1
|
Vică ML, Dobreanu M, Curocichin G, Matei HV, Bâlici Ș, Vușcan ME, Chiorean AD, Nicula GZ, Pavel Mironescu DC, Leucuța DC, Teodoru CA, Siserman CV. The Influence of HLA Polymorphisms on the Severity of COVID-19 in the Romanian Population. Int J Mol Sci 2024; 25:1326. [PMID: 38279325 PMCID: PMC10816224 DOI: 10.3390/ijms25021326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024] Open
Abstract
In this study, we aimed to investigate whether specific HLA alleles found in patients from Romania and the Republic of Moldova were associated with the severity of COVID-19 infection and its associated mortality. We analyzed the HLA alleles at the -A, -B, -C, -DRB1, and -DQB1 loci in a cohort of 130 individuals with severe and extremely severe forms of COVID-19, including 44 individuals who died. We compared these findings to a control group consisting of individuals who had either not been diagnosed with COVID-19 or had experienced mild forms of the disease. Using multivariate logistic regression models, we discovered that the B*27 and B*50 alleles were associated with an increased susceptibility to developing a severe form of COVID-19. The A*33 and C*15 alleles showed potential for offering protection against the disease. Furthermore, we identified two protective alleles (A*03 and DQB1*02) against the development of extremely severe forms of COVID-19. By utilizing score statistics, we established a statistically significant association between haplotypes and disease severity (p = 0.021). In summary, this study provides evidence that HLA genotype plays a role in influencing the clinical outcome of COVID-19 infection.
Collapse
Affiliation(s)
- Mihaela Laura Vică
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
- Legal Medicine Institute, 400006 Cluj-Napoca, Romania;
| | - Minodora Dobreanu
- Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
- Department of Laboratory Medicine, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Târgu Mureș, Romania
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Târgu Mureș, Romania
| | - Ghenadie Curocichin
- Department of Family Medicine, “Nicolae Testemițanu” State University of Medicine and Pharmacy, MD-2004 Chișinău, Moldova;
| | - Horea Vladi Matei
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
- Legal Medicine Institute, 400006 Cluj-Napoca, Romania;
| | - Ștefana Bâlici
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
| | - Mihaela Elvira Vușcan
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
- Legal Medicine Institute, 400006 Cluj-Napoca, Romania;
| | - Alin Dan Chiorean
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
- Emergency Clinical Hospital for Children, 400370 Cluj-Napoca, Romania
| | - Gheorghe Zsolt Nicula
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
| | - Daniela Cristina Pavel Mironescu
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
- Legal Medicine Institute, 400006 Cluj-Napoca, Romania;
| | - Daniel Corneliu Leucuța
- Department of Medical Informatics and Biostatistics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Cosmin Adrian Teodoru
- Clinical Surgical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania;
| | - Costel Vasile Siserman
- Legal Medicine Institute, 400006 Cluj-Napoca, Romania;
- Department of Legal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Sharma N, Sharma G, Toor D. Plausible Influence of HLA Class I and Class II Diversity on SARS-CoV-2 Vulnerability. Crit Rev Immunol 2024; 44:31-40. [PMID: 37947070 DOI: 10.1615/critrevimmunol.2023049920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) caused the global coronavirus disease 2019 (COVID-19) pandemic, which adversely affected almost all aspects of human life and resulted in the loss of millions of lives, while affecting nearly 0.67 billion people worldwide. SARS-CoV-2 still poses a challenge to the healthcare system as there are more than 200,000 active cases of COVID-19 around the globe. Epidemiological data suggests that the magnitude of morbidity and mortality due to COVID-19 was low in a few geographical regions and was unpredictably higher in a few regions. The genetic diversity of different geographical regions might explain the sporadic prevalence of the disease. In this context, human leukocyte antigens (HLA) represent the most polymorphic gene-dense region of the human genome and serve as an excellent mini-genome model for evaluating population genetic diversity in the context of susceptibility and progression of various diseases. In this review, we highlight the plausible influence of HLA in susceptibility, severity, immune response, and designing of epitope-based vaccines for COVID-19. Further, there is a need for extensive investigations for illustration and clarification of the functional impact of HLA class I and II alleles in the pathogenesis and progression of SARS-CoV-2.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Gaurav Sharma
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Devinder Toor
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, 201313, Uttar Pradesh, India
| |
Collapse
|
3
|
Napolitano C, Sacristán I, Acuña F, Aguilar E, García S, López-Jara MJ, Cabello J, Hidalgo-Hermoso E, Poulin E, Grueber CE. Assessing micro-macroparasite selective pressures and anthropogenic disturbance as drivers of immune gene diversity in a Neotropical wild cat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:166289. [PMID: 37591403 DOI: 10.1016/j.scitotenv.2023.166289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
Anthropogenic environmental change is reducing available habitat for wild species, providing novel selection pressures such as infectious diseases and causing species to interact in new ways. The potential for emerging infectious diseases and zoonoses at the interface between humans, domestic animals, and wild species is a key global concern. In vertebrates, diversity at the major histocompatibility complex MHC is critical to disease resilience, and its study in wild populations provides insights into eco-evolutionary dynamics that human activities alter. In natural populations, variation at MHC loci is partly maintained by balancing selection, driven by pathogenic selective pressures. We hypothesize that MHC genetic diversity differs between guigna populations inhabiting human-dominated landscapes (higher pathogen pressures) versus more natural habitats (lower pathogen pressures). We predict that MHC diversity in guignas would be highest in human-dominated landscapes compared with continuous forest habitats. We also expected to find higher MHC diversity in guignas infected with micro and macro parasites (higher parasite load) versus non infected guignas. We characterized for the first time the genetic diversity at three MHC class I and II exons in 128 wild guignas (Leopardus guigna) across their distribution range in Chile (32-46° S) and Argentina, representing landscapes with varying levels of human disturbance. We integrated MHC sequence diversity with multiple measures of anthropogenic disturbance and both micro and macro parasite infection data. We also assessed signatures of positive selection acting on MHC genes. We found significantly higher MHC class I diversity in guignas inhabiting landscapes where houses were present, and with lower percentage of vegetation cover, and also in animals with more severe cardiorespiratory helminth infection (richness and intensity) and micro-macroparasite co-infection. This comprehensive, landscape-level assessment further enhances our knowledge on the evolutionary dynamics and adaptive potential of vertebrates in the face of emerging infectious disease threats and increasing anthropogenic impacts.
Collapse
Affiliation(s)
- Constanza Napolitano
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno, Chile; Institute of Ecology and Biodiversity (IEB), Concepción, Chile; Cape Horn International Center (CHIC), Puerto Williams, Chile.
| | - Irene Sacristán
- Universidad Andres Bello, Santiago, Chile; Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA), Centro Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
| | - Francisca Acuña
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Emilio Aguilar
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Sebastián García
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - María José López-Jara
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Javier Cabello
- Chiloé Silvestre Center for the Conservation of Biodiversity, Ancud, Chile
| | | | - Elie Poulin
- Institute of Ecology and Biodiversity (IEB), Concepción, Chile; Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems and Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Catherine E Grueber
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, Australia
| |
Collapse
|
4
|
Wang Q, Fang Z, Xiao Y, Wang H, Zhang P, Lu W, Zhang H, Zhou X. Lactiplantibacillus pentoses CCFM1227 Produces Desaminotyrosine to Protect against Influenza Virus H1N1 Infection through the Type I Interferon in Mice. Nutrients 2023; 15:3659. [PMID: 37630849 PMCID: PMC10458433 DOI: 10.3390/nu15163659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Microbiota-derived desaminotyrosine (DAT) protects the host from influenza by modulating the type I interferon (IFN) response. The aim of this study was to investigate the antivirus effects of a DAT-producing bacteria strain. A comparative genomics analysis and UHPLC Q-Exactive MS were used to search for potential strains and confirm their ability to produce DAT, respectively. The anti-influenza functions of the DAT producer were evaluated using an antibiotic-treated mouse model by orally administering the specific strain before viral infection. The results showed the Lactiplantibacillus pentosus CCFM1227 contained the phy gene and produced DAT by degrading phloretin. In vivo, L. pentosus CCFM1227 re-inoculation increased the DAT level in feces, and protected from influenza through inhibiting viral replication and alleviating lung immunopathology. Furthermore, CCFM1227-derived DAT was positively correlated with the IFN-β level in the lung. The transcriptome results showed that CCFM1227 activated gene expression in the context of the defense response to the virus, and the response to interferon-beta. Moreover, CCFM1227 treatment upregulated the expression of MHC-I family genes, which regulate the adaptive immune response. In conclusion, L. pentosus CCFM1227 exerted antiviral effects by producing DAT in the gut, and this may provide a potential solution for creating effective antiviral probiotics.
Collapse
Affiliation(s)
- Qianwen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.W.); (Z.F.); (Y.X.); (W.L.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhifeng Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.W.); (Z.F.); (Y.X.); (W.L.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.W.); (Z.F.); (Y.X.); (W.L.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.W.); (Z.F.); (Y.X.); (W.L.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Pinghu Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225009, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.W.); (Z.F.); (Y.X.); (W.L.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.W.); (Z.F.); (Y.X.); (W.L.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Yangzhou Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Xiuwen Zhou
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215021, China
| |
Collapse
|
5
|
Haq IU, Krukiewicz K, Tayyab H, Khan I, Khan M, Yahya G, Cavalu S. Molecular Understanding of ACE-2 and HLA-Conferred Differential Susceptibility to COVID-19: Host-Directed Insights Opening New Windows in COVID-19 Therapeutics. J Clin Med 2023; 12:jcm12072645. [PMID: 37048725 PMCID: PMC10095019 DOI: 10.3390/jcm12072645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/09/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The genetic variants of HLAs (human leukocyte antigens) play a crucial role in the virus–host interaction and pathology of COVID-19. The genetic variants of HLAs not only influence T cell immune responses but also B cell immune responses by presenting a variety of peptide fragments of invading pathogens. Peptide cocktail vaccines produced by using various conserved HLA-A2 epitopes provoke substantial specific CD8+ T cell responses in experimental animals. The HLA profiles vary among individuals and trigger different T cell-mediated immune responses in COVID-19 infections. Those with HLA-C*01 and HLA-B*44 are highly susceptible to the disease. However, HLA-A*02:01, HLA-DR*03:01, and HLA-Cw*15:02 alleles show resistance to SARS infection. Understanding the genetic association of HLA with COVID-19 susceptibility and severity is important because it can help in studying the transmission of COVID-19 and its physiopathogenesis. The HLA-C*01 and B*44 allele pathways can be studied to gain insight into disease transmission and physiopathogenesis. Therefore, integrating HLA testing is suggested in the ongoing pandemic, which will help in the rapid identification of highly susceptible populations worldwide and possibly acclimate vaccine development. Therefore, understanding the correlation between HLA and SARS-CoV-2 is critical in opening new insights into COVID-19 therapeutics, based on previous studies conducted.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
- Joint Doctoral School, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Hamnah Tayyab
- Department of Internal Medicine, King Edward Medical College, Lahore 54000, Pakistan
| | - Imran Khan
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Mehtab Khan
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
6
|
Karuppiah B, Chinniah R, Pandi S, Sevak V, Ravi PM, Thadakanathan D. Immunogenetic landscape of COVID-19 infections related neurological complications. COVID-19 IN ALZHEIMER'S DISEASE AND DEMENTIA 2023:133-146. [DOI: 10.1016/b978-0-443-15256-6.00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
7
|
Upadhyai P, Shenoy PU, Banjan B, Albeshr MF, Mahboob S, Manzoor I, Das R. Exome-Wide Association Study Reveals Host Genetic Variants Likely Associated with the Severity of COVID-19 in Patients of European Ancestry. Life (Basel) 2022; 12:1300. [PMID: 36143338 PMCID: PMC9504138 DOI: 10.3390/life12091300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
Host genetic variability plays a pivotal role in modulating COVID-19 clinical outcomes. Despite the functional relevance of protein-coding regions, rare variants located here are less likely to completely explain the considerable numbers of acutely affected COVID-19 patients worldwide. Using an exome-wide association approach, with individuals of European descent, we sought to identify common coding variants linked with variation in COVID-19 severity. Herein, cohort 1 compared non-hospitalized (controls) and hospitalized (cases) individuals, and in cohort 2, hospitalized subjects requiring respiratory support (cases) were compared to those not requiring it (controls). 229 and 111 variants differed significantly between cases and controls in cohorts 1 and 2, respectively. This included FBXO34, CNTN2, and TMCC2 previously linked with COVID-19 severity using association studies. Overall, we report SNPs in 26 known and 12 novel candidate genes with strong molecular evidence implicating them in the pathophysiology of life-threatening COVID-19 and post-recovery sequelae. Of these few notable known genes include, HLA-DQB1, AHSG, ALOX5AP, MUC5AC, SMPD1, SPG7, SPEG,GAS6, and SERPINA12. These results enhance our understanding of the pathomechanisms underlying the COVID-19 clinical spectrum and may be exploited to prioritize biomarkers for predicting disease severity, as well as to improve treatment strategies in individuals of European ancestry.
Collapse
Affiliation(s)
- Priyanka Upadhyai
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Pooja U. Shenoy
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Bhavya Banjan
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Mohammed F. Albeshr
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Irfan Manzoor
- Department of Biology, The College of Arts and Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Ranajit Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| |
Collapse
|
8
|
Zepeda-Cervantes J, Martínez-Flores D, Ramírez-Jarquín JO, Tecalco-Cruz ÁC, Alavez-Pérez NS, Vaca L, Sarmiento-Silva RE. Implications of the Immune Polymorphisms of the Host and the Genetic Variability of SARS-CoV-2 in the Development of COVID-19. Viruses 2022; 14:94. [PMID: 35062298 PMCID: PMC8778858 DOI: 10.3390/v14010094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 01/08/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the current pandemic affecting almost all countries in the world. SARS-CoV-2 is the agent responsible for coronavirus disease 19 (COVID-19), which has claimed millions of lives around the world. In most patients, SARS-CoV-2 infection does not cause clinical signs. However, some infected people develop symptoms, which include loss of smell or taste, fever, dry cough, headache, severe pneumonia, as well as coagulation disorders. The aim of this work is to report genetic factors of SARS-CoV-2 and host-associated to severe COVID-19, placing special emphasis on the viral entry and molecules of the immune system involved with viral infection. Besides this, we analyze SARS-CoV-2 variants and their structural characteristics related to the binding to polymorphic angiotensin-converting enzyme type 2 (ACE2). Additionally, we also review other polymorphisms as well as some epigenetic factors involved in the immunopathogenesis of COVID-19. These factors and viral variability could explain the increment of infection rate and/or in the development of severe COVID-19.
Collapse
Affiliation(s)
- Jesús Zepeda-Cervantes
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Daniel Martínez-Flores
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Josué Orlando Ramírez-Jarquín
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Ángeles C. Tecalco-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Mexico City 06720, Mexico;
| | - Noé Santiago Alavez-Pérez
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07340, Mexico;
| | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Rosa Elena Sarmiento-Silva
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
9
|
La Porta CAM, Zapperi S. Immune Profile of SARS-CoV-2 Variants of Concern. Front Digit Health 2021; 3:704411. [PMID: 34713175 PMCID: PMC8521889 DOI: 10.3389/fdgth.2021.704411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/17/2021] [Indexed: 01/11/2023] Open
Abstract
The spread of the current Sars-Cov-2 pandemics leads to the development of mutations that are constantly monitored because they could affect the efficacy of vaccines. Three recently identified mutated strains, known as variants of concern, are rapidly spreading worldwide. Here, we study possible effects of these mutations on the immune response to Sars-Cov-2 infection using NetTepi a computational method based on artificial neural networks that considers binding and stability of peptides obtained by proteasome degradation for widely represented HLA class I alleles present in human populations as well as the T-cell propensity of viral peptides that measures their immune response. Our results show variations in the number of potential highly ranked peptides ranging between 0 and 20% depending on the specific HLA allele. The results can be useful to design more specific vaccines.
Collapse
Affiliation(s)
- Caterina A M La Porta
- Center for Complexity and Biosystems, University of Milan, Milan, Italy.,Department of Environmental Science and Policy, University of Milan, Milan, Italy.,CNR - Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Genoa, Italy
| | - Stefano Zapperi
- Center for Complexity and Biosystems, University of Milan, Milan, Italy.,Department of Physics, University of Milan, Milan, Italy.,CNR - Consiglio Nazionale delle Ricerche, Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, Milan, Italy
| |
Collapse
|
10
|
Park S, Kang S. Association between Polygenetic Risk Scores of Low Immunity and Interactions between These Scores and Moderate Fat Intake in a Large Cohort. Nutrients 2021; 13:2849. [PMID: 34445011 PMCID: PMC8402209 DOI: 10.3390/nu13082849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
White blood cell (WBC) counts represent overall immunity. However, a few studies have been conducted to explore the genetic impacts of immunity and their interaction with lifestyles. We aimed to identify genetic variants associated with a low-WBC risk and document interactions between polygenetic risk scores (PRS), lifestyle factors, and nutrient intakes that influence low-WBC risk in a large hospital-based cohort. Single nucleotide polymorphisms (SNPs) were selected by genome-wide association study of participants with a low-WBC count (<4 × 109/L, n = 4176; low-WBC group) or with a normal WBC count (≥4 × 109/L, n = 36,551; control group). The best model for gene-gene interactions was selected by generalized multifactor dimensionality reduction. PRS was generated by summing selected SNP risk alleles of the best genetic model. Adjusted odds ratio (ORs) of the low-WBC group were 1.467 (1.219-1.765) for cancer incidence risk and 0.458 (0.385-0.545) for metabolic syndrome risk. Vitamin D intake, plant-based diet, and regular exercise were positively related to the low-WBC group, but smoking and alcohol intake showed an inverse association. The 7 SNPs included in the best genetic model were PSMD3_rs9898547, LCT_rs80157389, HLA-DRB1_rs532162239 and rs3097649, HLA-C rs2308575, CDKN1A_rs3176337 and THRA_rs7502539. PRS with 7 SNP model were positively associated with the low-WBC risk by 2.123-fold (1.741 to 2.589). PRS interacted with fat intake and regular exercise but not with other nutrient intakes or lifestyles. The proportion with the low WBC in the participants with high-PRS was lower among those with moderate-fat intake and regular exercise than those with low-fat intake and no exercise. In conclusion, adults with high-PRS had a higher risk of a low WBC count, and they needed to be advised to have moderate fat intake (20-25 energy percent) and regular exercise.
Collapse
Affiliation(s)
- Sunmin Park
- Obesity/Diabetes Research Center, Department of Food and Nutrition, Hoseo University, Asan 31499, Korea;
- Department of Bio-Convergence System, Hoseo University, Asan 31499, Korea
| | - Suna Kang
- Obesity/Diabetes Research Center, Department of Food and Nutrition, Hoseo University, Asan 31499, Korea;
| |
Collapse
|
11
|
Kumar S, Koenig J, Schneider A, Wermeling F, Boddul S, Theobald SJ, Vollmer M, Kloos D, Lachmann N, Klawonn F, Lienenklaus S, Talbot SR, Bleich A, Wenzel N, von Kaisenberg C, Keck J, Stripecke R. In Vivo Lentiviral Gene Delivery of HLA-DR and Vaccination of Humanized Mice for Improving the Human T and B Cell Immune Reconstitution. Biomedicines 2021; 9:biomedicines9080961. [PMID: 34440166 PMCID: PMC8393476 DOI: 10.3390/biomedicines9080961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/25/2022] Open
Abstract
Humanized mouse models generated with human hematopoietic stem cells (HSCs) and reconstituting the human immune system (HIS-mice) are invigorating preclinical testing of vaccines and immunotherapies. We have recently shown that human engineered dendritic cells boosted bonafide human T and B cell maturation and antigen-specific responses in HIS-mice. Here, we evaluated a cell-free system based on in vivo co-delivery of lentiviral vectors (LVs) for expression of a human leukocyte antigen (HLA-DRA*01/ HLA-DRB1*0401 functional complex, “DR4”), and a LV vaccine expressing human cytokines (GM-CSF and IFN-α) and a human cytomegalovirus gB antigen (HCMV-gB). Humanized NOD/Rag1null/IL2Rγnull (NRG) mice injected by i.v. with LV-DR4/fLuc showed long-lasting (up to 20 weeks) vector distribution and expression in the spleen and liver. In vivo administration of the LV vaccine after LV-DR4/fLuc delivery boosted the cellularity of lymph nodes, promoted maturation of terminal effector CD4+ T cells, and promoted significantly higher development of IgG+ and IgA+ B cells. This modular lentigenic system opens several perspectives for basic human immunology research and preclinical utilization of LVs to deliver HLAs into HIS-mice.
Collapse
Affiliation(s)
- Suresh Kumar
- Laboratory of Regenerative Immune Therapies Applied, REBIRTH-Research Center for Translational Regenerative Medicine, D-30625 Hannover, Germany; (S.K.); (J.K.); (A.S.); (M.V.)
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, D-30625 Hannover, Germany
| | - Johannes Koenig
- Laboratory of Regenerative Immune Therapies Applied, REBIRTH-Research Center for Translational Regenerative Medicine, D-30625 Hannover, Germany; (S.K.); (J.K.); (A.S.); (M.V.)
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, D-30625 Hannover, Germany
- German Centre for Infection Research (DZIF), DZIF Partner Site Hannover-Braunschweig, D-30625 Hannover, Germany
| | - Andreas Schneider
- Laboratory of Regenerative Immune Therapies Applied, REBIRTH-Research Center for Translational Regenerative Medicine, D-30625 Hannover, Germany; (S.K.); (J.K.); (A.S.); (M.V.)
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, D-30625 Hannover, Germany
| | - Fredrik Wermeling
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institute, 17177 Solna, Sweden; (F.W.); (S.B.)
| | - Sanjaykumar Boddul
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institute, 17177 Solna, Sweden; (F.W.); (S.B.)
| | - Sebastian J. Theobald
- Department of Internal Medicine I, Faculty of Medicine and University Hospital of Cologne, University of Cologne, D-50924 Cologne, Germany;
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, University of Cologne, D-50924 Cologne, Germany
| | - Miriam Vollmer
- Laboratory of Regenerative Immune Therapies Applied, REBIRTH-Research Center for Translational Regenerative Medicine, D-30625 Hannover, Germany; (S.K.); (J.K.); (A.S.); (M.V.)
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, D-30625 Hannover, Germany
| | - Doreen Kloos
- Institute of Experimental Hematology, Hannover Medical School, D-30625 Hannover, Germany;
| | - Nico Lachmann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, D-30625 Hannover, Germany;
| | - Frank Klawonn
- Biostatistics Group, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany;
- Institute for Information Engineering, Ostfalia University, D-38302 Wolfenbuettel, Germany
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science, Hannover Medical School, D-30625 Hannover, Germany; (S.L.); (S.R.T.); (A.B.)
| | - Steven R. Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, D-30625 Hannover, Germany; (S.L.); (S.R.T.); (A.B.)
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, D-30625 Hannover, Germany; (S.L.); (S.R.T.); (A.B.)
| | - Nadine Wenzel
- Institute for Transfusion Medicine and Transplant Engineering, Hannover Medical School, D-30625 Hannover, Germany;
| | - Constantin von Kaisenberg
- Department of Obstetrics, Gynecology and Reproductive Medicine, Hannover Medical School, D-30625 Hannover, Germany;
| | - James Keck
- The Jackson Laboratory, Sacramento, CA 95838, USA;
| | - Renata Stripecke
- Laboratory of Regenerative Immune Therapies Applied, REBIRTH-Research Center for Translational Regenerative Medicine, D-30625 Hannover, Germany; (S.K.); (J.K.); (A.S.); (M.V.)
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, D-30625 Hannover, Germany
- German Centre for Infection Research (DZIF), DZIF Partner Site Hannover-Braunschweig, D-30625 Hannover, Germany
- Correspondence: ; Tel.: +49-511-532-6999
| |
Collapse
|
12
|
Sarri CA, Giannoulis T, Moutou KA, Mamuris Z. HLA class II peptide-binding-region analysis reveals funneling of polymorphism in action. Immunol Lett 2021; 238:75-95. [PMID: 34329645 DOI: 10.1016/j.imlet.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND HLA-class II proteins hold important roles in key physiological processes. The purpose of this study was to compile all class II alleles reported in human population and investigate patterns in pocket variants and their combinations, focusing on the peptide-binding region (PBR). METHODS For this purpose, all protein sequences of DPA1, DQA1, DPB1, DQB1 and DRB1 were selected and filtered, in order to have full PBR sequences. Proportional representation was used for pocket variants while population data were also used. RESULTS All pocket variants and PBR sequences were retrieved and analyzed based on the preference of amino acids and their properties in all pocket positions. The observed number of pocket variants combinations was much lower than the possible inferred, suggesting that PBR formation is under strict funneling. Also, although class II proteins are very polymorphic, in the majority of the reported alleles in all populations, a significantly less polymorphic pocket core was found. CONCLUSIONS Pocket variability of five HLA class II proteins was studied revealing favorable properties of each protein. The actual PBR sequences of HLA class II proteins appear to be governed by restrictions that lead to the establishment of only a fraction of the possible combinations and the polymorphism recorded is the result of intense funneling based on function.
Collapse
Affiliation(s)
- Constantina A Sarri
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece
| | - Themistoklis Giannoulis
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece; Department of Animal Science, University of Thessaly, Trikallon 224, 43100 Karditsa, Greece
| | - Katerina A Moutou
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece
| | - Zissis Mamuris
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece.
| |
Collapse
|
13
|
Longeri M, Russo V, Strillacci MG, Perillo A, Carisetti M, Cozzi MC, Neola B, Roperto S. Association Between BoLA-DRB3.2 Polymorphism and Bovine Papillomavirus Infection for Bladder Tumor Risk in Podolica Cattle. Front Vet Sci 2021; 8:630089. [PMID: 34179154 PMCID: PMC8219868 DOI: 10.3389/fvets.2021.630089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/21/2021] [Indexed: 01/06/2023] Open
Abstract
Blood samples from 260 unrelated cattle (132 animals affected by papillomavirus-associated bladder tumors and 128 healthy) were genotyped using the classic polymerase chain reaction/restriction fragment length polymorphism method to screen MHC class II bovine leukocyte antigen-DRB3. 2 polymorphism. The DRB3*22 allele was significantly (p ≤ 0.01) detected in healthy cattle, thus appearing to have a negative association (protective effect) with virus infection of the urinary bladder known to represent a bladder tumor risk for cattle living free at pasture. Considering the two sequence alleles identified in animals carrying DRB3*22, DRB3*011:01 allele from samples of animals harboring the unexpressed bovine papillomaviruses (BPV)-2 E5 gene was characterized by amino acid residues believed to have a protective effect against BPV infection such as arginine at position 71 (R71) in pocket 4, histidine at position 11 (H11) in pocket 6, and both glutamine at position 9 (Q9) and serine at position 57 (S57) in pocket 9 of the antigen-binding groove. The DRB3*011:02v allele from affected animals was characterized by amino acids believed to be susceptibility residues such as lysine (K71), tyrosine (Y11), glutamic acid (E9), and aspartic acid (D57) in these pockets. These results suggest that animals harboring the DRB3*011:01 allele may have a lower risk of BPV infection and, consequently, a reduced risk of bladder tumors.
Collapse
Affiliation(s)
- Maria Longeri
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| | - Valeria Russo
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università degli Studi di Napoli Federico II, Naples, Italy
| | | | - Antonella Perillo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Bari, Italy
| | - Michela Carisetti
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| | - Maria Cristina Cozzi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| | - Benedetto Neola
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | - Sante Roperto
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università degli Studi di Napoli Federico II, Naples, Italy
| |
Collapse
|
14
|
Li F, Zhu M, Niu B, Liu L, Peng X, Yang H, Qin B, Wang M, Ren X, Zhou X. Generation and expression analysis of BAC humanized mice carrying HLA-DP401 haplotype. Animal Model Exp Med 2021; 4:116-128. [PMID: 34179719 PMCID: PMC8212823 DOI: 10.1002/ame2.12158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/17/2020] [Indexed: 11/13/2022] Open
Abstract
Background Human leukocyte antigen (HLA)-DP is much less studied than other HLA class II antigens, that is, HLA-DR and HLA-DQ, etc. However, the accumulating data have suggested the important roles of DP-restricted responses in the context of cancer, allergy, and infectious disease. Lack of animal models expressing these genes as authentic cis-haplotypes blocks our understanding for the role of HLA-DP haplotypes in immunity. Methods To explore the potential cis-acting control elements involved in the transcriptional regulation of the HLA-DPA1/DPB1 gene, we performed the expression analysis using bacterial artificial chromosome (BAC)-based transgenic humanized mice in the C57BL/6 background, which carried the entire HLA-DP401 gene locus. We further developed a mouse model of Staphylococcus aureus pneumonia in HLA-DP401 humanized transgenic mice, and performed the analysis on the expression pattern of HLA-DP401 and immunological responses in the model. Results In this study, we screened and identified a BAC clone spanning the entire HLA-DP gene locus. DNA from this clone was analyzed for integrity by pulsed-field gel electrophoresis and then microinjected into fertilized mouse oocytes to produce transgenic founder animals. Nine sets of PCR primers for regional markers with an average distance of 15 kb between each primer were used to confirm the integrity of the transgene in the five transgenic lines carrying the HLA-DPA1/DPB1 gene. Transgene copy numbers were determined by real-time PCR analysis. HLA-DP401 gene expression was analyzed at the mRNA and protein level. Although infection with S aureus Newman did not alter the percentage of immune cells in the spleen and thymus from the HLA-DP401-H2-Aβ1 humanized mice. Increased expression of HLA-DP401 was observed in the thymus of the humanized mice infected by S aureus. Conclusions We generated several BAC transgenic mice, and analyzed the expression of HLA-DPA1/DPB1 in those mice. A model of Saureus-induced pneumonia in the HLA-DP401-H2-Aβ1-/- humanized mice was further developed, and S aureus infection upregulated the HLA-DP401 expression in thymus of those humanized mice. These findings demonstrate the potential of those HLA-DPA1/DPB1 transgenic humanized mice for developing animal models of infectious diseases and MHC-associated immunological diseases.
Collapse
Affiliation(s)
- Feng Li
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Meng‐min Zhu
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Bo‐wen Niu
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Ling‐ling Liu
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Xiu‐hua Peng
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Hua Yang
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Bo‐yin Qin
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Meixiang Wang
- Department of Scientific ResearchShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Xiaonan Ren
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| | - Xiaohui Zhou
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterFudan UniveristyShanghaiChina
| |
Collapse
|
15
|
Langton DJ, Bourke SC, Lie BA, Reiff G, Natu S, Darlay R, Burn J, Echevarria C. The influence of HLA genotype on the severity of COVID-19 infection. HLA 2021; 98:14-22. [PMID: 33896121 PMCID: PMC8251294 DOI: 10.1111/tan.14284] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022]
Abstract
The impact of COVID‐19 varies markedly, not only between individual patients but also between different populations. We hypothesised that differences in HLA genes might influence this variation. Using next generation sequencing, we analysed the class I and class II classical HLA genes of 147 individuals of European descent experiencing variable clinical outcomes following COVID‐19 infection. Forty‐nine of these patients were admitted to hospital with severe respiratory disease. They had no significant pre‐existing comorbidities. We compared the results to those obtained from a group of 69 asymptomatic hospital workers who evidence of COVID exposure based on blood antibody testing. Allele frequencies in both the severe and asymptomatic groups were compared to local and national healthy controls with adjustments made for age and sex. With the inclusion of hospital staff who had reported localised symptoms only (limited to loss of smell/taste, n = 13) or systemic symptoms not requiring hospital treatment (n = 16), we carried out ordinal logistic regression modelling to determine the relative influence of age, BMI, sex and the presence of specific HLA genes on symptomatology. We found a significant difference in the allele frequency of HLA‐DRB1*04:01 in the severe patient compared to the asymptomatic staff group (5.1% vs. 16.7%, P = .003 after adjustment for age and sex). There was a significantly lower frequency of the haplotype DQA1*01:01‐DQB1*05:01‐DRB1*01:01 in the asymptomatic group compared to the background population (P = .007). Ordinal logistic regression modelling confirmed the significant influence of DRB1*04:01 on the clinical severity of COVID‐19 observed in the cohorts. These alleles are found in greater frequencies in the North Western European population. This regional study provides evidence that HLA genotype influences clinical outcome in COVID‐19 infection. Validation studies must take account of the complex genetic architecture of the immune system across different geographies and ethnicities.
Collapse
Affiliation(s)
- David J Langton
- ExplantLab, The Biosphere, Newcastle Helix, Newcastle-upon-Tyne, UK
| | - Stephen C Bourke
- Northumbria Healthcare NHS Trust, North Tyneside General Hospital, North Shields, Tyne and Wear, UK
| | - Benedicte A Lie
- Department of Medical Genetics, University of Oslo, Oslo, Norway
| | | | | | - Rebecca Darlay
- Newcastle University Translational and Clinical Research Institute, International Centre for Life (for John Burn) and Population & Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom, for Rebecca Darlay, Newcastle-upon-Tyne, UK
| | - John Burn
- Newcastle University Translational and Clinical Research Institute, International Centre for Life (for John Burn) and Population & Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom, for Rebecca Darlay, Newcastle-upon-Tyne, UK
| | - Carlos Echevarria
- Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
16
|
Björk A, Da Silva Rodrigues R, Richardsdotter Andersson E, Ramírez Sepúlveda JI, Mofors J, Kvarnström M, Oke V, Svenungsson E, Gunnarsson I, Wahren-Herlenius M. Interferon activation status underlies higher antibody response to viral antigens in patients with systemic lupus erythematosus receiving no or light treatment. Rheumatology (Oxford) 2021; 60:1445-1455. [PMID: 33006609 DOI: 10.1093/rheumatology/keaa611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/21/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Infections have been proposed as an environmental risk factor for autoimmune disease. Responses to microbial antigens may be studied in vivo during vaccination. We therefore followed patients with SLE and controls during split-virion influenza vaccination to quantify antibody responses against viral antigens and associated cellular and proteome parameters. METHODS Blood samples and clinical data were collected from female patients with SLE with no or HCQ and/or low-dose prednisolone treatment (n = 29) and age- and sex-matched healthy controls (n = 17). Vaccine-specific antibody titres were measured by ELISA and IFN-induced gene expression in monocytes by quantitative PCR. Serum proteins were measured by proximity extension assay and disease-associated symptoms were followed by questionnaires. RESULTS The vaccine-specific antibody response was significantly higher in patients compared with controls and titres of IgG targeting the viral proteins were higher in patients than controls at both 1 and 3 months after immunization. Clinical disease symptoms and autoantibody titres remained unchanged throughout the study. Notably, a positive pre-vaccination mRNA-based IFN score was associated with a significantly higher vaccine-specific antibody response and with a broader profile of autoantibody specificities. Screening of serum protein biomarkers revealed higher levels of IFN-regulated proteins in patients compared with controls and that levels of such proteins correlated with the vaccine-specific IgG response, with C-C motif chemokine ligand 3 exhibiting the strongest association. CONCLUSION Augmented antibody responses to viral antigens develop in patients with SLE on no or light treatment and associate with markers of type I IFN system activation at the RNA and protein levels.
Collapse
Affiliation(s)
- Albin Björk
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rui Da Silva Rodrigues
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | | | - Johannes Mofors
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marika Kvarnström
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vilija Oke
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elisabet Svenungsson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Wahren-Herlenius
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
17
|
Abstract
Health and lifespan disparities between sexes are dependent on the immune responses. Men and women have different life styles which determine the environment, nutritional requirements and their interactions with the sex hormones. Sexual dimorphism in innate and adaptive immunity determines responses to infections and other environmental factors regulating health and diseases. Sex hormones regulate immune responses through the expression of receptors which differ for female and male hormones. Estrogen receptors are expressed in brain, lymphoid tissue cells and many immune cells while androgen receptors are limited in expression. Genetic, epigenetic factors and X chromosome linked immune function genes are important in enhanced adaptive immunity in females, leading to production of higher levels of antibodies compared to males. Different nutritional requirements and hormonal control of the mucosal microbiome and its function regulate mucosal immunity. Hormonal changes during various aspects of life and during aging control immune senescence. Evolutionarily, females have an advantage during young age when they are protected from infections by heightened immune reactivity though during aging that can lead to pathologies. Considering the sexual dimorphism in immunity, guidelines need to be established for sex-based treatments for optimal response.
Collapse
Affiliation(s)
- Veena Taneja
- Department of Immunology and Rheumatology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
18
|
Littera R, Campagna M, Deidda S, Angioni G, Cipri S, Melis M, Firinu D, Santus S, Lai A, Porcella R, Lai S, Rassu S, Scioscia R, Meloni F, Schirru D, Cordeddu W, Kowalik MA, Serra M, Ragatzu P, Carta MG, Del Giacco S, Restivo A, Deidda S, Orrù S, Palimodde A, Perra R, Orrù G, Conti M, Balestrieri C, Serra G, Onali S, Marongiu F, Perra A, Chessa L. Human Leukocyte Antigen Complex and Other Immunogenetic and Clinical Factors Influence Susceptibility or Protection to SARS-CoV-2 Infection and Severity of the Disease Course. The Sardinian Experience. Front Immunol 2020; 11:605688. [PMID: 33343579 DOI: 10.3389/fimmu.2020.605688.pmid:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/18/2020] [Indexed: 11/13/2022] Open
Abstract
AIM SARS-CoV-2 infection is a world-wide public health problem. Several aspects of its pathogenesis and the related clinical consequences still need elucidation. In Italy, Sardinia has had very low numbers of infections. Taking advantage of the low genetic polymorphism in the Sardinian population, we analyzed clinical, genetic and immunogenetic factors, with particular attention to HLA class I and II molecules, to evaluate their influence on susceptibility to SARS-CoV-2 infection and the clinical outcome. METHOD AND MATERIALS We recruited 619 healthy Sardinian controls and 182 SARS-CoV-2 patients. Thirty-nine patients required hospital care and 143 were without symptoms, pauci-symptomatic or with mild disease. For all participants, we collected demographic and clinical data and analyzed the HLA allele and haplotype frequencies. RESULTS Male sex and older age were more frequent in hospitalized patients, none of whom had been vaccinated during the previous seasonal flu vaccination campaignes. Compared to the group of asymptomatic or pauci-symptomatic patients, hospitalized patients also had a higher frequency of autoimmune diseases and glucose-6-phosphate-dehydrogenase (G6PDH) deficiency. None of these patients carried the beta-thalassemia trait, a relatively common finding in the Sardinian population. The extended haplotype HLA-A*02:05, B*58:01, C*07:01, DRB1*03:01 [OR 0.1 (95% CI 0-0.6), Pc = 0.015] was absent in all 182 patients, while the HLA-C*04:01 allele and the three-loci haplotype HLA-A*30:02, B*14:02, C*08:02 [OR 3.8 (95% CI 1.8-8.1), Pc = 0.025] were more frequently represented in patients than controls. In a comparison between in-patients and home care patients, the HLA-DRB1*08:01 allele was exclusively present in the hospitalized patients [OR > 2.5 (95% CI 2.7-220.6), Pc = 0.024]. CONCLUSION The data emerging from our study suggest that the extended haplotype HLA-A*02:05, B*58:01, C*07:01, DRB1*03:01 has a protective effect against SARS-CoV-2 infection in the Sardinian population. Genetic factors that resulted to have a negative influence on the disease course were presence of the HLA-DRB1*08:01 allele and G6PDH deficiency, but not the beta-thalassemic trait. Absence of influenza vaccination could be a predisposing factor for more severe disease.
Collapse
Affiliation(s)
- Roberto Littera
- Complex Structure of Medical Genetics, R. Binaghi Hospital, Area Socio-Sanitaria Locale (ASSL) Cagliari, Azienda per la Tutela della Salute (ATS) Sardegna, Italy
- Associazione per l'Avanzamento della Ricerca per i Trapianti O.d.V., non profit organisation, Cagliari, Italy
| | - Marcello Campagna
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Silvia Deidda
- Complex Structure of Pneumology, PO SS Trinità, ASSL Cagliari, ATS Sardegna, Cagliari, Italy
| | - Goffredo Angioni
- Complex Structure of Infectious Diseases, PO SS Trinità, ASSL Cagliari ATS Sardegna, Cagliari, Italy
| | - Selene Cipri
- Complex Structure of Medical Genetics, R. Binaghi Hospital, Area Socio-Sanitaria Locale (ASSL) Cagliari, Azienda per la Tutela della Salute (ATS) Sardegna, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Maurizio Melis
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - Alberto Lai
- Unitá di Crisi Locale (UCL) ATS Sardegna, Cagliari, Italy
| | - Rita Porcella
- Complex Structure of Medical Genetics, R. Binaghi Hospital, Area Socio-Sanitaria Locale (ASSL) Cagliari, Azienda per la Tutela della Salute (ATS) Sardegna, Italy
| | - Sara Lai
- Complex Structure of Medical Genetics, R. Binaghi Hospital, Area Socio-Sanitaria Locale (ASSL) Cagliari, Azienda per la Tutela della Salute (ATS) Sardegna, Italy
| | - Stefania Rassu
- Complex Structure of Medical Genetics, R. Binaghi Hospital, Area Socio-Sanitaria Locale (ASSL) Cagliari, Azienda per la Tutela della Salute (ATS) Sardegna, Italy
| | - Rosetta Scioscia
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Federico Meloni
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Daniele Schirru
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - William Cordeddu
- Complex Structure of Infectious Diseases, PO SS Trinità, ASSL Cagliari ATS Sardegna, Cagliari, Italy
| | - Marta Anna Kowalik
- Unit of Oncology and Molecular Pathology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Serra
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Paola Ragatzu
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Mauro Giovanni Carta
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Angelo Restivo
- Colorectal Surgery Unit, Department of Surgical Science, University of Cagliari, Cagliari, Italy
| | - Simona Deidda
- Colorectal Surgery Unit, Department of Surgical Science, University of Cagliari, Cagliari, Italy
| | - Sandro Orrù
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Antonella Palimodde
- Complex Structure of Pneumology, PO SS Trinità, ASSL Cagliari, ATS Sardegna, Cagliari, Italy
| | - Roberto Perra
- Complex Structure of Pneumology, PO SS Trinità, ASSL Cagliari, ATS Sardegna, Cagliari, Italy
| | - Germano Orrù
- Molecular Biology Service Laboratory, Department of Surgical Science, University of Cagliari, Cagliari, Italy
| | - Maria Conti
- Liver Unit, Department of Internal Medicine, University Hospital of Cagliari, Cagliari, Italy
| | - Cinzia Balestrieri
- Liver Unit, Department of Internal Medicine, University Hospital of Cagliari, Cagliari, Italy
| | - Giancarlo Serra
- Liver Unit, Department of Internal Medicine, University Hospital of Cagliari, Cagliari, Italy
| | - Simona Onali
- Unit of Oncology and Molecular Pathology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Francesco Marongiu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Andrea Perra
- Associazione per l'Avanzamento della Ricerca per i Trapianti O.d.V., non profit organisation, Cagliari, Italy
- Unit of Oncology and Molecular Pathology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Luchino Chessa
- Associazione per l'Avanzamento della Ricerca per i Trapianti O.d.V., non profit organisation, Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Liver Unit, Department of Internal Medicine, University Hospital of Cagliari, Cagliari, Italy
| |
Collapse
|
19
|
Littera R, Campagna M, Deidda S, Angioni G, Cipri S, Melis M, Firinu D, Santus S, Lai A, Porcella R, Lai S, Rassu S, Scioscia R, Meloni F, Schirru D, Cordeddu W, Kowalik MA, Serra M, Ragatzu P, Carta MG, Del Giacco S, Restivo A, Deidda S, Orrù S, Palimodde A, Perra R, Orrù G, Conti M, Balestrieri C, Serra G, Onali S, Marongiu F, Perra A, Chessa L. Human Leukocyte Antigen Complex and Other Immunogenetic and Clinical Factors Influence Susceptibility or Protection to SARS-CoV-2 Infection and Severity of the Disease Course. The Sardinian Experience. Front Immunol 2020; 11:605688. [PMID: 33343579 PMCID: PMC7746644 DOI: 10.3389/fimmu.2020.605688] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
AIM SARS-CoV-2 infection is a world-wide public health problem. Several aspects of its pathogenesis and the related clinical consequences still need elucidation. In Italy, Sardinia has had very low numbers of infections. Taking advantage of the low genetic polymorphism in the Sardinian population, we analyzed clinical, genetic and immunogenetic factors, with particular attention to HLA class I and II molecules, to evaluate their influence on susceptibility to SARS-CoV-2 infection and the clinical outcome. METHOD AND MATERIALS We recruited 619 healthy Sardinian controls and 182 SARS-CoV-2 patients. Thirty-nine patients required hospital care and 143 were without symptoms, pauci-symptomatic or with mild disease. For all participants, we collected demographic and clinical data and analyzed the HLA allele and haplotype frequencies. RESULTS Male sex and older age were more frequent in hospitalized patients, none of whom had been vaccinated during the previous seasonal flu vaccination campaignes. Compared to the group of asymptomatic or pauci-symptomatic patients, hospitalized patients also had a higher frequency of autoimmune diseases and glucose-6-phosphate-dehydrogenase (G6PDH) deficiency. None of these patients carried the beta-thalassemia trait, a relatively common finding in the Sardinian population. The extended haplotype HLA-A*02:05, B*58:01, C*07:01, DRB1*03:01 [OR 0.1 (95% CI 0-0.6), Pc = 0.015] was absent in all 182 patients, while the HLA-C*04:01 allele and the three-loci haplotype HLA-A*30:02, B*14:02, C*08:02 [OR 3.8 (95% CI 1.8-8.1), Pc = 0.025] were more frequently represented in patients than controls. In a comparison between in-patients and home care patients, the HLA-DRB1*08:01 allele was exclusively present in the hospitalized patients [OR > 2.5 (95% CI 2.7-220.6), Pc = 0.024]. CONCLUSION The data emerging from our study suggest that the extended haplotype HLA-A*02:05, B*58:01, C*07:01, DRB1*03:01 has a protective effect against SARS-CoV-2 infection in the Sardinian population. Genetic factors that resulted to have a negative influence on the disease course were presence of the HLA-DRB1*08:01 allele and G6PDH deficiency, but not the beta-thalassemic trait. Absence of influenza vaccination could be a predisposing factor for more severe disease.
Collapse
Affiliation(s)
- Roberto Littera
- Complex Structure of Medical Genetics, R. Binaghi Hospital, Area Socio-Sanitaria Locale (ASSL) Cagliari, Azienda per la Tutela della Salute (ATS) Sardegna, Italy
- Associazione per l’Avanzamento della Ricerca per i Trapianti O.d.V., non profit organisation, Cagliari, Italy
| | - Marcello Campagna
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Silvia Deidda
- Complex Structure of Pneumology, PO SS Trinità, ASSL Cagliari, ATS Sardegna, Cagliari, Italy
| | - Goffredo Angioni
- Complex Structure of Infectious Diseases, PO SS Trinità, ASSL Cagliari ATS Sardegna, Cagliari, Italy
| | - Selene Cipri
- Complex Structure of Medical Genetics, R. Binaghi Hospital, Area Socio-Sanitaria Locale (ASSL) Cagliari, Azienda per la Tutela della Salute (ATS) Sardegna, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Maurizio Melis
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - Alberto Lai
- Unitá di Crisi Locale (UCL) ATS Sardegna, Cagliari, Italy
| | - Rita Porcella
- Complex Structure of Medical Genetics, R. Binaghi Hospital, Area Socio-Sanitaria Locale (ASSL) Cagliari, Azienda per la Tutela della Salute (ATS) Sardegna, Italy
| | - Sara Lai
- Complex Structure of Medical Genetics, R. Binaghi Hospital, Area Socio-Sanitaria Locale (ASSL) Cagliari, Azienda per la Tutela della Salute (ATS) Sardegna, Italy
| | - Stefania Rassu
- Complex Structure of Medical Genetics, R. Binaghi Hospital, Area Socio-Sanitaria Locale (ASSL) Cagliari, Azienda per la Tutela della Salute (ATS) Sardegna, Italy
| | - Rosetta Scioscia
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Federico Meloni
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Daniele Schirru
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - William Cordeddu
- Complex Structure of Infectious Diseases, PO SS Trinità, ASSL Cagliari ATS Sardegna, Cagliari, Italy
| | - Marta Anna Kowalik
- Unit of Oncology and Molecular Pathology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Serra
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Paola Ragatzu
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Mauro Giovanni Carta
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Angelo Restivo
- Colorectal Surgery Unit, Department of Surgical Science, University of Cagliari, Cagliari, Italy
| | - Simona Deidda
- Colorectal Surgery Unit, Department of Surgical Science, University of Cagliari, Cagliari, Italy
| | - Sandro Orrù
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Antonella Palimodde
- Complex Structure of Pneumology, PO SS Trinità, ASSL Cagliari, ATS Sardegna, Cagliari, Italy
| | - Roberto Perra
- Complex Structure of Pneumology, PO SS Trinità, ASSL Cagliari, ATS Sardegna, Cagliari, Italy
| | - Germano Orrù
- Molecular Biology Service Laboratory, Department of Surgical Science, University of Cagliari, Cagliari, Italy
| | - Maria Conti
- Liver Unit, Department of Internal Medicine, University Hospital of Cagliari, Cagliari, Italy
| | - Cinzia Balestrieri
- Liver Unit, Department of Internal Medicine, University Hospital of Cagliari, Cagliari, Italy
| | - Giancarlo Serra
- Liver Unit, Department of Internal Medicine, University Hospital of Cagliari, Cagliari, Italy
| | - Simona Onali
- Unit of Oncology and Molecular Pathology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Francesco Marongiu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Andrea Perra
- Associazione per l’Avanzamento della Ricerca per i Trapianti O.d.V., non profit organisation, Cagliari, Italy
- Unit of Oncology and Molecular Pathology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Luchino Chessa
- Associazione per l’Avanzamento della Ricerca per i Trapianti O.d.V., non profit organisation, Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Liver Unit, Department of Internal Medicine, University Hospital of Cagliari, Cagliari, Italy
| |
Collapse
|
20
|
Sadeghi S, Soudi S, Shafiee A, Hashemi SM. Mesenchymal stem cell therapies for COVID-19: Current status and mechanism of action. Life Sci 2020; 262:118493. [PMID: 32979360 PMCID: PMC7510562 DOI: 10.1016/j.lfs.2020.118493] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022]
Abstract
The outbreak of COVID-19 in December 2019, has become an urgent and serious public health emergency. At present, there is no effective treatment or vaccine for COVID-19. Therefore, there is a crucial unmet need to develop a safe and effective treatment for COVID-19 patients. Mesenchymal stem cells (MSCs) are widely used in basic science and in a variety of clinical trials. MSCs are able to engraft to the damaged tissues after transplantation and promote tissue regeneration, besides MSCs able to secrete immunomodulatory factors that suppress the cytokine storms. Moreover, the contribution of MSCs to prevent cell death and inhibit tissue fibrosis is well established. In the current review article, the potential mechanisms by which MSCs contribute to the treatment of COVID-19 patients are highlighted. Also, current trials that evaluated the potential of MSC-based treatments for COVID-19 are briefly reviewed.
Collapse
Affiliation(s)
- Somaye Sadeghi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Shafiee
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, Queensland, Australia.
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Fok JA, Mayer C. Genetic-Code-Expansion Strategies for Vaccine Development. Chembiochem 2020; 21:3291-3300. [PMID: 32608153 PMCID: PMC7361271 DOI: 10.1002/cbic.202000343] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/29/2020] [Indexed: 12/16/2022]
Abstract
By providing long-term protection against infectious diseases, vaccinations have significantly reduced death and morbidity worldwide. In the 21st century, (bio)technological advances have paved the way for developing prophylactic vaccines that are safer and more effective as well as enabling the use of vaccines as therapeutics to treat human diseases. Here, we provide a focused review of the utility of genetic code expansion as an emerging tool for the development of vaccines. Specifically, we discuss how the incorporation of immunogenic noncanonical amino acids can aid in eliciting immune responses against adverse self-proteins and highlight the potential of an expanded genetic code for the construction of replication-incompetent viruses. We close the review by discussing the future prospects and remaining challenges for the application of these approaches in the development of both prophylactic and therapeutic vaccines in the near future.
Collapse
Affiliation(s)
- Jelle A. Fok
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49474 AGGroningen (TheNetherlands
| | - Clemens Mayer
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49474 AGGroningen (TheNetherlands
| |
Collapse
|
22
|
La Porta CAM, Zapperi S. Estimating the Binding of Sars-CoV-2 Peptides to HLA Class I in Human Subpopulations Using Artificial Neural Networks. Cell Syst 2020; 11:412-417.e2. [PMID: 32916095 PMCID: PMC7488596 DOI: 10.1016/j.cels.2020.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/06/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
Epidemiological studies show that SARS-CoV-2 infection leads to severe symptoms only in a fraction of patients, but the determinants of individual susceptibility to the virus are still unknown. The major histocompatibility complex (MHC) class I exposes viral peptides in all nucleated cells and is involved in the susceptibility to many human diseases. Here, we use artificial neural networks to analyze the binding of SARS-CoV-2 peptides with polymorphic human MHC class I molecules. In this way, we identify two sets of haplotypes present in specific human populations: the first displays weak binding with SARS-CoV-2 peptides, while the second shows strong binding and T cell propensity. Our work offers a useful support to identify the individual susceptibility to COVID-19 and illustrates a mechanism underlying variations in the immune response to SARS-CoV-2. A record of this paper’s transparent peer review process is included in the Supplemental Information. Binding of SARS-CoV-2 peptides to HLA molecules is computed Weakly or strongly binding haplotypes are identified in human populations Results explain variations in the individual immune response to SARS-CoV-2
Collapse
Affiliation(s)
- Caterina A M La Porta
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, via Celoria 26, Milano 20133, Italy; CNR - Consiglio Nazionale delle Ricerche, Istituto di Biofisica, via Celoria 26, Milano 20133, Italy.
| | - Stefano Zapperi
- Center for Complexity and Biosystems, Department of Physics, University of Milan, via Celoria 16, Milano 20133, Italy; CNR - Consiglio Nazionale delle Ricerche, Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, via R. Cozzi 53, Milano 20125, Italy
| |
Collapse
|
23
|
Kelly HG, Tan HX, Juno JA, Esterbauer R, Ju Y, Jiang W, Wimmer VC, Duckworth BC, Groom JR, Caruso F, Kanekiyo M, Kent SJ, Wheatley AK. Self-assembling influenza nanoparticle vaccines drive extended germinal center activity and memory B cell maturation. JCI Insight 2020; 5:136653. [PMID: 32434990 DOI: 10.1172/jci.insight.136653] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/15/2020] [Indexed: 01/10/2023] Open
Abstract
Protein-based, self-assembling nanoparticles elicit superior immunity compared with soluble protein vaccines, but the immune mechanisms underpinning this effect remain poorly defined. Here, we investigated the immunogenicity of a prototypic ferritin-based nanoparticle displaying influenza hemagglutinin (HA) in mice and macaques. Vaccination of mice with HA-ferritin nanoparticles elicited higher serum antibody titers and greater protection against experimental influenza challenge compared with soluble HA protein. Germinal centers in the draining lymph nodes were expanded and persistent following HA-ferritin vaccination, with greater deposition of antigen that colocalized with follicular dendritic cells. Our findings suggest that a highly ordered and repetitive antigen array may directly drive germinal centers through a B cell-intrinsic mechanism that does not rely on ferritin-specific T follicular helper cells. In contrast to mice, enhanced immunogenicity of HA-ferritin was not observed in pigtail macaques, where antibody titers and lymph node immunity were comparable to soluble vaccination. An improved understanding of factors that drive nanoparticle vaccine immunogenicity in small and large animal models will facilitate the clinical development of nanoparticle vaccines for broad and durable protection against diverse pathogens.
Collapse
Affiliation(s)
- Hannah G Kelly
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and
| | - Yi Ju
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and.,Department of Chemical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Wenbo Jiang
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | | | - Brigette C Duckworth
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Joanna R Groom
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and.,Department of Chemical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and.,Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and
| |
Collapse
|