1
|
Villamil CI, Negrón JJ, Middleton ER. Heritability in the Rhesus Macaque (Macaca mulatta) Vertebral Column. Am J Primatol 2025; 87:e23686. [PMID: 39428679 DOI: 10.1002/ajp.23686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/19/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024]
Abstract
The vertebral column plays a central role in primate locomotion and positional behavior. Understanding its evolution, therefore, has the potential to clarify evolutionary processes that have occurred in the primate lineage as well as the specific behaviors of extinct primates. However, to understand primate vertebral anatomy, it is important to determine how much of this anatomy is heritable and how much develops as a response to environmental factors during life. We estimated heritability for vertebral counts as well as typical cervical, thoracic, and lumbar elements from 210 individuals from the pedigreed Cayo Santiago Macaca mulatta skeletal collection. We found moderate heritability of vertebral counts (h2 = 0.216-0.326), but with strong heritability of the type of variation (e.g., a tendency to meristic or homeotic change) in the vertebral count (h2 = 0.599), suggesting a possible explanation for high variability in vertebral numbers among the hominoids in particular. The moderate heritability of vertebral count also suggests that vertebral count is an unsuitable metric for estimating the ancestral state for some taxa. We found strong heritability in the morphology of cervical and upper lumbar zygapophyseal facets (h2 = 0.548-0.550) and the thoracic spinous processes (h2 = 0.609-0.761), including high heritability of the spinous process angle in the upper thoracic and upper lumbar elements (h2 = 0.649-0.752). We suggest these are related to maintaining stability in the cervical and lumbar regions, and reducing motion in the thoracic region, respectively. We propose that spinous processes may contain greater phylogenetic information, whereas transverse processes may contain greater information of function 'in life'. We also found important size effects, suggesting that size is the most heritable component of overall form and largely responsible for intertrait differences. This suggests that it is inappropriate to indiscriminately remove size effects from morphological comparisons.
Collapse
Affiliation(s)
- Catalina I Villamil
- School of Chiropractic, Universidad Central del Caribe, Bayamón, Puerto Rico, USA
| | - Jeziel J Negrón
- School of Chiropractic, Universidad Central del Caribe, Bayamón, Puerto Rico, USA
- Department of Biology, University of Puerto Rico-Bayamón, Bayamón, Puerto Rico, USA
| | - Emily R Middleton
- Department of Anthropology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Wang Q, Francis G. Coming to the Caribbean: Eighty-five years of rhesus macaques (Macaca mulatta) at Cayo Santiago-A rare nonhuman primate model for the studies of adaptation, diseases, genetics, natural disasters, and resilience. Am J Primatol 2025; 87:e23659. [PMID: 38961812 DOI: 10.1002/ajp.23659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/16/2024] [Indexed: 07/05/2024]
Abstract
The Cayo Santiago rhesus macaque colony represents one of the most important nonhuman primate resources since their introduction to the Caribbean area in 1938. The 85 years of continuing existence along with the comprehensive database of the rhesus colony and the derived skeletal collections have provided and will continue to provide a powerful tool to test hypotheses about adaptive and evolutionary mechanisms in both biology and medicine.
Collapse
Affiliation(s)
- Qian Wang
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, Texas, USA
| | - George Francis
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, Texas, USA
| |
Collapse
|
3
|
Patterson SK, Andonov E, Arre AM, Martínez MI, Negron-Del Valle JE, Petersen RM, Phillips D, Rahman A, Ruiz-Lambides A, Villanueva I, Lea AJ, Snyder-Mackler N, Brent LJ, Higham JP. Early life adversity has sex-dependent effects on survival across the lifespan in rhesus macaques. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220456. [PMID: 39463249 PMCID: PMC11513645 DOI: 10.1098/rstb.2022.0456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/03/2024] [Accepted: 03/18/2024] [Indexed: 10/29/2024] Open
Abstract
Exposure to early life adversity is linked to detrimental fitness outcomes across taxa. Owing to the challenges of collecting longitudinal data, direct evidence for long-term fitness effects of early life adversity from long-lived species remains relatively scarce. Here, we test the effects of early life adversity on male and female longevity in a free-ranging population of rhesus macaques (Macaca mulatta) on Cayo Santiago, Puerto Rico. We leveraged six decades of data to quantify the relative importance of 10 forms of early life adversity for 6599 macaques. Individuals that experienced more early life adversity died earlier than those that experienced less adversity. Mortality risk was highest during early life, defined as birth to 4 years old, but heightened mortality risk was also present in macaques that survived to adulthood. Females and males were affected differently by some forms of adversity, and these differences might be driven by varying energetic demands and dispersal patterns. Our results show that the fitness consequences of early life adversity are not uniform across individuals but vary as a function of the type of adversity, timing and social context, and thus contribute to our limited but growing understanding of the evolution of early life sensitivities.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Sam K. Patterson
- Department of Anthropology, New York University, New York10003, USA
| | - Ella Andonov
- High School of American Studies at Lehman College, Bronx, New York10468, USA
| | - Alyssa M. Arre
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, San Juan00925, Puerto Rico
| | - Melween I. Martínez
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, San Juan00925, Puerto Rico
| | | | - Rachel M. Petersen
- Department of Biological Sciences, Vanderbilt University, Nashville37235, USA
| | - Daniel Phillips
- Center for Evolution and Medicine, Arizona State University, Tempe85281, USA
| | - Ahaylee Rahman
- Brooklyn Technical High School, Brooklyn, New York11217, USA
| | - Angelina Ruiz-Lambides
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, San Juan00925, Puerto Rico
| | | | - Amanda J. Lea
- Department of Biological Sciences, Vanderbilt University, Nashville37235, USA
- Child and Brain Development Program, Canadian Institute for Advanced Study, TorontoM5G 1M1, Canada
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe85281, USA
- School of Life Sciences and School of Human Evolution and Social Change, Arizona State University, Tempe85281, USA
| | - Lauren J.N. Brent
- Department of Psychology, Centre for Research in Animal Behaviour, University of Exeter, ExeterEX4 4QJ, USA
| | - James P. Higham
- Department of Anthropology, New York University, New York10003, USA
| |
Collapse
|
4
|
Rosado MRS, Marzan-Rivera N, Watowich MM, Valle ADND, Pantoja P, Pavez-Fox MA, Siracusa ER, Cooper EB, Valle JEND, Phillips D, Ruiz-Lambides A, Martinez MI, Montague MJ, Platt ML, Higham JP, Brent LJN, Sariol CA, Snyder-Mackler N. Immune cell composition varies by age, sex and exposure to social adversity in free-ranging Rhesus Macaques. GeroScience 2024; 46:2107-2122. [PMID: 37853187 PMCID: PMC10828448 DOI: 10.1007/s11357-023-00962-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023] Open
Abstract
Increasing age is associated with dysregulated immune function and increased inflammation-patterns that are also observed in individuals exposed to chronic social adversity. Yet we still know little about how social adversity impacts the immune system and how it might promote age-related diseases. Here, we investigated how immune cell diversity varied with age, sex and social adversity (operationalized as low social status) in free-ranging rhesus macaques. We found age-related signatures of immunosenescence, including lower proportions of CD20 + B cells, CD20 + /CD3 + ratio, and CD4 + /CD8 + T cell ratio - all signs of diminished antibody production. Age was associated with higher proportions of CD3 + /CD8 + Cytotoxic T cells, CD16 + /CD3- Natural Killer cells, CD3 + /CD4 + /CD25 + and CD3 + /CD8 + /CD25 + T cells, and CD14 + /CD16 + /HLA-DR + intermediate monocytes, and lower levels of CD14 + /CD16-/HLA-DR + classical monocytes, indicating greater amounts of inflammation and immune dysregulation. We also found a sex-dependent effect of exposure to social adversity (i.e., low social status). High-status males, relative to females, had higher CD20 + /CD3 + ratios and CD16 + /CD3 Natural Killer cell proportions, and lower proportions of CD8 + Cytotoxic T cells. Further, low-status females had higher proportions of cytotoxic T cells than high-status females, while the opposite was observed in males. High-status males had higher CD20 + /CD3 + ratios than low-status males. Together, our study identifies the strong age and sex-dependent effects of social adversity on immune cell proportions in a human-relevant primate model. Thus, these results provide novel insights into the combined effects of demography and social adversity on immunity and their potential contribution to age-related diseases in humans and other animals.
Collapse
Affiliation(s)
- Mitchell R Sanchez Rosado
- Department of Microbiology & Medical Zoology, University of Puerto Rico-Medical Sciences, San Juan, PR, USA.
| | - Nicole Marzan-Rivera
- Department of Microbiology & Medical Zoology, University of Puerto Rico-Medical Sciences, San Juan, PR, USA
| | - Marina M Watowich
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Petraleigh Pantoja
- Department of Microbiology & Medical Zoology, University of Puerto Rico-Medical Sciences, San Juan, PR, USA
- Unit of Comparative Medicine, Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Melissa A Pavez-Fox
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, EX4 4QG, UK
| | - Erin R Siracusa
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, EX4 4QG, UK
| | - Eve B Cooper
- Department of Anthropology, New York University, New York, NY, USA
| | - Josue E Negron-Del Valle
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Daniel Phillips
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Angelina Ruiz-Lambides
- Unit of Comparative Medicine, Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Melween I Martinez
- Unit of Comparative Medicine, Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Michael J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Marketing, Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - James P Higham
- Department of Anthropology, New York University, New York, NY, USA
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, EX4 4QG, UK
| | - Carlos A Sariol
- Department of Microbiology & Medical Zoology, University of Puerto Rico-Medical Sciences, San Juan, PR, USA
- Unit of Comparative Medicine, Caribbean Primate Research Center and Animal Resources Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Noah Snyder-Mackler
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- School for Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
5
|
Kar F, Nakagawa S, Noble DWA. Heritability and developmental plasticity of growth in an oviparous lizard. Heredity (Edinb) 2024; 132:67-76. [PMID: 37968348 PMCID: PMC10844306 DOI: 10.1038/s41437-023-00660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/17/2023] Open
Abstract
Selective processes act on phenotypic variation although the evolutionary potential of a trait relies on the underlying heritable variation. Developmental plasticity is an important source of phenotypic variation, but it can also promote changes in genetic variation, yet we have a limited understanding of how they are both impacted. Here, we quantified the influence of developmental temperature on growth in delicate skinks (Lampropholis delicata) and partitioned total phenotypic variance using an animal model fitted with a genomic relatedness matrix. We measured mass for 261 individuals (nhot = 125, ncold = 136) over 16 months (nobservations = 3002) and estimated heritability and maternal effects over time. Our results show that lizards reared in cold developmental temperatures had consistently higher mass across development compared to lizards that were reared in hot developmental temperatures. However, developmental temperature did not impact the rate of growth. On average, additive genetic variance, maternal effects and heritability were higher in the hot developmental temperature treatment; however, these differences were not statistically significant. Heritability increased with age, whereas maternal effects decreased upon hatching but increased again at a later age, which could be driven by social competition or intrinsic changes in the expression of variation as an individual's growth. Our work suggests that the evolutionary potential of growth is complex, age-dependent and not overtly affected by extremes in natural nest temperatures.
Collapse
Affiliation(s)
- Fonti Kar
- School of Biological Earth and Environmental Sciences, Ecology and Evolution Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Shinichi Nakagawa
- School of Biological Earth and Environmental Sciences, Ecology and Evolution Research Centre, University of New South Wales, Sydney, NSW, Australia
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Daniel W A Noble
- School of Biological Earth and Environmental Sciences, Ecology and Evolution Research Centre, University of New South Wales, Sydney, NSW, Australia.
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
6
|
Torfs JRR, Eens M, Laméris DW, Stevens JMG, Verspeek J, Guery JP, Staes N. Visually assessed body condition shows high heritability in a pedigreed great ape population. Am J Primatol 2023; 85:e23540. [PMID: 37507232 DOI: 10.1002/ajp.23540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/28/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Body condition, a measure for relative fat mass, is associated with primate health, fitness, and overall welfare. Body condition is often influenced by dietary factors, age, and/or sex, but several body condition measures (body weight, weight-to-height ratios, and so on) also show high heritability across primate species, indicating a role of genetic effects. Although different measures for body condition exist, many require direct handling of animals, which is invasive, time-consuming, and expensive, making them impractical in wild and captive settings. Therefore, noninvasive visual body condition score (BCS) systems were developed for various animal species, including macaques and chimpanzees, to visually assess relative fat mass. Here we evaluate the utility of a visual BCS system in bonobos by assessing (1) inter-rater reliability, (2) links with body mass, a traditional hands-on measure of condition, and (3) the factors driving individual variation in BCS. We adapted the chimpanzee BCS system to rate 76 bonobos in 11 European zoos (92% of the adult population). Inter-rater reliability was high (s* = 0.948), BCSs were positively associated with body mass (β = 0.075) and not predicted by diet, sex, or age, nor were they associated with a higher abundance of obesity-related diseases. Instead, BCSs showed high levels of heritability (h2 = 0.637), indicating that a majority of body condition variation in bonobos is attributable to genetic similarity of the individuals. This is in line with reported h2 -values for traditional body condition measures in primates and provides support for the reliability of visual BCS systems in great apes. The results of this study emphasize an often unanticipated role of genetics in determining primate body fat and health that has implications for the management of captive primates. Application of this tool in wild populations would aid to unravel environmental from genetic drivers of body condition variation in primates.
Collapse
Affiliation(s)
- Jonas R R Torfs
- Behavioural Ecology and Ecophysiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
- Zoo Antwerp Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Daan W Laméris
- Behavioural Ecology and Ecophysiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
- Zoo Antwerp Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Jeroen M G Stevens
- SALTO Agro- and Biotechnology, Odisee University College, Sint-Niklaas, Belgium
| | - Jonas Verspeek
- Behavioural Ecology and Ecophysiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
- Zoo Antwerp Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | | | - Nicky Staes
- Behavioural Ecology and Ecophysiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
- Zoo Antwerp Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| |
Collapse
|
7
|
Patterson SK, Andonov E, Arre AM, Martínez MI, Negron-Del Valle JE, Petersen RM, Phillips D, Rahman A, Ruiz-Lambides A, Villanueva I, Lea AJ, Snyder-Mackler N, Brent LJ, Higham JP. Early life adversity has sex-dependent effects on survival across the lifespan in rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555589. [PMID: 37693423 PMCID: PMC10491187 DOI: 10.1101/2023.08.30.555589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Exposure to adversity during early life is linked to lasting detrimental effects on evolutionary fitness across many taxa. However, due to the challenges of collecting longitudinal data, especially in species where one sex disperses, direct evidence from long-lived species remains relatively scarce. Here we test the effects of early life adversity on male and female longevity in a free-ranging population of rhesus macaques (Macaca mulatta) at Cayo Santiago, Puerto Rico. We leveraged six decades of data to quantify the relative importance of ten forms of early life adversity for 6,599 macaques (3,230 male, 3,369 female), with a smaller sample size (N=299) for one form of adversity (maternal social isolation) which required high-resolution behavioral data. We found that individuals who experienced more early life adversity died earlier than those who experienced less adversity. Mortality risk was highest during early life, defined as birth to four years old, suggesting acute survival effects of adversity, but heightened mortality risk was also present in macaques who survived to adulthood. Females and males were affected differently by some forms of adversity, and these differences might be driven by varying energetic demands, female philopatry, and male dispersal. By leveraging data on thousands of macaques collected over decades, our results show that the fitness consequences of early life adversity are not uniform across individuals but vary as a function of the type of adversity, timing, and social context, and thus contribute to our limited but growing understanding of the evolution of early life sensitivities in long-lived species.
Collapse
Affiliation(s)
| | - Ella Andonov
- High School of American Studies at Lehman College, New York City
| | - Alyssa M. Arre
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico
| | - Melween I. Martínez
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico
| | | | | | | | | | - Angelina Ruiz-Lambides
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico
| | | | - Amanda J. Lea
- Department of Biological Science, Vanderbilt University
- Child and Brain Development Program, Canadian Institute for Advanced Study, Toronto, Canada
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University
- School of Life Sciences and School of Human Evolution and Social Change, Arizona State University
| | | | | |
Collapse
|
8
|
Clive J, Flintham E, Savolainen V. Same-sex sociosexual behaviour is widespread and heritable in male rhesus macaques. Nat Ecol Evol 2023; 7:1287-1301. [PMID: 37429903 DOI: 10.1038/s41559-023-02111-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/01/2023] [Indexed: 07/12/2023]
Abstract
Numerous reports have documented the occurrence of same-sex sociosexual behaviour (SSB) across animal species. However, the distribution of the behaviour within a species needs to be studied to test hypotheses describing its evolution and maintenance, in particular whether the behaviour is heritable and can therefore evolve by natural selection. Here we collected detailed observations across 3 yr of social and mounting behaviour of 236 male semi-wild rhesus macaques, which we combined with a pedigree dating back to 1938, to show that SSB is both repeatable (19.35%) and heritable (6.4%). Demographic factors (age and group structure) explained SSB variation only marginally. Furthermore, we found a positive genetic correlation between same-sex mounter and mountee activities, indicating a common basis to different forms of SSB. Finally, we found no evidence of fitness costs to SSB, but show instead that the behaviour mediated coalitionary partnerships that have been linked to improved reproductive success. Together, our results demonstrate that SSB is frequent in rhesus macaques, can evolve, and is not costly, indicating that SSB may be a common feature of primate reproductive ecology.
Collapse
Affiliation(s)
- Jackson Clive
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, UK
| | - Ewan Flintham
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, UK
| | - Vincent Savolainen
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, UK.
| |
Collapse
|
9
|
Francis G, Wang Q. Coming to the Caribbean-acclimation of Rhesus macaques (Macaca mulatta) at Cayo Santiago. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 181:271-295. [PMID: 37083128 PMCID: PMC10443431 DOI: 10.1002/ajpa.24748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 03/06/2023] [Accepted: 04/09/2023] [Indexed: 04/22/2023]
Abstract
OBJECTIVES To investigate whether the Cayo Santiago, Puerto Rico (Latitude: 18.1564°N; temperature range 19°C to 32°C) rhesus macaque population has acclimated to their tropical island conditions since arriving from Lucknow, India (Latitude: 26.8470°N; temperature range 8°C to 41°C) in 1938. MATERIALS AND METHODS Using the derived skeletal collection, measurements were taken of long bone lengths, diaphyseal circumference, and body weight using 635 (237 males and 398 females) skeletally mature individuals. Measurements sampled colony members born over a 51-year time span at Cayo Santiago, from 1951 to 2002. RESULTS Results demonstrated that body weights and diaphyseal circumferences significantly declined in both males and females. Long bone lengths relative to body weight and diaphyseal circumference also increased in females. Whereas body weight, long bone length and diaphyseal circumference declined at near parallel rates in males. DISCUSSION The population has acclimated to homogenous, tropical, conditions of the Caribbean island since their arrival over 80 years ago. Trends in both sexes aligned with Bergmann's rule, though females displayed a greater decline in body weight, as well as greater affinity with Allen's rule, than did males. Buffering effects related to male competition may be responsible for this discrepancy. Overall, the Cayo Santiago populations, as shown over a significant period (1951-2002) of their history, have acclimated to their island conditions by decreasing in size and altering body proportions.
Collapse
Affiliation(s)
- George Francis
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, Texas, USA
| | - Qian Wang
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, Texas, USA
| |
Collapse
|
10
|
Guatelli‐Steinberg D, Guerrieri T, Kensler TB, Maldonado E, Francis G, Kohn LAP, Zhao MQ, Turnquist JE, Wang Q. Male Cayo Santiago rhesus macaques ( Macaca mulatta) tend to have greater molar wear than females at comparable ages: exploring two possible reasons why. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 178:437-447. [PMID: 36110367 PMCID: PMC9469874 DOI: 10.1002/ajpa.24519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Objectives (1) To investigate sex differences in molar wear in known-age Cayo Santiago rhesus macaques (Macaca mulatta) and, (2) To explore sex differences in body weight and molar eruption timing as factors influencing sex differences in molar wear. Materials and Methods Data set I comprises wear scores, ages and body weights of 212 living monkeys included in the 1985 roundup. Data set II consists of molar wear measurements taken on 2D images of 103 of these monkeys' dental remains. Ordinal logistic regression was used to analyze the first data set. General linear models were used to analyze the second. Results Males generally exhibited more wear than females at equivalent chronological ages, though results varied by tooth type for the second data set. Male body weight in the full 1985 living sample was significantly related to dental wear, when age was taken into account; however, when males less than eight years of age were eliminated from the sample, the association between dental wear and weight became statistically insignificant. Analysis of the second data set suggested no statistically significant sex difference in dental wear for third molars, despite the approximately two year sex difference in eruption age for this tooth type. Discussion This study suggests that body weight in males might be a predictor of dental wear and that if it is, body weight might also influence sex differences in dental wear. Sex differences in dental eruption timing do not appear to explain sex differences in dental wear in this sample.
Collapse
Affiliation(s)
| | - Taylor Guerrieri
- Department of AnthropologyThe Ohio State UniversityColumbusOhioUSA
| | - Terry B. Kensler
- Caribbean Primate Research CenterUniversity of Puerto RicoSan JuanPuerto Rico
| | - Elizabeth Maldonado
- Caribbean Primate Research CenterUniversity of Puerto RicoSan JuanPuerto Rico
| | - George Francis
- Department of Biomedical SciencesTexas A&M University College of DentistryDallasTexasUSA
| | - Luci A. P. Kohn
- Department of Biological SciencesSouthern Illinois UniversityEdwardsvilleIllinoisUSA
| | - Martin Q. Zhao
- Department of Computer ScienceMercer UniversityMaconGeorgiaUSA
| | - Jean E. Turnquist
- Caribbean Primate Research CenterUniversity of Puerto RicoSan JuanPuerto Rico
| | - Qian Wang
- Department of Biomedical SciencesTexas A&M University College of DentistryDallasTexasUSA
| |
Collapse
|
11
|
|
12
|
Colby AE, Kimock CM, Higham JP. Endocranial volume is variable and heritable, but not related to fitness, in a free-ranging primate. Sci Rep 2021; 11:4235. [PMID: 33608572 PMCID: PMC7895985 DOI: 10.1038/s41598-021-81265-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/24/2020] [Indexed: 01/31/2023] Open
Abstract
Large relative brain size is a defining characteristic of the order Primates. Arguably, this can be attributed to selection for behavioral aptitudes linked to a larger brain size. In order for selection of a trait to occur, the trait must vary, that variation must be heritable, and enhance fitness. In this study, we use a quantitative genetic approach to investigate the production and maintenance of variation in endocranial volume in a population of free-ranging rhesus macaques. We measured the endocranial volume and body mass proxies of 542 rhesus macaques from Cayo Santiago. We investigated variation in endocranial volume within and between sexes. Using a genetic pedigree, we estimated heritability of absolute and relative endocranial volume, and selection gradients of both traits as well as estimated body mass in the sample. Within this population, both absolute and relative endocranial volume display variation and sexual dimorphism. Both absolute and relative endocranial volume are highly heritable, but we found no evidence of selection on absolute or relative endocranial volume. These findings suggest that endocranial volume is not undergoing selection, or that we did not detect it because selection is neither linear nor quadratic, or that we lacked sufficient sample sizes to detect it.
Collapse
Affiliation(s)
- Abigail E Colby
- Department of Anthropology, New York University, New York, NY, 10003, USA
| | - Clare M Kimock
- Department of Anthropology, New York University, New York, NY, 10003, USA
| | - James P Higham
- Department of Anthropology, New York University, New York, NY, 10003, USA.
| |
Collapse
|