1
|
Grossini E, Bellan M, Venkatesan S, Ola Pour MM, Mennuni M, D’Amario D, Bruno S, Ferrante D, Capello D, Sainaghi PP, Pirisi M, Patti G. Characterization of Circulating Vesicles of Complicated and Uncomplicated Systemic Sclerosis Patients and Their Role in Vascular Dysfunction. Int J Mol Sci 2025; 26:2380. [PMID: 40141024 PMCID: PMC11942416 DOI: 10.3390/ijms26062380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Extracellular vesicles (EVs) could be involved in the onset of systemic sclerosis (SSc) through the modulation of vascular function. Anyway, available data are contradictory, and further investigation would be necessary to clarify this aspect. Here, we characterized circulating EVs isolated from SSc patients and evaluated their effects on human vascular endothelial cells (HUVECs) and smooth muscle cells. In EVs from 13 complicated and 27 uncomplicated SSc patients and five healthy controls (HCs), we analyzed the size, concentration, and surface marker expression. In addition, EVs were used to stimulate HUVECs, and we evaluated cell viability, mitochondrial membrane potential, and nitric oxide (NO) and mitochondrial reactive oxygen species (MitoROS) release. In smooth muscle cells, the effects of EVs on calcium movement were examined. The results showed that the EVs of SSc patients expressed markers of T-lymphocyte/platelet/endothelial cell origin and were larger and more concentrated than those from HCs. In addition, the EVs of SSc patients reduced cell viability and mitochondrial membrane potential and increased NO and MitoROS release in HUVECs and intracellular calcium in smooth muscle cells. In conclusion, we found a specific pattern for EVs isolated from SSc patients, which could have a pathogenic role through direct actions on endothelial and smooth muscle cells.
Collapse
Affiliation(s)
- Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.V.); (M.M.O.P.)
| | - Mattia Bellan
- Internal Medicine Unit, Department of Translational Medicine, Università del Piemonte Orientale, Azienda Ospedaliera Universitaria Maggiore della Carità, 28100 Novara, Italy; (M.B.); (P.P.S.); (M.P.)
- CAAD, Department of Translational Medicine, Università del Piemonte Orientale, Azienda Ospedaliera Universitaria Maggiore della Carità, 28100 Novara, Italy
| | - Sakthipriyan Venkatesan
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.V.); (M.M.O.P.)
| | - Mohammad Mostafa Ola Pour
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.V.); (M.M.O.P.)
| | - Marco Mennuni
- Cardiology Unit, Department of Translational Medicine, Università del Piemonte Orientale, Azienda Ospedaliera Universitaria Maggiore della Carità, 28100 Novara, Italy; (M.M.); (D.D.); (G.P.)
| | - Domenico D’Amario
- Cardiology Unit, Department of Translational Medicine, Università del Piemonte Orientale, Azienda Ospedaliera Universitaria Maggiore della Carità, 28100 Novara, Italy; (M.M.); (D.D.); (G.P.)
| | - Stefania Bruno
- Laboratory of Translational Research, Department of Medical Sciences, University of Torino, 10126 Torino, Italy;
| | - Daniela Ferrante
- Statistic Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Daniela Capello
- Laboratory of Clinical Biochemistry, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
- UPO Biobank, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Pier Paolo Sainaghi
- Internal Medicine Unit, Department of Translational Medicine, Università del Piemonte Orientale, Azienda Ospedaliera Universitaria Maggiore della Carità, 28100 Novara, Italy; (M.B.); (P.P.S.); (M.P.)
- CAAD, Department of Translational Medicine, Università del Piemonte Orientale, Azienda Ospedaliera Universitaria Maggiore della Carità, 28100 Novara, Italy
| | - Mario Pirisi
- Internal Medicine Unit, Department of Translational Medicine, Università del Piemonte Orientale, Azienda Ospedaliera Universitaria Maggiore della Carità, 28100 Novara, Italy; (M.B.); (P.P.S.); (M.P.)
- CAAD, Department of Translational Medicine, Università del Piemonte Orientale, Azienda Ospedaliera Universitaria Maggiore della Carità, 28100 Novara, Italy
| | - Giuseppe Patti
- Cardiology Unit, Department of Translational Medicine, Università del Piemonte Orientale, Azienda Ospedaliera Universitaria Maggiore della Carità, 28100 Novara, Italy; (M.M.); (D.D.); (G.P.)
| |
Collapse
|
2
|
Joshkon A, Traboulsi W, Terme M, Bachelier R, Fayyad-Kazan H, Dignat-George F, Foucault-Bertaud A, Leroyer AS, Bardin N, Blot-Chabaud M. Soluble CD146 Cooperates with VEGFa to Generate an Immunosuppressive Microenvironment in CD146-Positive Tumors: Interest of a Combined Antibody-Based Therapy. Mol Cancer Ther 2025; 24:275-285. [PMID: 39431288 DOI: 10.1158/1535-7163.mct-24-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/09/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Tumor development necessitates immune escape through different mechanisms. To counteract these effects, the development of therapies targeting immune checkpoints (ICP) has generated interest as they have produced lasting objective responses in patients with advanced metastatic tumors. However, many tumors do not respond to inhibitors of ICPs, necessitating to further study the underlying mechanisms of exhaustion. VEGFa, a proangiogenic molecule secreted by tumors, was described to participate to tumor immune exhaustion by increasing ICPs, justifying in part the use of an anti-VEGFa mAb, bevacizumab, in patients. However, recent studies from our group have demonstrated that tumors can escape anti-VEGFa therapy through the secretion of soluble CD146 (sCD146). In this study, we show that both VEGFa and sCD146 cooperate to create an immunosuppressive microenvironment by increasing the expression of ICPs. In addition, sCD146 favors protumoral M2-type macrophages and induces the secretion of proinflammatory cytokines. An anti-sCD146 mAb reverses these effects and displays additive effects with the anti-VEGFa antibody to eliminate tumors in a syngeneic murine model grafted with melanoma cells. Combining bevacizumab with mucizumab could thus be of major therapeutic interest to prevent immune escape in malignant melanoma and other CD146-positive tumors.
Collapse
Affiliation(s)
- Ahmad Joshkon
- Aix-Marseille Univ, INSERM1263, INRAE1260, C2VN, Marseille, France
- Massalia Therapeutics, Marseille, France
| | - Wael Traboulsi
- Aix-Marseille Univ, INSERM1263, INRAE1260, C2VN, Marseille, France
| | - Magali Terme
- Université Paris Cité, Inserm, PARCC, Paris, France
| | | | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Science, Lebanese University, Hadath, Lebanon
| | | | | | | | - Nathalie Bardin
- Aix-Marseille Univ, INSERM1263, INRAE1260, C2VN, Marseille, France
- Massalia Therapeutics, Marseille, France
- Laboratory of Immunology, Biogenopole, APHM, Marseille, France
| | - Marcel Blot-Chabaud
- Aix-Marseille Univ, INSERM1263, INRAE1260, C2VN, Marseille, France
- Massalia Therapeutics, Marseille, France
| |
Collapse
|
3
|
Sun J, Shi M, Song Z, Hua F, Yan X, Zhang M, Duan H, Liu J. CD146-dependent macrophage infiltration promotes epidural fibrosis via the Erdr1/ERK/CCR2 pathway. Int Immunopharmacol 2024; 137:112528. [PMID: 38908086 DOI: 10.1016/j.intimp.2024.112528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Low back pain due to epidural fibrosis is a major complication after spine surgery. Macrophages infiltrate the wound area post laminectomy, but the role of macrophages in epidural fibrosis remains largely elusive. In a mouse model of laminectomy, macrophage depletion decreased epidural fibrosis. CD146, an adhesion molecule involved in cell migration, is expressed by macrophages. CD146-defective macrophages exhibited impaired migration, which was mediated by reduced expression of CCR2 and suppression of the MAPK/ERK signaling pathway. CD146-defective macrophages suppress the MAPK/ERK signaling pathway by increasing Erdr1. In vivo, CD146 deficiency decreased macrophage infiltration and reduced extracellular matrix deposition in wound tissues. Moreover, the anti-CD146 antibody AA98 suppressed macrophage infiltration and epidural fibrosis. Taken together, these findings demonstrated that CD146 deficiency alleviates epidural fibrosis by decreasing the migration of macrophages via the Erdr1/ERK/CCR2 pathway. Blocking CD146 and macrophage infiltration may help alleviate epidural fibrosis.
Collapse
Affiliation(s)
- Jinpeng Sun
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mohan Shi
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zeyuan Song
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Hua
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 451163, China
| | - Mingshun Zhang
- NHC Key Laboratory of Antibody Technique, Jiangsu Province Engineering Research Center of Antibody Drug, Department of Immunology, Nanjing Medical University, Nanjing, China.
| | - Hongxia Duan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jun Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Chen D, He Y, Wang Y, Zhang Z, Pei Y, Lei Y, Hu J, Xiang S, Jaffrezic-Renault N, Guo Z. An immune sandwich electrochemical biosensor based on triple-modified zirconium derivatives for detection of CD146 in serum. Colloids Surf B Biointerfaces 2024; 239:113902. [PMID: 38599037 DOI: 10.1016/j.colsurfb.2024.113902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
CD146, also known as melanoma cell adhesion molecule (MCAM), is overexpressed in various cancer patients, making it a valuable predictor for early diagnosis. In this work, an immune sandwich electrochemical biosensor is proposed for sensitive and non-invasive quantitative detection of CD146 in serum. Zirconium-based MOF (UIO-66) was modified by simultaneous copper atom doping, in situ growth carbon-based support and physical embedding of platinum nanoparticles (PtNPs). Triple-modified Cu-UIO-66@SWCNT/PtNPs nanocomposites with high stability and excellent electrochemical properties, serve as surface modification materials for glassy carbon electrodes. Anti-CD146 antibody (Ab1) was grafted onto the electrode surface via Pt-S bond. Meanwhile, the secondary antibody (Ab2) was conjugated with silver nanoparticles (AgNPs) to cooperate for CD146 capture and achieve secondary electrical signal amplification. Under optimal conditions, square wave voltammetry was employed to determine CD146 in the concentration range of 10-9-10-4 mg/mL and a limit of detection of 12 fg/mL was obtained. Finally, it was successfully applied to the analysis of CD146 in lung and liver cancer patients' serum samples.
Collapse
Affiliation(s)
- Die Chen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Faculty of Medicine, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Yutao He
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Faculty of Medicine, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Ya Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Faculty of Medicine, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Ziyi Zhang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Faculty of Medicine, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Yifei Pei
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Faculty of Medicine, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Yumeng Lei
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan 430080, PR China
| | - Junrui Hu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Shiqiang Xiang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Faculty of Medicine, Wuhan University of Science and Technology, Wuhan 430065, PR China.
| | - Nicole Jaffrezic-Renault
- University of Lyon, Institute of Analytical Sciences, UMR-CNRS 5280, 5, La Doua Street, Villeurbanne 69100, France.
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Faculty of Medicine, Wuhan University of Science and Technology, Wuhan 430065, PR China.
| |
Collapse
|
5
|
Wu J, Zhang X, Lin S, Wei Q, Lin Z, Jin O, Gu J. Alterations in peripheral T- and B-cell subsets in patients with systemic sclerosis. Int J Rheum Dis 2024; 27:e15145. [PMID: 38661314 DOI: 10.1111/1756-185x.15145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVES To determine the alteration of peripheral T and B cell subsets in patients with systemic sclerosis (SSc) and to evaluate their correlation with the progression of SSc. METHODS We recruited 47 SSc patients and 45 healthy controls (HCs) in this study. Demographic and clinical data were then collected. Flow cytometry was used to detect the proportions of 44 different T and B cell subsets in circulating blood. RESULTS The proportion of total B cells (p = .043) decreased in SSc patients, together with similar frequencies of total T cells, CD4+ T cells, and CD8+ T cells in both groups. Several subsets of T and B cells differed significantly between these two groups. Follicular helper T cells-1 (Tfh1) (p < .001), helper T cells-1 (Th1) (p = .001), regulatory T cells (Treg) (p = .004), effector memory CD8+ T cells (p = .041), and cytotoxic T cells-17 (Tc17) (p = .01) were decreased in SSc patients. Follicular helper T cells-2 (Tfh2) (p = .001) and, helper T cells-2 (Th2) (p = .001) levels increased in the SSc group. Regulatory B cells (Breg) (p = .015) were lower in the SSc group, together with marginal zone (MZ) B cells (p < .001), memory B cells (p = .001), and non-switched B cells (p = .005). The modified Rodnan skin score (mRSS) correlated with helper T cells-17 (Th17) (r = -.410, p = .004), Tfh1 (r = -.321, p = .028), peripheral helper T cells (Tph) (r = -.364, p = .012) and plasma cells (r = -.312, p = .033). CONCLUSIONS The alterations in T and B cells implied immune dysfunction, which may play an essential role in systemic sclerosis.
Collapse
Affiliation(s)
- Jialing Wu
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xi Zhang
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shen Lin
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qiujing Wei
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhiming Lin
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ou Jin
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jieruo Gu
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Amira G, Akram D, Fadoua M, Bilel N, Alya B, Khalil BS, Monia SK, Fatma S, Habib HM, Nathalie B, Raja TM. Imbalance of TH17/TREG cells in Tunisian patients with systemic sclerosis. Presse Med 2024; 53:104221. [PMID: 38161053 DOI: 10.1016/j.lpm.2023.104221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/07/2022] [Accepted: 11/22/2022] [Indexed: 01/03/2024] Open
Abstract
Fibrosis is a pathological manifestation in which connective tissue replaces normal one. It can affect many tissues from the skin to internal organs such as the lungs. Manifestations of pulmonary involvement can be pulmonary arterial hypertension or pulmonary fibrosis. The latter one is currently the leading cause of death in various autoimmune diseases, including systemic sclerosis. Our study group consists of 50 patients with systemic sclerosis: 24 with limited cutaneous form and 26 with diffuse cutaneous form. This cohort was compared to 50 healthy controls (age and sex matched); our aim is to explore the distribution of TH17 cells (TH17) as well as regulatory T cells (TREG) and study their correlation with the disease's progress. Our results show an increase for IL17A in patients compared to controls and that this increase is correlated with a specific clinical involvement: Pulmonary fibrosis. This correlation suggests a crucial role of IL17A in fibrosis especially in systemic sclerosis. In addition, we have shown that the percentages of TH17 cells are higher in patients; however, the percentages of TREG cells are similar between patients and controls. A study of TREG cell activity showed that TREG lost suppressive activity by inactivating the FOXP3 transcription factor. This proves that despite their presence, TREG does not adequately carry out their regulatory activity. Finally, we analyzed the correlation between TH17/TREG and clinical damage; the results show a positive correlation with pulmonary involvement proving the role of TH17/TREG balance in induced fibrosis in systemic sclerosis. No significative difference was observed, for all the parameters, between the two different forms of the disease. In conclusion, the results associated with the TH17/TREG scale and their correlations with fibrosis in systemic sclerosis open a way for new tools to manage this autoimmune disease, which up to today has neither treatment nor accurate diagnosis.
Collapse
Affiliation(s)
- Gabsi Amira
- Laboratory of Genetics Immunology and Human Pathology, University of Tunis El Manar, LR05ES05, Tunis 2092, Tunisia; Aix Marseille University, INSERM, C2VN UMR1263, Marseille, France.
| | - Dlala Akram
- Laboratory of Genetics Immunology and Human Pathology, University of Tunis El Manar, LR05ES05, Tunis 2092, Tunisia
| | - Missaoui Fadoua
- Laboratory of Genetics Immunology and Human Pathology, University of Tunis El Manar, LR05ES05, Tunis 2092, Tunisia
| | - Neili Bilel
- Laboratory of Genetics Immunology and Human Pathology, University of Tunis El Manar, LR05ES05, Tunis 2092, Tunisia
| | - Boutaba Alya
- Laboratory of Genetics Immunology and Human Pathology, University of Tunis El Manar, LR05ES05, Tunis 2092, Tunisia
| | - Ben Salem Khalil
- Laboratory of Genetics Immunology and Human Pathology, University of Tunis El Manar, LR05ES05, Tunis 2092, Tunisia
| | - Smiti Khanfir Monia
- Internal medicine service, University hospital center LA RABTA, Tunis 1007, Tunisia; University of Tunis EL MANAR, Faculty of medicine Tunis, Tunis 1007, Tunisia
| | - Said Fatma
- Internal medicine service, University hospital center LA RABTA, Tunis 1007, Tunisia; University of Tunis EL MANAR, Faculty of medicine Tunis, Tunis 1007, Tunisia
| | - Houman Mohamed Habib
- Internal medicine service, University hospital center LA RABTA, Tunis 1007, Tunisia; University of Tunis EL MANAR, Faculty of medicine Tunis, Tunis 1007, Tunisia
| | - Bardin Nathalie
- Aix Marseille University, INSERM, C2VN UMR1263, Marseille, France; Laboratory of immunology, University hospital La Conception Marseille France, France
| | - Triki Marrakchi Raja
- Laboratory of Genetics Immunology and Human Pathology, University of Tunis El Manar, LR05ES05, Tunis 2092, Tunisia
| |
Collapse
|
7
|
Li J, Huang Y, Zhang Y, Liu P, Liu M, Zhang M, Wu R. S1P/S1PR signaling pathway advancements in autoimmune diseases. BIOMOLECULES & BIOMEDICINE 2023; 23:922-935. [PMID: 37504219 PMCID: PMC10655875 DOI: 10.17305/bb.2023.9082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a versatile sphingolipid that is generated through the phosphorylation of sphingosine by sphingosine kinase (SPHK). S1P exerts its functional effects by binding to the G protein-coupled S1P receptor (S1PR). This lipid mediator plays a pivotal role in various cellular activities. The S1P/S1PR signaling pathway is implicated in the pathogenesis of immune-mediated diseases, significantly contributing to the functioning of the immune system. It plays a crucial role in diverse physiological and pathophysiological processes, including cell survival, proliferation, migration, immune cell recruitment, synthesis of inflammatory mediators, and the formation of lymphatic and blood vessels. However, the full extent of the involvement of this signaling pathway in the development of autoimmune diseases remains to be fully elucidated. Therefore, this study aims to comprehensively review recent research on the S1P/S1PR axis in diseases related to autoimmunity.
Collapse
Affiliation(s)
- Jianbin Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiping Huang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yueqin Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pengcheng Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mengxia Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rui Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Maeda K, Tanioka T, Takahashi R, Watanabe H, Sueki H, Takimoto M, Hashimoto SI, Ikeo K, Miwa Y, Kasama T, Iwamoto S. MCAM+CD161- Th17 Subset Expressing CD83 Enhances Tc17 Response in Psoriasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1867-1881. [PMID: 37186262 DOI: 10.4049/jimmunol.2200530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Recent studies have highlighted the pathogenic roles of IL-17-producing CD8+ T cells (T-cytotoxic 17 [Tc17]) in psoriasis. However, the underlying mechanisms of Tc17 induction remain unclear. In this study, we focused on the pathogenic subsets of Th17 and their mechanism of promotion of Tc17 responses. We determined that the pathogenic Th17-enriched fraction expressed melanoma cell adhesion molecule (MCAM) and CCR6, but not CD161, because this subset produced IL-17A abundantly and the presence of these cells in the peripheral blood of patients has been correlated with the severity of psoriasis. Intriguingly, the serial analysis of gene expression revealed that CCR6+MCAM+CD161-CD4+ T cells displayed the gene profile for adaptive immune responses, including CD83, which is an activator for CD8+ T cells. Coculture assay with or without intercellular contact between CD4+ and CD8+ T cells showed that CCR6+MCAM+CD161-CD4+ T cells induced the proliferation of CD8+ T cells in a CD83-dependent manner. However, the production of IL-17A by CD8+ T cells required exogenous IL-17A, suggesting that intercellular contact via CD83 and the production of IL-17A from activated CD4+ T cells elicit Tc17 responses. Intriguingly, the CD83 expression was enhanced in the presence of IL-15, and CD83+ cells stimulated with IL-1β, IL-23, IL-15, and IL-15Rα did not express FOXP3. Furthermore, CCR6+MCAM+CD161-CD4+ T cells expressing CD83 were increased in the peripheral blood of patients, and the CD83+ Th17-type cells accumulated in the lesional skin of psoriasis. In conclusion, pathogenic MCAM+CD161- Th17 cells may be involved in the Tc17 responses via IL-17A and CD83 in psoriasis.
Collapse
Affiliation(s)
- Kohei Maeda
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Toshihiro Tanioka
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Rei Takahashi
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Hideaki Watanabe
- Department of Dermatology, Showa University School of Medicine, Tokyo, Japan
| | - Hirohiko Sueki
- Department of Dermatology, Showa University School of Medicine, Tokyo, Japan
| | - Masafumi Takimoto
- Department of Pathology and Laboratory Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Shin-Ichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kazuho Ikeo
- DNA Data Analysis Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Yusuke Miwa
- Department of Internal Medicine, Division of Rheumatology, Showa University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Kasama
- Department of Internal Medicine, Division of Rheumatology, Showa University School of Medicine, Tokyo, Japan
| | - Sanju Iwamoto
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
9
|
Hoff J, Xiong L, Kammann T, Neugebauer S, Micheel JM, Gaßler N, Bauer M, Press AT. RIPK3 promoter hypermethylation in hepatocytes protects from bile acid-induced inflammation and necroptosis. Cell Death Dis 2023; 14:275. [PMID: 37072399 PMCID: PMC10113265 DOI: 10.1038/s41419-023-05794-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
Necroptosis facilitates cell death in a controlled manner and is employed by many cell types following injury. It plays a significant role in various liver diseases, albeit the cell-type-specific regulation of necroptosis in the liver and especially hepatocytes, has not yet been conceptualized. We demonstrate that DNA methylation suppresses RIPK3 expression in human hepatocytes and HepG2 cells. In diseases leading to cholestasis, the RIPK3 expression is induced in mice and humans in a cell-type-specific manner. Overexpression of RIPK3 in HepG2 cells leads to RIPK3 activation by phosphorylation and cell death, further modulated by different bile acids. Additionally, bile acids and RIPK3 activation further facilitate JNK phosphorylation, IL-8 expression, and its release. This suggests that hepatocytes suppress RIPK3 expression to protect themselves from necroptosis and cytokine release induced by bile acid and RIPK3. In chronic liver diseases associated with cholestasis, induction of RIPK3 expression may be an early event signaling danger and repair through releasing IL-8.
Collapse
Affiliation(s)
- Jessica Hoff
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Ling Xiong
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Tobias Kammann
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Sophie Neugebauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, 07747, Germany
| | - Julia M Micheel
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | | | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Adrian T Press
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany.
- Faculty of Medicine, Friedrich Schiller University Jena, Jena, 07747, Germany.
| |
Collapse
|
10
|
Heim X, Bermudez J, Joshkon A, Kaspi E, Bachelier R, Nollet M, Vélier M, Dou L, Brodovitch A, Foucault-Bertaud A, Leroyer AS, Benyamine A, Daumas A, Granel B, Sabatier F, Dignat-George F, Blot-Chabaud M, Bardin N. CD146 at the Interface between Oxidative Stress and the Wnt Signaling Pathway in Systemic Sclerosis. J Invest Dermatol 2022; 142:3200-3210.e5. [PMID: 35690141 DOI: 10.1016/j.jid.2022.03.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/01/2022] [Accepted: 03/12/2022] [Indexed: 01/05/2023]
Abstract
CD146 involvement was recently described in skin fibrosis of systemic sclerosis through its regulation of the Wnt pathway. Because the interaction between Wnt and ROS signaling plays a major role in fibrosis, we hypothesized that in systemic sclerosis, CD146 may regulate Wnt/ROS crosstalk. Using a transcriptomic and western blot analysis performed on CD146 wild-type or knockout mouse embryonic fibroblasts, we showed a procanonical Wnt hallmark in the absence of CD146 that is reversed when CD146 expression is restored. We found an elevated ROS content in knockout cells and an increase in DNA oxidative damage in the skin sections of knockout mice compared with those of wild-type mice. We also showed that ROS increased CD146 and its noncanonical Wnt ligand, WNT5A, only in wild-type cells. In humans, fibroblasts from patients with systemic sclerosis presented higher ROS content and expressed CD146, whereas control fibroblasts did not. Moreover, CD146 and its ligand were upregulated by ROS in both human fibroblasts. The increase in bleomycin-induced WNT5A expression was abrogated when CD146 was silenced. We showed an interplay between Wnt and ROS signaling in systemic sclerosis, regulated by CD146, which promotes the noncanonical Wnt pathway and prevents ROS signaling, opening the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xavier Heim
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Service d'immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France.
| | | | - Ahmad Joshkon
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Elise Kaspi
- Aix Marseille University, APHM, INSERM, MMG, Hôpital la Timone, Service de Biologie Cellulaire, Marseille, France
| | | | - Marie Nollet
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Mélanie Vélier
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Hematology and Vascular Biology Department, Hopital de la Conception, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Laetitia Dou
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Alexandre Brodovitch
- Service d'immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | | | | | - Audrey Benyamine
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Internal Medicine Department, Hopital Nord, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Aurélie Daumas
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Internal Medicine, Geriatric and Therapeutic Department, Hopital de la Timone, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Brigitte Granel
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Internal Medicine Department, Hopital Nord, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Florence Sabatier
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Cell Therapy Laboratory, INSERM CIC BT 1409, Hôpital de la Conception, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Françoise Dignat-George
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Hematology and Vascular Biology Department, Hopital de la Conception, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | | | - Nathalie Bardin
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Service d'immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| |
Collapse
|
11
|
The Role of T Cells in Systemic Sclerosis: An Update. IMMUNO 2022. [DOI: 10.3390/immuno2030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic disease characterized by microvasculopathy, autoantibodies (autoAbs), and fibrosis. The pathogenesis of the disease is incompletely understood. Microvasculopathy and autoAbs appear very early in the disease process. AutoAbs, such as those directed against DNA topoisomerase I (Topo I), are disease specific and associated with disease manifestations, and indicate activation of the adaptive immune system. B cells are involved in fibrosis in SSc. T cells are also involved in disease pathogenesis. T cells show signs of antigen-induced activation; T cells of TH2 type are increased and produce profibrotic cytokines interleukin (IL)-4, IL-13, and IL-31; CD4+ cytotoxic T lymphocytes are increased in skin lesions, and cause fibrosis and endothelial cell apoptosis; circulating T follicular helper (TFH) cells are increased in SSc produce IL-21 and promote plasmablast antibody production. On the other hand, regulatory T cells are impaired in SSc. These findings provide strong circumstantial evidence for T cell implication in SSc pathogenesis and encourage new T cell-directed therapeutic strategies for the disease.
Collapse
|
12
|
Jin W, Zheng Y, Zhu P. T cell abnormalities in systemic sclerosis. Autoimmun Rev 2022; 21:103185. [PMID: 36031049 DOI: 10.1016/j.autrev.2022.103185] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/02/2022]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease with a poor prognosis. To date, the pathogenesis of SSc is still unclear; moreover, its pathological conditions include microvascular damage, inflammation, and immune abnormalities. Different types of T cells may cause vasculitis and fibrosis in SSc by means of up- and down-regulation of cell surface molecules, abnormal release of pro-fibrotic or pro-inflammatory cytokines and direct contact with fibroblasts. These T cells, which are mainly CD4 + T cells, include the subtypes, T follicular helper (Tfh) cells, regulatory T Cells (Treg), interleukin-17 (IL-17)-producing Th17 cells, CD4+ cytotoxic T lymphocytes (CTLs), and angiogenic T (Tang) cells. In addition to the Th1/Th2 imbalance, which has long been established, there is also a Th17/Treg imbalance in SSc. This imbalance may be closely related to the abnormal immune status of SSc. There is mounting evidence that suggest T cell abnormalities may be crucial to the pathogenesis of SSc. In terms of treatment, existing therapies that target T cells, such as immunosuppressive therapy (tacrolimus), Janus kinase(JAK) inhibitors, and biologics(abatacept), have had some success. Other non-drug therapies, including Mesenchymal stem cells (MSCs), have extensive and complex mechanisms of action actually including T cell regulation. Based on the current evidence, we believe that the study of T cells will further our understanding of the pathogenesis of SSc, and may lead to more targeted treatment optionsfor patients with SSc.
Collapse
Affiliation(s)
- Wei Jin
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Yan Zheng
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China; National Translational Science Center for Molecular Medicine, Xi'an, PR China
| | - Ping Zhu
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China; National Translational Science Center for Molecular Medicine, Xi'an, PR China.
| |
Collapse
|
13
|
Kuca-Warnawin E, Plebańczyk M, Ciechomska M, Olesińska M, Szczęsny P, Kontny E. Impact of Adipose-Derived Mesenchymal Stem Cells (ASCs) of Rheumatic Disease Patients on T Helper Cell Differentiation. Int J Mol Sci 2022; 23:ijms23105317. [PMID: 35628127 PMCID: PMC9140468 DOI: 10.3390/ijms23105317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Complex pathogenesis of systemic lupus erythematosus (SLE) and systemic sclerosis (SSc) is associated with an imbalance of various Th-cell subpopulations. Mesenchymal stem cells (MSCs) have the ability to restore this balance. However, bone marrow-derived MSCs of SLE and SSc patients exhibit many abnormalities, whereas the properties of adipose derived mesenchymal stem cells (ASCS) are much less known. Therefore, we examined the effect of ASCs obtained from SLE (SLE/ASCs) and SSc (SSc/ASCs) patients on Th subset differentiation, using cells from healthy donors (HD/ASCs) as controls. ASCs were co-cultured with activated CD4+ T cells or peripheral blood mononuclear cells. Expression of transcription factors defining Th1, Th2, Th17, and regulatory T cell (Tregs) subsets, i.e., T-bet, GATA3, RORc, and FoxP3, were analysed by quantitative RT-PCR, the concentrations of subset-specific cytokines were measured by ELISA, and Tregs formation by flow cytometry. Compared with HD/ASCs, SLE/ASCs and especially SSc/ASCs triggered Th differentiation which was disturbed at the transcription levels of genes encoding Th1- and Tregs-related transcription factors. However, we failed to find functional consequences of this abnormality, because all tested ASCs similarly switched differentiation from Th1 to Th2 direction with accompanying IFNγ/IL-4 ratio decrease, up-regulated Th17 formation and IL-17 secretion, and up-regulated classical Tregs generation.
Collapse
Affiliation(s)
- Ewa Kuca-Warnawin
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland; (M.P.); (M.C.); (E.K.)
- Correspondence:
| | - Magdalena Plebańczyk
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland; (M.P.); (M.C.); (E.K.)
| | - Marzena Ciechomska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland; (M.P.); (M.C.); (E.K.)
| | - Marzena Olesińska
- Clinic of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (M.O.); (P.S.)
| | - Piotr Szczęsny
- Clinic of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (M.O.); (P.S.)
| | - Ewa Kontny
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland; (M.P.); (M.C.); (E.K.)
| |
Collapse
|
14
|
Sphingosine 1-phosphate receptor-targeted therapeutics in rheumatic diseases. Nat Rev Rheumatol 2022; 18:335-351. [PMID: 35508810 DOI: 10.1038/s41584-022-00784-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
Sphingosine 1-phosphate (S1P), which acts via G protein-coupled S1P receptors (S1PRs), is a bioactive lipid essential for vascular integrity and lymphocyte trafficking. The S1P-S1PR signalling axis is a key component of the inflammatory response in autoimmune rheumatic diseases. Several drugs that target S1PRs have been approved for the treatment of multiple sclerosis and inflammatory bowel disease and are under clinical testing for patients with systemic lupus erythematosus (SLE). Preclinical studies support the hypothesis that targeting the S1P-S1PR axis would be beneficial to patients with SLE, rheumatoid arthritis (RA) and systemic sclerosis (SSc) by reducing pathological inflammation. Whereas most preclinical research and development efforts are focused on reducing lymphocyte trafficking, protective effects of circulating S1P on endothelial S1PRs, which maintain the vascular barrier and enable blood circulation while dampening leukocyte extravasation, have been largely overlooked. In this Review, we take a holistic view of S1P-S1PR signalling in lymphocyte and vascular pathobiology. We focus on the potential of S1PR modulators for the treatment of SLE, RA and SSc and summarize the rationale, pathobiology and evidence from preclinical models and clinical studies. Improved understanding of S1P pathobiology in autoimmune rheumatic diseases and S1PR therapeutic modulation is anticipated to lead to efficacious and safer management of these diseases.
Collapse
|
15
|
Dai B, Ding L, Zhao L, Zhu H, Luo H. Contributions of Immune Cells and Stromal Cells to the Pathogenesis of Systemic Sclerosis: Recent Insights. Front Pharmacol 2022; 13:826839. [PMID: 35185577 PMCID: PMC8852243 DOI: 10.3389/fphar.2022.826839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/04/2022] [Indexed: 12/21/2022] Open
Abstract
Systemic sclerosis (SSc) is a multisystem rheumatic disease characterized by vascular dysfunction, autoimmune abnormalities, and progressive organ fibrosis. A series of studies in SSc patients and fibrotic models suggest that immune cells, fibroblasts, and endothelial cells participate in inflammation and aberrant tissue repair. Furthermore, the growing number of studies on single-cell RNA sequencing (scRNA-seq) technology in SSc elaborate on the transcriptomics and heterogeneities of these cell subsets significantly. In this review, we summarize the current knowledge regarding immune cells and stromal cells in SSc patients and discuss their potential roles in SSc pathogenesis, focusing on recent advances in the new subtypes by scRNA-seq.
Collapse
Affiliation(s)
- Bingying Dai
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Liqing Ding
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Lijuan Zhao
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Honglin Zhu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- *Correspondence: Honglin Zhu, ; Hui Luo,
| | - Hui Luo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- *Correspondence: Honglin Zhu, ; Hui Luo,
| |
Collapse
|
16
|
Hinchcliff M, Garcia-Milian R, Di Donato S, Dill K, Bundschuh E, Galdo FD. Cellular and Molecular Diversity in Scleroderma. Semin Immunol 2021; 58:101648. [PMID: 35940960 DOI: 10.1016/j.smim.2022.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the increasing armamentarium of high-throughput tools available at manageable cost, it is attractive and informative to determine the molecular underpinnings of patient heterogeneity in systemic sclerosis (SSc). Given the highly variable clinical outcomes of patients labelled with the same diagnosis, unravelling the cellular and molecular basis of disease heterogeneity will be crucial to predicting disease risk, stratifying management and ultimately informing a patient-centered precision medicine approach. Herein, we summarise the findings of the past several years in the fields of genomics, transcriptomics, and proteomics that contribute to unraveling the cellular and molecular heterogeneity of SSc. Expansion of these findings and their routine integration with quantitative analysis of histopathology and imaging studies into clinical care promise to inform a scientifically driven patient-centred personalized medicine approach to SSc in the near future.
Collapse
Affiliation(s)
- Monique Hinchcliff
- Yale School of Medicine, Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, USA.
| | | | - Stefano Di Donato
- Raynaud's and Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Biomedical Research Centre, University of Leeds, UK
| | | | - Elizabeth Bundschuh
- Yale School of Medicine, Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, USA
| | - Francesco Del Galdo
- Raynaud's and Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Biomedical Research Centre, University of Leeds, UK.
| |
Collapse
|
17
|
Li L, Luo R, Yang Y, Cheng Y, Ge S, Xu G. Tamibarotene inhibit the accumulation of fibrocyte and alleviate renal fibrosis by IL-17A. Ren Fail 2021; 42:1173-1183. [PMID: 33213229 PMCID: PMC7737677 DOI: 10.1080/0886022x.2020.1847145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Renal fibrosis is a common pathological process in the progression of chronic kidney disease. Accumulating evidence suggests that interleukin-17A (IL‐17A) and fibrocytes play crucial roles in the pathogenesis of fibrosis. However, the role of IL-17A in the regulation of renal fibrocytes in renal fibrosis has rarely been reported. Here, we report that the plasma IL-17A level is increased in immunoglobulin A nephropathy (IgAN) patients and is correlated with clinical parameters. Using a mouse model of unilateral ureteral obstruction (UUO), we found that both IL-17A expression and fibrocyte infiltration were increased in the kidneys of UUO mice. Besides, IL-17A enhanced fibrosis and fibrocyte-associated chemokine and activator expression in vitro. Furthermore, inhibition of IL-17A using Am80 (Tamibarotene) decreased fibrocytes and fibrocyte-associated chemokine and activator expression and significantly attenuated renal fibrosis in the UUO mice. Our findings suggest that Am80, which inhibits the accumulation of fibrocytes and alleviates renal fibrosis mediated by IL-17A, maybe a novel therapeutic drug for renal fibrosis.
Collapse
Affiliation(s)
- Lixi Li
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Luo
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yang
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yichun Cheng
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuwang Ge
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Xu
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Sun Z, Ji N, Jiang J, Tao Y, Zhang E, Yang X, Wang Z, Chen Z, Huang M, Zhang M. Fine Particulate Matter (PM 2. 5) Promotes CD146 Expression in Alveolar Epithelial Cells and Cryptococcus neoformans Pulmonary Infection. Front Microbiol 2021; 11:525976. [PMID: 33537006 PMCID: PMC7848894 DOI: 10.3389/fmicb.2020.525976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
Air pollution is a leading cause of increasing infectious lung diseases. Pulmonary cryptococcosis is a fatal fungal pneumonia in acquired immunodeficiency syndrome patients. In some cases, the pathogen Cryptococcus neoformans also develops dormant nodules in immunocompetent individuals. In the present study, we demonstrated that fine particulate matter (PM2.5) increased CD146 expression in alveolar epithelial cells and promoted C. neoformans pulmonary infection. Aryl hydrocarbon receptor (AhR) signaling was required for increased expression of CD146 in epithelial cells treated with PM2.5. In a murine model of pulmonary infection, PM2.5 promoted fungal infection, and CD146 deficiency decreased the fugal burden of C. neoformans. Our study may highlight the importance of air pollution to lung mycosis and CD146 as a target for preventing infectious lung diseases.
Collapse
Affiliation(s)
- Zhixiao Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingxian Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Tao
- NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Enrui Zhang
- NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Xiaofan Yang
- Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongqi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mingshun Zhang
- NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Joshkon A, Heim X, Dubrou C, Bachelier R, Traboulsi W, Stalin J, Fayyad-Kazan H, Badran B, Foucault-Bertaud A, Leroyer AS, Bardin N, Blot-Chabaud M. Role of CD146 (MCAM) in Physiological and Pathological Angiogenesis-Contribution of New Antibodies for Therapy. Biomedicines 2020; 8:biomedicines8120633. [PMID: 33352759 PMCID: PMC7767164 DOI: 10.3390/biomedicines8120633] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
The fundamental role of cell adhesion molecules in mediating various biological processes as angiogenesis has been well-documented. CD146, an adhesion molecule of the immunoglobulin superfamily, and its soluble form, constitute major players in both physiological and pathological angiogenesis. A growing body of evidence shows soluble CD146 to be significantly elevated in the serum or interstitial fluid of patients with pathologies related to deregulated angiogenesis, as autoimmune diseases, obstetric and ocular pathologies, and cancers. To block the undesirable effects of this molecule, therapeutic antibodies have been developed. Herein, we review the multifaceted functions of CD146 in physiological and pathological angiogenesis and summarize the interest of using monoclonal antibodies for therapeutic purposes.
Collapse
Affiliation(s)
- Ahmad Joshkon
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Science, Lebanese University, Hadath 1104, Lebanon; (H.F.-K.); (B.B.)
- Correspondence:
| | - Xavier Heim
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
- Service d’immunologie, Pôle de Biologie, Hôpital de la Conception, Assistance Publique Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
| | - Cléa Dubrou
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
| | - Richard Bachelier
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
| | - Wael Traboulsi
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
| | - Jimmy Stalin
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Science, Lebanese University, Hadath 1104, Lebanon; (H.F.-K.); (B.B.)
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Science, Lebanese University, Hadath 1104, Lebanon; (H.F.-K.); (B.B.)
| | - Alexandrine Foucault-Bertaud
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
| | - Aurelie S. Leroyer
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
| | - Nathalie Bardin
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
- Service d’immunologie, Pôle de Biologie, Hôpital de la Conception, Assistance Publique Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
| | - Marcel Blot-Chabaud
- Hematology Department, Center for CardioVascular and Nutrition Research C2VN, Faculty of Pharmacy, Timone Campus, Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement (INRAE), 13005 Marseille, France; (X.H.); (C.D.); (R.B.); (W.T.); (J.S.); (A.F.-B.); (A.S.L.); (N.B.); (M.B.-C.)
| |
Collapse
|
20
|
CD146/sCD146 in the Pathogenesis and Monitoring of Angiogenic and Inflammatory Diseases. Biomedicines 2020; 8:biomedicines8120592. [PMID: 33321883 PMCID: PMC7764286 DOI: 10.3390/biomedicines8120592] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
CD146 is a cell adhesion molecule expressed on endothelial cells, as well as on other cells such as mesenchymal stem cells and Th17 lymphocytes. This protein also exists in a soluble form, whereby it can be detected in biological fluids, including the serum or the cerebrospinal fluid (CSF). Some studies have highlighted the significance of CD146 and its soluble form in angiogenesis and inflammation, having been shown to contribute to the pathogenesis of many inflammatory autoimmune diseases, such as systemic sclerosis, mellitus diabetes, rheumatoid arthritis, inflammatory bowel diseases, and multiple sclerosis. In this review, we will focus on how CD146 and sCD146 contribute to the pathogenesis of the aforementioned autoimmune diseases and discuss the relevance of considering it as a biomarker in these pathologies.
Collapse
|
21
|
Sun Z, Ji N, Ma Q, Zhu R, Chen Z, Wang Z, Qian Y, Wu C, Hu F, Huang M, Zhang M. Epithelial-Mesenchymal Transition in Asthma Airway Remodeling Is Regulated by the IL-33/CD146 Axis. Front Immunol 2020; 11:1598. [PMID: 32793232 PMCID: PMC7387705 DOI: 10.3389/fimmu.2020.01598] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 06/16/2020] [Indexed: 01/08/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is essential in asthma airway remodeling. IL-33 from epithelial cells is involved in pulmonary fibrosis. CD146 has been extensively explored in cancer-associated EMT. Whether IL-33 regulates CD146 in the EMT process associated with asthma airway remodeling is still largely unknown. We hypothesized that EMT in airway remodeling was regulated by the IL-33/CD146 axis. House dust mite (HDM) extract increased the expression of IL-33 and CD146 in epithelial cells. Increased expression of CD146 in HDM-treated epithelial cells could be blocked with an ST2-neutralizing antibody. Moreover, HDM-induced EMT was dependent on the CD146 and TGF-β/SMAD-3 signaling pathways. IL-33 deficiency decreased CD146 expression and alleviated asthma severity. Similarly, CD146 deficiency mitigated EMT and airway remodeling in a murine model of chronic allergic airway inflammation. Furthermore, CD146 expression was significantly elevated in asthma patients. We concluded that IL-33 from HDM extract-treated alveolar epithelial cells stimulated CD146 expression, promoting EMT in airway remodeling in chronic allergic inflammation.
Collapse
Affiliation(s)
- Zhixiao Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiyun Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ranran Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongqi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Qian
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chaojie Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fan Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mingshun Zhang
- NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China
| |
Collapse
|