collapse
|
5
|
Martinsons C, Behar-Cohen F, Bergen T, Blattner P, Herf M, Gronfier C, Houser K, Jost S, Tengelin MN, Obein G, Schlangen L, Simonot L, Spitschan M, Torriglia A, Zeitzer J. Reconsidering the spectral distribution of light: Do people perceive watts or photons? LIGHTING RESEARCH & TECHNOLOGY (LONDON, ENGLAND : 2001) 2024; 56:886-899. [PMID: 39404668 PMCID: PMC7616565 DOI: 10.1177/14771535241246060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The spectral distribution is a fundamental property of non-monochromatic optical radiation. It is commonly used in research and practical applications when studying how light interacts with matter and living organisms, including humans. In the field of lighting, mis-conceptions about the spectral distribution of light are responsible for unfounded claims, which pervade the scientific and technical communities. Starting from the definition of the spectral distribution, this paper describes the ambiguities and errors associated with a purely graphical analysis of the spectral distribution. It also emphasizes the importance of considering the particle nature of light in research involving both visual and non-visual effects, which implies using the spectral distribution expressed in the photon system of units, a system that has been seldom used in lighting research for historical reasons. The authors encourage lighting engineers and researchers to determine which system is best suited to their work and then proceed with the correct use of spectral distributions and of spectral weighting functions for applications involving optical radiation.
Collapse
Affiliation(s)
- C Martinsons
- Centre Scientifique et Technique du Bâtiment, Saint Martin d'Hères, France
| | - F Behar-Cohen
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
- Assistance Publique - Hôpitaux de Paris, Hôpital Cochin, Ophtalmopôle, Paris, France
- Hôpital Foch, Suresnes, France
| | - T Bergen
- Australian Photometry and Radiometry Laboratory, Melbourne, VIC, Australia
| | - P Blattner
- Federal Institute of Metrology METAS, Bern-Wabern, Switzerland
| | - M Herf
- F.lux Software LLC, Los Angeles, CA, USA
| | - C Gronfier
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Université de Lyon, Lyon, France
| | - K Houser
- Oregon State University, Corvallis, OR, USA
| | - S Jost
- ENTPE, Ecole Centrale de Lyon, LTDS, CNRS UMR5513, Vaulx-en-Velin, France
| | | | - G Obein
- Laboratoire National de Métrologie et d'Essais, Paris, France
| | - L Schlangen
- Eindhoven University of Technology, Eindhoven, The Netherlands
| | - L Simonot
- Institut Pprime, CNRS UPR3346, Université de Poitiers, Chasseneuil Futuroscope, France
| | - M Spitschan
- Technical University of Munich, Munich, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - A Torriglia
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - J Zeitzer
- Center for Sleep and Circadian Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
6
|
Li X, Han J, Lin H. The effects of psychological flexibility and night shifts on mental health and well-being in nurses. PLoS One 2024; 19:e0313634. [PMID: 39541325 PMCID: PMC11563484 DOI: 10.1371/journal.pone.0313634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Examining mental health among nurses in the later stages of the COVID-19 pandemic could offer valuable information for addressing these symptoms in the long term. Therefore, the current study aimed to assess the mental health and well-being of Chinese nurses, as well as investigate the impact of psychological flexibility and night shifts on this relationship. METHOD In cross-sectional, hospital-based, multicenter study, 422 Chinese nurses were selected by multistage stratified cluster random sampling. The mental health status, psychological flexibility, and wellbeing were assessed via 12-item General Health Questionnaire (GHQ-12), Chinese version of Personalized Psychological Flexibility Index, and Chinese version of the 5-item WHO Well-Being Index, respectively. To examine the proposed theoretical model, we conducted structural equation modeling using SPSS Amos 26 version. The age, gender, night shift, psychological flexibility, mental health, and well-being data were entered into the model. Pearson correlation and chi-square were used to explore the correlation between variables. RESULTS The high night shifts, being young and low psychological flexibility significantly had a direct effect on worse mental health (night shifts: ES, 95% CI: 0.619, 0.328-0.725; age: ES, 95% CI: 0.542, 0.226-0.993; psychological flexibility: ES, 95% CI: 0.675, 0.369-1.466). The low psychological flexibility and worse mental health were able to directly effect on worse wellbeing (psychological flexibility: ES, 95% CI: 0.419, 0.757-1.519; mental health: ES, 95% CI: 0.719, 1.109-2.607). In addition, psychological flexibility through the mediation of mental health also had an indirect effect on wellbeing (ES, 95% CI: 0.269, 0.957-2.165). CONCLUSIONS Being young, having more night shifts and having less psychological flexibility can be related to the deterioration of mental health and well-being in nurses. Therefore, it is recommended that nurses use the shift routine program with the least focus on the night shifts. Also, interventions to teach younger nurses how to face work stress and interventions to improve the psychological flexibility of all nurses are needed.
Collapse
Affiliation(s)
- Xinhong Li
- Department of Outpatient Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Juan Han
- Hyperbaric Oxygen, Jinan Central Hospital, Jinan, Shandong Province, China
| | - Hongmei Lin
- Department of Gynecology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| |
Collapse
|
7
|
Bjerrum LB, Nordhus IH, Sørensen L, Wulff K, Bjorvatn B, Flo-Groeneboom E, Visted E. Acute effects of light during daytime on central aspects of attention and affect: A systematic review. Biol Psychol 2024; 192:108845. [PMID: 38981576 DOI: 10.1016/j.biopsycho.2024.108845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Light regulates both image- and various non-image forming responses in humans, including acute effects on attention and affect. To advance the understanding of light's immediate effects, this systematic review describes the acute effects of monochromatic/narrow bandwidth and polychromatic white light during daytime on distinct aspects of attention (alertness, sustained attention, working memory, attentional control and flexibility), and measures of affect (self-report measures, performance-based tests, psychophysiological measures) in healthy, adult human subjects. Original, peer-reviewed (quasi-) experimental studies published between 2000 and May 2024 were included according to predefined inclusion and exclusion criteria. Study quality was assessed, and results were synthesized across aspects of attention and affect and grouped according to light interventions; monochromatic/narrowband-width or polychromatic white light (regular white, bright white, and white with high correlated color temperature (CCT)). Results from included studies (n = 62) showed that alertness and working memory were most affected by light. Electroencephalographic markers of alertness improved the most with exposure to narrow bandwidth long-wavelength light, regular white, and white light with high CCT. Self-reported alertness and measures of working memory improved the most with bright white light. Results from studies testing the acute effects on sustained attention and attentional control and flexibility were inconclusive. Performance-based and psychophysiological measures of affect were only influenced by narrow bandwidth long-wavelength light. Polychromatic white light exerted mixed effects on self-reported affect. Studies were strongly heterogeneous in terms of light stimuli characteristics and reporting of light stimuli and control of variables influencing light's acute effects.
Collapse
Affiliation(s)
| | | | - Lin Sørensen
- Department of Biological and Medical Psychology, University of Bergen, Norway
| | - Katharina Wulff
- Department of Molecular Biology, Umeå University, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Sweden
| | - Bjørn Bjorvatn
- Department of Global Public Health and Primary Care, University of Bergen, Norway; Norwegian Competence Center for Sleep Disorders, Haukeland University Hospital, Norway
| | | | - Endre Visted
- Department of Clinical Psychology, University of Bergen, Norway
| |
Collapse
|
8
|
Zhu J, Wang S, Wu Y, Gu L, Ma Y, Wang Y, Wang L. Smartphone addiction habit is positively associated with coronary artery disease and its severity in Chinese adults: a case-control study. Front Cardiovasc Med 2024; 11:1374797. [PMID: 39253393 PMCID: PMC11381252 DOI: 10.3389/fcvm.2024.1374797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
Background Coronary artery disease (CAD) has a high incidence and poor prognosis worldwide. It has been confirmed that smartphone addiction (SA) habit can increase the incidence of hypertension and obesity in adolescents. However, the association of SA with CAD and its severity in Chinese adults remains largely unknown. Methods A total of 700 Chinese adults (aged 18-70 years) including 350 CAD patients and 350 control subjects were enrolled. The Smartphone Addiction Scale Short Version (SAS-SV) was used to measure SA habit, and the Pittsburgh sleep quality index (PSQI) was used to assess sleep quality. Multiple logistic regression was employed to analyze the relationship between SA habit and CAD. Results After adjusting for age, smoking, hypertension, type 2 diabetes mellitus, and other risk factors, there was a significant association between SA habit and CAD in adults (p < 0.001). Subgroup analysis showed that there were statistical differences in the correlation between SA habit and CAD in the hypertension, ≤55 years age old, and female subgroups. Moreover, we performed a subgroup analysis based on the number of coronary artery lesions. The result showed that the rate of SA habit in the three-vessel disease group was the highest (p < 0.001). We applied Gensini score to evaluate the severity of coronary artery lesions (median Gensini score, 34) and divided all CAD patients into high Gensini score group (>34) and low Gensini score group (≤34), respectively. Compared with low Gensini score group, patients in high Gensini score group were more likely to have SA habit (p = 0.049). Conclusions There is a positive association of SA habit with CAD and its severity in Chinese adults.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Cardiology, Geriatric Hospital of Nanjing Medical University (Jiangsu Province Geriatric Hospital), Nanjing, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sibo Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yujie Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lingfeng Gu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Ma
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yaxin Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liansheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Xiao J, Chen D, Yu S, Wang H, Sun Y, Wang H, Gou Z, Wang J. Time-Dependent Effects of Altered Prebedtime Light Exposure in Enclosed Spaces on Sleep Performance Associated with Human States. Nat Sci Sleep 2024; 16:1179-1200. [PMID: 39131165 PMCID: PMC11316495 DOI: 10.2147/nss.s472988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024] Open
Abstract
Purpose Exposure to artificial light influences human performance, which is essential for maintaining healthy work and sleep. However, existing research has not explored the intrinsic links between sleep performance and human states over time under prebedtime light exposure interventions (LEIs). Methods To investigate the time-dependent effects of altered prebedtime light exposure, four LEI groupings (#L1 - #L4) and a Time factor (D8, D9, and D10) were chosen for sleep experiments in enclosed spaces. Forty-eight young adults recruited were available for data analysis. Subjective alertness (SA), negative affect (NA), subjective sleep, and objective sleep were measured via the Karolinska Sleepiness Scale, Positive and Negative Affect Schedule, Next-day Self-assessment Sleep Quality, and joint assessment of wrist actigraphy and sleep diaries, respectively. Statistical analysis was used for the effects of light exposure on the human states (corresponding to the SA and NA) and sleep performance, while the process model helped construct the associations between the two. Results The statistical effects revealed that the Time had a significant main effect on subjective sleep and changes in prebedtime alertness; the LEI had a significant main effect only on sleep onset latency (SOL). After undergoing altered prebedtime light exposure, the mean SA increased at prebedtime of D9 (p = 0.022) and D10 (p = 0.044); No significant effect on the NA was observed; Mean subjective sleep had a significant increase from D8 to D10. Moreover, five actigraphy-estimated sleep parameters were interrelated. In light of this, a chained pathway relationship was identified. The SOL played a mediating predictor between prebedtime state and objective sleep, which was linked to the awakening state through subjective sleep. Conclusion Our study suggests that time-dependent effects of altered prebedtime light exposure on sleep performance are associated with human states at prebedtime and awakening, with implications for its prediction of sleep health.
Collapse
Affiliation(s)
- Jianghao Xiao
- Key Laboratory of Industrial Design and Ergonomics, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, 710072, People’s Republic of China
| | - Dengkai Chen
- Key Laboratory of Industrial Design and Ergonomics, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, 710072, People’s Republic of China
| | - Suihuai Yu
- Key Laboratory of Industrial Design and Ergonomics, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, 710072, People’s Republic of China
| | - Hui Wang
- Key Laboratory of Industrial Design and Ergonomics, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, 710072, People’s Republic of China
| | - Yiwei Sun
- Key Laboratory of Industrial Design and Ergonomics, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, 710072, People’s Republic of China
| | - Hanyu Wang
- Key Laboratory of Industrial Design and Ergonomics, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, 710072, People’s Republic of China
| | - Zhiming Gou
- Key Laboratory of Industrial Design and Ergonomics, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, 710072, People’s Republic of China
| | - Jingping Wang
- Key Laboratory of Industrial Design and Ergonomics, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, 710072, People’s Republic of China
| |
Collapse
|
10
|
Sletten TL. Melanopic metrics: Advancing the characterization of everyday light patterns. Proc Natl Acad Sci U S A 2023; 120:e2316004120. [PMID: 37991937 DOI: 10.1073/pnas.2316004120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023] Open
Affiliation(s)
- Tracey L Sletten
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
11
|
Kalkanis A, Demolder S, Papadopoulos D, Testelmans D, Buyse B. Recovery from shift work. Front Neurol 2023; 14:1270043. [PMID: 38020633 PMCID: PMC10651732 DOI: 10.3389/fneur.2023.1270043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
One fifth of today's workforce is engaged in shift work and exposed to various mental and physical health risks including shift work disorder. Efficiently recovering from shift work through physical and mental interventions allows us to mitigate negative effects on health, enables a better work-life balance and enhances our overall wellbeing. The aim of this review is to provide a state-of-the-art overview of the available literature. The role of sleep timing and naps, light therapy and psychotherapy, diet and exercise in recovery from shift work is presented here. We further review the impact of shift schedules and social support on post-shift unwinding.
Collapse
Affiliation(s)
- Alexandros Kalkanis
- Department of Respiratory Diseases, Louvain University Center for Sleep and Wake Disorders (LUCS), University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Saartje Demolder
- Department of Respiratory Diseases, Louvain University Center for Sleep and Wake Disorders (LUCS), University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Dimitrios Papadopoulos
- Department of Respiratory Diseases, Louvain University Center for Sleep and Wake Disorders (LUCS), University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Dries Testelmans
- Department of Respiratory Diseases, Louvain University Center for Sleep and Wake Disorders (LUCS), University Hospitals Leuven, KU Leuven, Leuven, Belgium
- Laboratory of Respiratory Disease and Thoracic Surgery (BREATH), KU Leuven-University, Leuven, Belgium
| | - Bertien Buyse
- Department of Respiratory Diseases, Louvain University Center for Sleep and Wake Disorders (LUCS), University Hospitals Leuven, KU Leuven, Leuven, Belgium
- Laboratory of Respiratory Disease and Thoracic Surgery (BREATH), KU Leuven-University, Leuven, Belgium
| |
Collapse
|
12
|
Schöllhorn I, Stefani O, Blume C, Cajochen C. Seasonal Variation in the Responsiveness of the Melanopsin System to Evening Light: Why We Should Report Season When Collecting Data in Human Sleep and Circadian Studies. Clocks Sleep 2023; 5:651-666. [PMID: 37987395 PMCID: PMC10660855 DOI: 10.3390/clockssleep5040044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/07/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023] Open
Abstract
It is well known that variations in light exposure during the day affect light sensitivity in the evening. More daylight reduces sensitivity, and less daylight increases it. On average days, we spend less time outdoors in winter and receive far less light than in summer. Therefore, it could be relevant when collecting research data on the non-image forming (NIF) effects of light on circadian rhythms and sleep. In fact, studies conducted only in winter may result in more pronounced NIF effects than in summer. Here, we systematically collected information on the extent to which studies on the NIF effects of evening light include information on season and/or light history. We found that more studies were conducted in winter than in summer and that reporting when a study was conducted or measuring individual light history is not currently a standard in sleep and circadian research. In addition, we sought to evaluate seasonal variations in a previously published dataset of 72 participants investigating circadian and sleep effects of evening light exposure in a laboratory protocol where daytime light history was not controlled. In this study, we selectively modulated melanopic irradiance at four different light levels (<90 lx). Here, we aimed to retrospectively evaluate seasonal variations in the responsiveness of the melanopsin system by combining all data sets in an exploratory manner. Our analyses suggest that light sensitivity is indeed reduced in summer compared to winter. Thus, to increase the reproducibility of NIF effects on sleep and circadian measures, we recommend an assessment of the light history and encourage standardization of reporting guidelines on the seasonal distribution of measurements.
Collapse
Affiliation(s)
- Isabel Schöllhorn
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (I.S.); (O.S.)
- Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, 4001 Basel, Switzerland
| | - Oliver Stefani
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (I.S.); (O.S.)
- Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, 4001 Basel, Switzerland
- Lucerne University of Applied Sciences and Arts, Engineering and Architecture, Technikumstrasse 21, 6048 Horw, Switzerland
| | - Christine Blume
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (I.S.); (O.S.)
- Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, 4001 Basel, Switzerland
- Department of Biomedicine, University of Basel, 4001 Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (I.S.); (O.S.)
- Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
13
|
Didikoglu A, Mohammadian N, Johnson S, van Tongeren M, Wright P, Casson AJ, Brown TM, Lucas RJ. Associations between light exposure and sleep timing and sleepiness while awake in a sample of UK adults in everyday life. Proc Natl Acad Sci U S A 2023; 120:e2301608120. [PMID: 37812713 PMCID: PMC10589638 DOI: 10.1073/pnas.2301608120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/11/2023] [Indexed: 10/11/2023] Open
Abstract
Experimental and interventional studies show that light can regulate sleep timing and sleepiness while awake by setting the phase of circadian rhythms and supporting alertness. The extent to which differences in light exposure explain variations in sleep and sleepiness within and between individuals in everyday life remains less clear. Here, we establish a method to address this deficit, incorporating an open-source wearable wrist-worn light logger (SpectraWear) and smartphone-based online data collection. We use it to simultaneously record longitudinal light exposure (in melanopic equivalent daylight illuminance), sleep timing, and subjective alertness over seven days in a convenience sample of 59 UK adults without externally imposed circadian challenge (e.g., shift work or jetlag). Participants reliably had strong daily rhythms in light exposure but frequently were exposed to less light during the daytime and more light in pre-bedtime and sleep episodes than recommended [T. M. Brown et al., PLoS Biol. 20, e3001571 (2022)]. Prior light exposure over several hours was associated with lower subjective sleepiness with, in particular, brighter light in the late sleep episode and after wake linked to reduced early morning sleepiness (sleep inertia). Higher pre-bedtime light exposure was associated with longer sleep onset latency. Early sleep timing was correlated with more reproducible and robust daily patterns of light exposure and higher daytime/lower night-time light exposure. Our study establishes a method for collecting longitudinal sleep and health/performance data in everyday life and provides evidence of associations between light exposure and important determinants of sleep health and performance.
Collapse
Affiliation(s)
- Altug Didikoglu
- Centre for Biological Timing, Division of Neuroscience, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, ManchesterM13 9PL, United Kingdom
- Department of Neuroscience, Izmir Institute of Technology, Gulbahce, Izmir35430, Turkey
| | - Navid Mohammadian
- Department of Electrical & Electronic Engineering, School of Engineering, Faculty of Science and Engineering, University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Sheena Johnson
- Thomas Ashton Institute, People, Management and Organisation Division, Alliance Manchester Business School, Faculty of Humanities, University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Martie van Tongeren
- Thomas Ashton Institute, Centre for Occupational and Environmental Health, Division of Population Health, Health Services Research & Primary Care, School of Health Sciences, Faculty of Biology Medicine and Health, University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Paul Wright
- Department of Electrical & Electronic Engineering, School of Engineering, Faculty of Science and Engineering, University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Alexander J. Casson
- Department of Electrical & Electronic Engineering, School of Engineering, Faculty of Science and Engineering, University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Timothy M. Brown
- Centre for Biological Timing, Division of Diabetes Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Robert J. Lucas
- Centre for Biological Timing, Division of Neuroscience, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, ManchesterM13 9PL, United Kingdom
| |
Collapse
|
14
|
Spitschan M, Joyce DS. Human-Centric Lighting Research and Policy in the Melanopsin Age. POLICY INSIGHTS FROM THE BEHAVIORAL AND BRAIN SCIENCES 2023; 10:237-246. [PMID: 38919981 PMCID: PMC7615961 DOI: 10.1177/23727322231196896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Beyond visual function, specialized light-sensitive retinal circuits involving the photopigment melanopsin drive critical aspects of human physiology and behavior, including sleep-wake rhythms, hormone production, mood, and cognition. Fundamental discoveries of visual neurobiology dating back to the 1990s have given rise to strong interest from the lighting industry in optimizing lighting to benefit health. Consequently, evidence-based recommendations, regulations, and policies need to translate current knowledge of neurobiology into practice. Here, reviewing recent advances in understanding of NIF circuits in humans leads to proposed strategies to optimize electric lighting. Highlighted knowledge gaps must be addressed urgently, as well as the challenge of developing personalized, adaptive NIF lighting interventions accounting for complex individual differences in physiology, behavior, and environment. Finally, lighting equity issues appear in the context of marginalized groups, who have traditionally been underserved in research on both fundamental visual processes and applied lighting. Biologically optimal light is a fundamental environmental right.
Collapse
Affiliation(s)
- Manuel Spitschan
- TUM School of Medicine & Health, Technical University of Munich, Munich, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany
- Max Planck Institute for Biological Cybernetics, Max Planck Research Group Translational Sensory & Circadian Neuroscience, Tübingen, Germany
| | - Daniel S. Joyce
- Centre for Health Research, University of Southern Queensland, Ipswich, Queensland, Australia
- School of Psychology and Wellbeing, University of Southern Queensland, Ipswich, Queensland, Australia
- Department of Psychology, University of Nevada, Reno, Reno, Nevada, USA
| |
Collapse
|
15
|
Dose B, Yalçin M, Dries SPM, Relógio A. TimeTeller for timing health: The potential of circadian medicine to improve performance, prevent disease and optimize treatment. Front Digit Health 2023; 5:1157654. [PMID: 37153516 PMCID: PMC10155816 DOI: 10.3389/fdgth.2023.1157654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Circadian medicine, the study of the effects of time on health and disease has seen an uprising in recent years as a means to enhance health and performance, and optimize treatment timing. Our endogenous time generating system -the circadian clock- regulates behavioural, physiological and cellular processes. Disruptions of the clock, via external factors like shift work or jet lag, or internal perturbations such as genetic alterations, are linked to an increased risk of various diseases like obesity, diabetes, cardiovascular diseases and cancer. By aligning an individual's circadian clock with optimal times for performing daily routines, physical and mental performance, and also the effectiveness of certain therapies can be improved. Despite the benefits of circadian medicine, the lack of non-invasive tools for characterizing the clock limits the potential of the field. TimeTeller is a non-invasive molecular/digital tool for the characterization of circadian rhythms and prediction of daily routines, including treatment timing, to unlock the potential of circadian medicine and implementing it in various settings. Given the multiple known and potentially yet unknown dependent health factors of individual circadian rhythms, the utility of this emerging biomarker is best exploited in data driven, personalized medicine use cases, using health information across lifestyle, care, and research settings.
Collapse
Affiliation(s)
| | - Müge Yalçin
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | | | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Correspondence: Angela Relógio
| |
Collapse
|
16
|
Danilenko KV. Objective Measures of Immediate “Energizing” Effect of Light: Studies Review and Data Analysis. Clocks Sleep 2022; 4:475-496. [PMID: 36278531 PMCID: PMC9589941 DOI: 10.3390/clockssleep4040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
While the energizing effect of light has been known since the early years of light therapy, its reliable detection using objective measures is still not well-established. This review aims to ascertain the immediate energizing effect of light and determine its best indicators. Sixty-four articles published before July 2022 were included in the review. The articles described 72 (sub-)studies performed in healthy individuals. Fourteen measures were analyzed. The analysis showed that light causes an energizing effect that can be best documented by measuring core (rectal) body temperature: the proportion of the studies revealing increasing, unchanging, and decreasing rectal temperature was 13/6/1. The second most suitable indicator was heart rate (10/22/1), which showed concordant changes with rectal temperature (a trend, seven mutual studies). There is no evidence from the reviewed articles that oxygen consumption, skin conductance, blood pressure, heart rate variability, non-rectal inner temperature (combined digestive, tympanic, and oral), skin temperature, or cortisol levels can provide light effect detection. Four other measures were found to be unsuitable as well but with less certainty due to the low number of studies (≤3): skin blood flow, noradrenaline, salivary alpha-amylase, and thyroid-stimulating hormone levels. On the other hand, light exposure had a noticeable effect on sympathetic nerve activity measured using microneurography; however, this measure can be accepted as a marker only tentatively as it was employed in a single study. The analysis took into account three factors—study limitation in design/analysis, use of light in day- or nighttime, and relative brightness of the light stimulus—that were found to significantly influence some of the analyzed variables. The review indicates that the energizing effect of light in humans can be reliably detected using rectal temperature and heart rate.
Collapse
|
17
|
Izci Balserak B, Hermann R, Hernandez TL, Buhimschi C, Park C. Evening blue-light exposure, maternal glucose, and infant birthweight. Ann N Y Acad Sci 2022; 1515:276-284. [PMID: 35764595 PMCID: PMC9489633 DOI: 10.1111/nyas.14852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Maternal-fetal consequences of exposure to blue-wavelength light are poorly understood. This study tested the hypothesis that evening blue-light exposure is associated with maternal fasting glucose and infant birthweight. Forty-one pregnant women (body mass index = 32.90 ± 6.35 kg/m2 ; 24-39 years old; 16 with gestational diabetes mellitus [GDM]) wore actigraphs for 7 days, underwent polysomnography, and completed study questionnaires during gestational week 30 ± 3.76. Infant birthweight (n = 41) and maternal fasting glucose (n = 30; range = 16-36 weeks) were recorded from the mothers' medical charts. Blue-light exposure was obtained from Actiwatch-Spectrum recordings. Adjusted and unadjusted linear regression analyses were performed to determine sleep characteristics associated with maternal fasting glucose and infant-birthweight. The mean fasting mid- to late-gestation glucose was 95.73 ± 24.68 mg/dl and infant birthweight was 3271 ± 436 g. In unadjusted analysis, maternal fasting glucose was associated with blue-light exposure (β = 3.82, p = 0.03). In the final model of multiple linear regression for fasting glucose, evening blue-light exposure (β = 4.00, p = 0.01) remained significant after controlling for gestational weight gain, parity, sleep duration, and GDM. Similarly, blue-light exposure was associated with infant birthweight (69.79, p = 0.006) in the unadjusted model, and remained significant (β = 70.38, p = 0.01) after adjusting for weight gain, wakefulness after sleep onset, gestational age at delivery, and GDM. Higher blue-light exposure in pregnancy is associated with higher fasting glucose and infant birthweight. Reduced use of electronic devices before bedtime is a modifiable behavior.
Collapse
Affiliation(s)
- Bilgay Izci Balserak
- Department of Biobehavioral Nursing SciencesCollege of NursingUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Renata Hermann
- Department of Biobehavioral Nursing SciencesCollege of NursingUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Teri L. Hernandez
- College of NursingUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA,Division of Endocrinology, Metabolism & Diabetes, Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Catalin Buhimschi
- Department of Obstetrics and Gynecology, College of Medicine, Maternal Fetal MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Chung Park
- Department of Population Health Nursing Science, College of NursingUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
18
|
Mu YM, Huang XD, Zhu S, Hu ZF, So KF, Ren CR, Tao Q. Alerting effects of light in healthy individuals: a systematic review and meta-analysis. Neural Regen Res 2022; 17:1929-1936. [PMID: 35142669 PMCID: PMC8848614 DOI: 10.4103/1673-5374.335141] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Light plays an essential role in psychobiological and psychophysiological processes, such as alertness. The alerting effect is influenced by light characteristics and the timing of interventions. This meta-analysis is the first to systematically review the effect of light intervention on alertness and to discuss the optimal protocol for light intervention. In this meta-analysis, registered at PROSPERO (Registration ID: CRD42020181485), we conducted a systematic search of the Web of Science, PubMed, and PsycINFO databases for studies published in English prior to August 2021. The outcomes included both subjective and objective alertness. Subgroup analyses considered a variety of factors, such as wavelength, correlated color temperature (CCT), light illuminance, and timing of interventions (daytime, night-time, or all day). Twenty-seven crossover studies and two parallel-group studies were included in this meta-analysis, with a total of 1210 healthy participants (636 (52%) male, mean age 25.62 years). The results revealed that light intervention had a positive effect on both subjective alertness (standardized mean difference (SMD) = –0.28, 95% confidence interval (CI): –0.49 to –0.06, P = 0.01) and objective alertness in healthy subjects (SMD = –0.34, 95% CI: –0.68 to –0.01, P = 0.04). The subgroup analysis revealed that cold light was better than warm light in improving subjective alertness (SMD = –0.37, 95% CI: –0.65 to –0.10, P = 0.007, I2 = 26%) and objective alertness (SMD = –0.36, 95% CI: –0.66 to –0.07, P = 0.02, I2 = 0). Both daytime (SMD = –0.22, 95% CI: –0.37 to –0.07, P = 0.005, I2 = 74%) and night-time (SMD = –0.32, 95% CI: –0.61 to –0.02, P = 0.04, I2 = 0) light exposure improved subjective alertness. The results of this meta-analysis and systematic review indicate that light exposure is associated with significant improvement in subjective and objective alertness. In addition, light exposure with a higher CCT was more effective in improving alertness than light exposure with a lower CCT. Our results also suggest that both daytime and night-time light exposure can improve subjective alertness.
Collapse
Affiliation(s)
- Yi-Man Mu
- Department of Public Health and Preventive Medicine, School of Basic Medicine; Division of Medical Psychology and Behavior Science, School of Basic Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Xiao-Dan Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Sui Zhu
- Department of Public Health and Preventive Medicine, School of Basic Medicine; Division of Medical Psychology and Behavior Science, School of Basic Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Zheng-Fang Hu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University; Guangzhou Regenerative Medicine and Health Guangdong Laboratory; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, Guangdong Province; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Science, Qingdao, Shandong Province; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Chao-Ran Ren
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University; Guangzhou Regenerative Medicine and Health Guangdong Laboratory; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, Guangdong Province; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Science, Qingdao, Shandong Province; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Qian Tao
- Department of Public Health and Preventive Medicine, School of Basic Medicine; Division of Medical Psychology and Behavior Science, School of Basic Medicine, Jinan University; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, Guangdong Province; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Science, Qingdao, Shandong Province, China
| |
Collapse
|
19
|
Ricketts EJ, Joyce DS, Rissman AJ, Burgess HJ, Colwell CS, Lack LC, Gradisar M. Electric lighting, adolescent sleep and circadian outcomes, and recommendations for improving light health. Sleep Med Rev 2022; 64:101667. [PMID: 36064209 PMCID: PMC10693907 DOI: 10.1016/j.smrv.2022.101667] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/26/2023]
Abstract
Light is a potent circadian entraining agent. For many people, daily light exposure is fundamentally dysregulated with reduced light during the day and increased light into the late evening. This lighting schedule promotes chronic disruption to circadian physiology resulting in a myriad of impairments. Developmental changes in sleep-wake physiology suggest that such light exposure patterns may be particularly disruptive for adolescents and further compounded by lifestyle factors such as early school start times. This narrative review describes evidence that reduced light exposure during the school day delays the circadian clock, and longer exposure durations to light-emitting electronic devices in the evening suppress melatonin. While home lighting in the evening can suppress melatonin secretion and delay circadian phase, the patterning of light exposure across the day and evening can have moderating effects. Photic countermeasures may be flexibly and scalably implemented to support sleep-wake health; including manipulations of light intensity, spectra, duration and delivery modality across multiple contexts. An integrative approach addressing physiology, attitudes, and behaviors will support optimization of light-driven sleep-wake outcomes in adolescents.
Collapse
Affiliation(s)
- Emily J Ricketts
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, United States.
| | - Daniel S Joyce
- Department of Psychology, University of Nevada, Reno, NV, United States; School of Psychology and Wellbeing, The University of Southern Queensland, Ipswich, QLD, Australia
| | - Ariel J Rissman
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, United States
| | - Helen J Burgess
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, United States
| | - Leon C Lack
- Adelaide Institute for Sleep Health, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; College of Education, Psychology and Social Work, Flinders University, Adelaide, SA, Australia
| | - Michael Gradisar
- WINK Sleep Pty Ltd, Adelaide, SA, Australia; Sleep Cycle AB, Gothenburg, Sweden
| |
Collapse
|
20
|
Brown TM, Brainard GC, Cajochen C, Czeisler CA, Hanifin JP, Lockley SW, Lucas RJ, Münch M, O’Hagan JB, Peirson SN, Price LLA, Roenneberg T, Schlangen LJM, Skene DJ, Spitschan M, Vetter C, Zee PC, Wright KP. Recommendations for daytime, evening, and nighttime indoor light exposure to best support physiology, sleep, and wakefulness in healthy adults. PLoS Biol 2022; 20:e3001571. [PMID: 35298459 PMCID: PMC8929548 DOI: 10.1371/journal.pbio.3001571] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ocular light exposure has important influences on human health and well-being through modulation of circadian rhythms and sleep, as well as neuroendocrine and cognitive functions. Prevailing patterns of light exposure do not optimally engage these actions for many individuals, but advances in our understanding of the underpinning mechanisms and emerging lighting technologies now present opportunities to adjust lighting to promote optimal physical and mental health and performance. A newly developed, international standard provides a SI-compliant way of quantifying the influence of light on the intrinsically photosensitive, melanopsin-expressing, retinal neurons that mediate these effects. The present report provides recommendations for lighting, based on an expert scientific consensus and expressed in an easily measured quantity (melanopic equivalent daylight illuminance (melaponic EDI)) defined within this standard. The recommendations are supported by detailed analysis of the sensitivity of human circadian, neuroendocrine, and alerting responses to ocular light and provide a straightforward framework to inform lighting design and practice.
Collapse
Affiliation(s)
- Timothy M. Brown
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - George C. Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Christian Cajochen
- Centre for Chronobiology, University Psychiatric Clinics Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Charles A. Czeisler
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John P. Hanifin
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Steven W. Lockley
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Robert J. Lucas
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mirjam Münch
- Centre for Chronobiology, University Psychiatric Clinics Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - John B. O’Hagan
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Stuart N. Peirson
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Luke L. A. Price
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Till Roenneberg
- Institutes for Medical Psychology and Occupational, Social and Environmental Medicine, Medical Faculty, Ludwig-Maximilians University (LMU), Munich, Germany
| | - Luc J. M. Schlangen
- Human Technology Interaction Group, Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
- Intelligent Lighting Institute, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Debra J. Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Manuel Spitschan
- Translational Sensory & Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- TUM Department of Sport and Health Sciences (TUM SG), Technical University of Munich, Munich, Germany
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Céline Vetter
- Circadian and Sleep Epidemiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Phyllis C. Zee
- Department of Neurology, Northwestern University, Chicago, Illinois, United States of America
- Center for Circadian and Sleep Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Kenneth P. Wright
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
21
|
Giménez MC, Stefani O, Cajochen C, Lang D, Deuring G, Schlangen LJM. Predicting melatonin suppression by light in humans: Unifying photoreceptor-based equivalent daylight illuminances, spectral composition, timing and duration of light exposure. J Pineal Res 2022; 72:e12786. [PMID: 34981572 PMCID: PMC9285453 DOI: 10.1111/jpi.12786] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 12/23/2022]
Abstract
Light-induced melatonin suppression data from 29 peer-reviewed publications was analysed by means of a machine-learning approach to establish which light exposure characteristics (ie photopic illuminance, five α-opic equivalent daylight illuminances [EDIs], duration and timing of the light exposure, and the dichotomous variables pharmacological pupil dilation and narrowband light source) are the main determinants of melatonin suppression. Melatonin suppression in the data set was dominated by four light exposure characteristics: (1) melanopic EDI, (2) light exposure duration, (3) pupil dilation and (4) S-cone-opic EDI. A logistic model was used to evaluate the influence of each of these parameters on the melatonin suppression response. The final logistic model was only based on the first three parameters, since melanopic EDI was the best single (photoreceptor) predictor that was only outperformed by S-cone-opic EDI for (photopic) illuminances below 21 lux. This confirms and extends findings on the importance of the metric melanopic EDI for predicting biological effects of light in integrative (human-centric) lighting applications. The model provides initial and general guidance to lighting practitioners on how to combine spectrum, duration and amount of light exposure when controlling non-visual responses to light, especially melatonin suppression. The model is a starting tool for developing hypotheses on photoreceptors' contributions to light's non-visual responses and helps identifying areas where more data are needed, like on the S-cone contribution at low illuminances.
Collapse
Affiliation(s)
- Marina C. Giménez
- Chronobiology UnitGroningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Oliver Stefani
- Centre for Chronobiology and Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN)Psychiatric Hospital of the University of Basel (UPK) and University of BaselBaselSwitzerland
| | - Christian Cajochen
- Centre for Chronobiology and Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN)Psychiatric Hospital of the University of Basel (UPK) and University of BaselBaselSwitzerland
| | | | - Gunnar Deuring
- Forensic DepartmentUniversity Psychiatric Clinics BaselBaselSwitzerland
| | - Luc J. M. Schlangen
- Department of Industrial Engineering and Innovation SciencesHuman‐Technology Interaction Group and Intelligent Lighting InstituteEindhoven University of TechnologyEindhovenThe Netherlands
| |
Collapse
|
22
|
Spitschan M, Smolders K, Vandendriessche B, Bent B, Bakker JP, Rodriguez-Chavez IR, Vetter C. Verification, analytical validation and clinical validation (V3) of wearable dosimeters and light loggers. Digit Health 2022; 8:20552076221144858. [PMID: 36601285 PMCID: PMC9806438 DOI: 10.1177/20552076221144858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/25/2022] [Indexed: 12/27/2022] Open
Abstract
Background Light exposure is an important driver and modulator of human physiology, behavior and overall health, including the biological clock, sleep-wake cycles, mood and alertness. Light can also be used as a directed intervention, e.g., in the form of light therapy in seasonal affective disorder (SAD), jetlag prevention and treatment, or to treat circadian disorders. Recently, a system of quantities and units related to the physiological effects of light was standardized by the International Commission on Illumination (CIE S 026/E:2018). At the same time, biometric monitoring technologies (BioMeTs) to capture personalized light exposure were developed. However, because there are currently no standard approaches to evaluate the digital dosimeters, the need to provide a firm framework for the characterization, calibration, and reporting for these digital sensors is urgent. Objective This article provides such a framework by applying the principles of verification, analytic validation and clinical validation (V3) as a state-of-the-art approach for tools and standards in digital medicine to light dosimetry. Results This article describes opportunities for the use of digital dosimeters for basic research, for monitoring light exposure, and for measuring adherence in both clinical and non-clinical populations to light-based interventions in clinical trials.
Collapse
Affiliation(s)
- Manuel Spitschan
- Translational Sensory & Circadian Neuroscience, Max Planck
Institute for Biological Cybernetics, Tübingen, Germany
- Chronobiology & Health, TUM Department of Sport and Health
Sciences (TUM SG), Technical University of
Munich, Munich, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of
Munich, Garching, Germany
| | - Karin Smolders
- Human-Technology Interaction Group, Eindhoven University of
Technology, Eindhoven, The Netherlands
| | - Benjamin Vandendriessche
- Byteflies, Antwerp, Belgium
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve
University, Cleveland, OH, USA
| | | | | | | | - Céline Vetter
- Department of Integrative Physiology, University of Colorado
Boulder, Boulder, CO, USA
| |
Collapse
|
23
|
Fernandez FX. Current Insights into Optimal Lighting for Promoting Sleep and Circadian Health: Brighter Days and the Importance of Sunlight in the Built Environment. Nat Sci Sleep 2022; 14:25-39. [PMID: 35023979 PMCID: PMC8747801 DOI: 10.2147/nss.s251712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
This perspective considers the possibility that daytime's intrusion into night made possible by electric lighting may not be as pernicious to sleep and circadian health as the encroachment of nighttime into day wrought by 20th century architectural practices that have left many people estranged from sunlight.
Collapse
|
24
|
Spitschan M, Santhi N. Individual differences and diversity in human physiological responses to light. EBioMedicine 2022; 75:103640. [PMID: 35027334 PMCID: PMC8808156 DOI: 10.1016/j.ebiom.2021.103640] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/18/2021] [Accepted: 10/06/2021] [Indexed: 02/01/2023] Open
Abstract
Exposure to light affects our physiology and behaviour through a pathway connecting the retina to the circadian pacemaker in the hypothalamus - the suprachiasmatic nucleus (SCN). Recent research has identified significant individual differences in the non-visual effects of light,mediated by this pathway. Here, we discuss the fundamentals and individual differences in the non-visual effects of light. We propose a set of actions to improve our evidence database to be more diverse: understanding systematic bias in the evidence base, dedicated efforts to recruit more diverse participants, routine deposition and sharing of data, and development of data standards and reporting guidelines.
Collapse
Affiliation(s)
- Manuel Spitschan
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany; Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany; Department of Experimental Psychology, University of Oxford, United Kingdom.
| | - Nayantara Santhi
- Department of Psychology, Northumbria University, United Kingdom.
| |
Collapse
|
25
|
Price LLA, Khazova M, Udovičić L. Assessment of the Light Exposures of Shift-working Nurses in London and Dortmund in Relation to Recommendations for Sleep and Circadian Health. Ann Work Expo Health 2021; 66:447-458. [PMID: 34693970 PMCID: PMC9030150 DOI: 10.1093/annweh/wxab092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/22/2021] [Accepted: 10/07/2021] [Indexed: 11/14/2022] Open
Abstract
Shift work causes disruption to circadian physiological processes in the human body, and desynchronization from the natural day-and-night rhythm. Circadian disruption is thought to explain the associations between shift work and various long-term diseases; light is an unrivalled synchronizer (or Zeitgeber) of circadian processes and inappropriate light exposure plausibly plays a critical role in the development of health impairments. As published measurement data on the actual light environments encountered by shift workers are sparse, nurses working in two hospitals in London (UK) and Dortmund (Germany) wore light-logging dosimetry devices to measure personal light exposures continuously over a week in three different seasons. The study identifies and quantifies several of the characteristics of light exposure related to different working patterns in winter, spring, and summer, and quantifies interindividual variations. These data enable informed design of light exposure interventions or changes to shifts to reduce unwanted effects of disruptive light exposure profiles.
Collapse
Affiliation(s)
- Luke L A Price
- Radiation Dosimetry Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Chilton, Didcot, Oxfordshire, OX11 0RQ, UK
| | - Marina Khazova
- Radiation Dosimetry Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Chilton, Didcot, Oxfordshire, OX11 0RQ, UK
| | - Ljiljana Udovičić
- Federal Institute for Occupational Safety and Health (BAuA), Friedrich-Henkel-Weg 1-25, 44149 Dortmund, Germany
| |
Collapse
|
26
|
Vellei M, Chinazzo G, Zitting KM, Hubbard J. Human thermal perception and time of day: A review. Temperature (Austin) 2021; 8:320-341. [PMID: 34901316 PMCID: PMC8654484 DOI: 10.1080/23328940.2021.1976004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 11/01/2022] Open
Abstract
The circadian clock regulates diurnal variations in autonomic thermoregulatory processes such as core body temperature in humans. Thus, we might expect that similar daily fluctuations also characterize human thermal perception, the ultimate role of which is to drive thermoregulatory behaviors. In this paper, we explore this question by reviewing experimental and observational thermal comfort investigations which include the "time of day" variable. We found only 21 studies considering this factor, and not always as their primary analysis. Due to the paucity of studies and the lack of a specific focus on time-of-day effects, the results are difficult to compare and appear on the whole contradictory. However, we observe a tendency for individuals to prefer higher ambient temperatures in the early evening as compared to the rest of the day, a result in line with the physiological decrease of the core body temperature over the evening. By drawing from literature on the physiology of thermoregulation and circadian rhythms, we outline some potential explanations for the inconsistencies observed in the findings, including a potential major bias due to the intensity and spectrum of the selected light conditions, and provide recommendations for conducting future target studies in highly-controlled laboratory conditions. Such studies are strongly encouraged as confirmed variations of human thermal perceptions over the day would have enormous impact on building operations, thus on energy consumption and occupant comfort. List of abbreviations: TSV: Thermal Sensation Vote; TCV: Thermal Comfort Vote; Tpref: Preferred Temperature; TA: Indoor Air Temperature; RH: Indoor Relative Humidity; Tskin: Skin Temperature; Tty: Tympanic Temperature; Tre: Rectal Temperature; Toral: Oral Temperature.
Collapse
Affiliation(s)
- Marika Vellei
- Laboratory of Engineering Sciences for the Environment (LaSIE) (Umr Cnrs 7356), La Rochelle University, La Rochelle, France
| | - Giorgia Chinazzo
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, USA
| | - Kirsi-Marja Zitting
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Ma, USA
| | - Jeffrey Hubbard
- Laboratory of Integrated Performance in Design (Lipid), School of Architecture, Civil and Environmental Engineering (Enac), École Polytechnique Fédérale De Lausanne (Epfl), Lausanne, Switzerland
| |
Collapse
|
27
|
Mireku MO, Rodriguez A. Sleep Duration and Waking Activities in Relation to the National Sleep Foundation's Recommendations: An Analysis of US Population Sleep Patterns from 2015 to 2017. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6154. [PMID: 34200277 PMCID: PMC8201191 DOI: 10.3390/ijerph18116154] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/02/2022]
Abstract
The objective was to investigate the association between time spent on waking activities and nonaligned sleep duration in a representative sample of the US population. We analysed time use data from the American Time Use Survey (ATUS), 2015-2017 (N = 31,621). National Sleep Foundation (NSF) age-specific sleep recommendations were used to define recommended (aligned) sleep duration. The balanced, repeated, replicate variance estimation method was applied to the ATUS data to calculate weighted estimates. Less than half of the US population had a sleep duration that mapped onto the NSF recommendations, and alignment was higher on weekdays (45%) than at weekends (33%). The proportion sleeping longer than the recommended duration was higher than those sleeping shorter on both weekdays and weekends (p < 0.001). Time spent on work, personal care, socialising, travel, TV watching, education, and total screen time was associated with nonalignment to the sleep recommendations. In comparison to the appropriate recommended sleep group, those with a too-short sleep duration spent more time on work, travel, socialising, relaxing, and leisure. By contrast, those who slept too long spent relatively less time on each of these activities. The findings indicate that sleep duration among the US population does not map onto the NSF sleep recommendations, mostly because of a higher proportion of long sleepers compared to short sleepers. More time spent on work, travel, and socialising and relaxing activities is strongly associated with an increased risk of nonalignment to NSF sleep duration recommendations.
Collapse
Affiliation(s)
- Michael Osei Mireku
- School of Psychology, University of Lincoln, Lincoln LN6 7TS, UK
- Lincoln Sleep Research (LiSReC), University of Lincoln, Lincoln LN6 7TS, UK
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK;
| | - Alina Rodriguez
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK;
- Centre for Psychiatry, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
28
|
Kompier ME, Smolders KCHJ, de Kort YAW. Abrupt light transitions in illuminance and correlated colour temperature result in different temporal dynamics and interindividual variability for sensation, comfort and alertness. PLoS One 2021; 16:e0243259. [PMID: 33750954 PMCID: PMC7984641 DOI: 10.1371/journal.pone.0243259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/08/2021] [Indexed: 11/19/2022] Open
Abstract
Detailed insights in both visual effects of light and effects beyond vision due to manipulations in illuminance and correlated color temperature (CCT) are needed to optimize study protocols as well as to design light scenarios for practical applications. This study investigated temporal dynamics and interindividual variability in subjective evaluations of sensation, comfort and mood as well as subjective and objective measures of alertness, arousal and thermoregulation following abrupt transitions in illuminance and CCT in a mild cold environment. The results revealed that effects could be uniquely attributed to changes in illuminance or CCT. No interaction effects of illuminance and CCT were found for any of these markers. Responses to the abrupt transitions in illuminance and CCT always occurred immediately and exclusively amongst the subjective measures. Most of these responses diminished over time within the 45-minute light manipulation. In this period, no responses were found for objective measures of vigilance, arousal or thermoregulation. Significant interindividual variability occurred only in the visual comfort evaluation in response to changes in the intensity of the light. The results indicate that the design of dynamic light scenarios aimed to enhance human alertness and vitality requires tailoring to the individual to create visually comfortable environments.
Collapse
Affiliation(s)
- Maaike E. Kompier
- Human-Technology Interaction, School of Innovation Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Karin C. H. J. Smolders
- Human-Technology Interaction, School of Innovation Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Yvonne A. W. de Kort
- Human-Technology Interaction, School of Innovation Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
29
|
Schlangen LJM, Price LLA. The Lighting Environment, Its Metrology, and Non-visual Responses. Front Neurol 2021; 12:624861. [PMID: 33746879 PMCID: PMC7970181 DOI: 10.3389/fneur.2021.624861] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
International standard CIE S 026:2018 provides lighting professionals and field researchers in chronobiology with a method to characterize light exposures with respect to non-visual photoreception and responses. This standard defines five spectral sensitivity functions that describe optical radiation for its ability to stimulate each of the five α-opic retinal photoreceptor classes that contribute to the non-visual effects of light in humans via intrinsically-photosensitive retinal ganglion cells (ipRGCs). The CIE also recently published an open-access α-opic toolbox that calculates all the quantities and ratios of the α-opic metrology in the photometric, radiometric and photon systems, based on either a measured (user-defined) spectrum or selected illuminants (A, D65, E, FL11, LED-B3) built into the toolbox. For a wide variety of ecologically-valid conditions, the melanopsin-based photoreception of ipRGCs has been shown to account for the spectral sensitivity of non-visual responses, from shifting the timing of nocturnal sleep and melatonin secretion to regulating steady-state pupil diameter. Recent findings continue to confirm that the photopigment melanopsin also plays a role in visual responses, and that melanopsin-based photoreception may have a significant influence on brightness perception and aspects of spatial vision. Although knowledge concerning the extent to which rods and cones interact with ipRGCs in driving non-visual effects is still growing, a CIE position statement recently used melanopic equivalent daylight (D65) illuminance in preliminary guidance on applying "proper light at the proper time" to manipulate non-visual responses. Further guidance on this approach is awaited from the participants of the 2nd International Workshop on Circadian and Neurophysiological Photometry (in Manchester, August 2019). The new α-opic metrology of CIE S 026 enables traceable measurements and a formal, quantitative specification of personal light exposures, photic interventions and lighting designs. Here, we apply this metrology to everyday light sources including a natural daylight time series, a range of LED lighting products and, using the toobox, to a smartphone display screen. This collection of examples suggests ways in which variations in the melanopic content of light over the day can be adopted in strategies that use light to support human health and well-being.
Collapse
Affiliation(s)
- Luc J. M. Schlangen
- Department Human-Technology Interaction, Intelligent Lighting Institute, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Luke L. A. Price
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, United Kingdom
| |
Collapse
|
30
|
Houser KW, Esposito T. Human-Centric Lighting: Foundational Considerations and a Five-Step Design Process. Front Neurol 2021; 12:630553. [PMID: 33584531 PMCID: PMC7873560 DOI: 10.3389/fneur.2021.630553] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
At its best, human-centric lighting considers the visual and non-visual effects of light in support of positive human outcomes. At its worst, it is a marketing phrase used to healthwash lighting products or lighting design solutions. There is no doubt that environmental lighting contributes to human health, but how might one practice human-centric lighting given both the credible potential and the implausible hype? Marketing literature is filled with promises. Technical lighting societies have summarized the science but have not yet offered design guidance. Meanwhile, designers are in the middle, attempting to distinguish credible knowledge from that which is dubious to make design decisions that affect people directly. This article is intended to: (1) empower the reader with fundamental understandings of ways in which light affects health; (2) provide a process for human-centric lighting design that can dovetail with the decision-making process that is already a part of a designer's workflow.
Collapse
Affiliation(s)
- Kevin W. Houser
- School of Civil and Construction Engineering, Oregon State University, Corvallis, OR, United States
- Advanced Lighting Team, Pacific Northwest National Laboratory, Portland, OR, United States
| | - Tony Esposito
- Lighting Research Solutions LLC, Cambridge, MA, United States
| |
Collapse
|
31
|
Personalized Office Lighting for Circadian Health and Improved Sleep. SENSORS 2020; 20:s20164569. [PMID: 32824032 PMCID: PMC7472178 DOI: 10.3390/s20164569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022]
Abstract
In modern society, the average person spends more than 90% of their time indoors. However, despite the growing scientific understanding of the impact of light on biological mechanisms, the existing light in the built environment is designed predominantly to meet visual performance requirements only. Lighting can also be exploited as a means to improve occupant health and well-being through the circadian functions that regulate sleep, mood, and alertness. The benefits of well-lit spaces map across other regularly occupied building types, such as residences and schools, as well as patient rooms in healthcare and assisted-living facilities. Presently, Human Centric Lighting is being offered based on generic insights on population average experiences. In this paper, we suggest a personalized bio-adaptive office lighting system, controlled to emit a lighting recipe tailored to the individual employee. We introduce a new mathematical optimization for lighting schedules that align the 24-h circadian cycle. Our algorithm estimates and optimizes parameters in experimentally validated models of the human circadian pacemaker. Moreover, it constrains deviations from the light levels desired and needed to perform daily activities. We further translate these into general principles for circadian lighting. We use experimentally validated models of the human circadian pacemaker to introduce a new algorithm to mathematically optimize lighting schedules to achieve circadian alignment to the 24-h cycle, with constrained deviations from the light levels desired for daily activities. Our suggested optimization algorithm was able to translate our findings into general principles for circadian lighting. In particular, our simulation results reveal: (1) how energy constrains drive the shape of optimal lighting profiles by dimming the light levels in the time window that light is less biologically effective; (2) how inter-individual variations in the characteristic internal duration of the day shift the timing of optimal lighting exposure; (3) how user habits and, in particular, late-evening light exposure result in differentiation in late afternoon office lighting.
Collapse
|