1
|
Kolliopoulos V, Mikos AG. Decellularized extracellular matrix as a drug delivery carrier. J Control Release 2025; 382:113661. [PMID: 40139392 DOI: 10.1016/j.jconrel.2025.113661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/18/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
Tissue engineering and regenerative medicine approaches seek to enhance biomaterial mimicry with the goal of driving cell recruitment, proliferation, and differentiation. Decellularized extracellular matrix (dECM) biomaterials have emerged as a promising platform for biomaterials development as they capture the complexity of native tissues and offer a rich environment of signals to guide cellular responses. However, the decellularization process can affect both the structure and composition of the ECM. Recent efforts have focused on leveraging dECM as drug delivery carriers for controlled release of bioactive molecules. This review highlights current strategies for incorporating therapeutic agents into dECM which include encapsulation within hydrogel formulations, direct bulk absorption of biomolecules, and affinity-based binding and conjugation. Each method offers unique advantages for modulating release profiles, which can range from rapid initial burst to prolonged, sustained release, depending on factors such as crosslinking density, degradation rate, and specific interactions of biomolecules with dECM components such as glycosaminoglycans.
Collapse
Affiliation(s)
- Vasiliki Kolliopoulos
- Department of Bioengineering, Rice University, Houston, TX 77030, United States of America
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX 77030, United States of America.
| |
Collapse
|
2
|
Grosbois J, Srsen V, Muñoz Grande A, Picton HM, Telfer EE. Reproductive seasonality influences follicle dynamics and the ovarian extracellular matrix structural properties in ewes. Reproduction 2025; 169:e250010. [PMID: 40344189 PMCID: PMC12100507 DOI: 10.1530/rep-25-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/04/2025] [Accepted: 05/09/2025] [Indexed: 05/11/2025]
Abstract
In brief Although sheep have been widely used as a large animal model for human ovarian biology, unlike women, they display a marked seasonality of breeding activity, the underlying mechanisms and extent of ovarian changes of which remain largely undefined. This study reveals the active remodeling of the ovarian extracellular matrix across the reproductive season, which could be an additional driver responsible for the observed variations in ovarian morphometry and follicle dynamics. Abstract Ovarian function requires dynamic tissue remodeling provided by its extracellular matrix (ECM). In seasonal breeders, ovaries undergo an additional circannual cycle of recrudescence and regression. While increasing evidence suggests that the ECM impacts normal ovarian cyclicity and function, how its components are remodeled across reproductive seasonality has not been explored in large mammals. Using immunohistological and in vitro experiments, we investigated the influence of reproductive seasonality on ovarian morphometry, ECM properties and follicle developmental potential in vitro. Ovarian weight and volume were reduced during anestrus (P < 0.001). Neither follicular density nor the proportion of preantral follicles and earlier stages of development were impacted by the season, but the percentage of antral follicles increased during anestrus (P = 0.028), while corpora lutea were only present in ovaries collected during the breeding season. Concomitantly, ovarian ECM composition was significantly remodeled, with stromal collagen and fibronectin significantly increased (P < 0.01) and laminin decreased (P = 0.032) during anestrus compared to the breeding season. This correlated with thicker collagen fibers both in the stroma and in the tunica albuginea during anestrus. In vitro, preantral follicles isolated from their native environment exhibited a season-dependent pattern of follicular integrity, survival, antrum formation and growth. These results suggest the establishment of a stiffer ovarian microenvironment during anestrus, which, together with endocrine changes, regulates follicle growth, demise and the ovulatory response.
Collapse
Affiliation(s)
- Johanne Grosbois
- Institute of Cell Biology, Hugh Robson Building, The University of Edinburgh, Edinburgh, UK
| | - Vlastimil Srsen
- Institute of Cell Biology, Hugh Robson Building, The University of Edinburgh, Edinburgh, UK
- Centre for Reproductive Health, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Alba Muñoz Grande
- Institute of Cell Biology, Hugh Robson Building, The University of Edinburgh, Edinburgh, UK
| | - Helen M Picton
- Reproduction and Early Development Research Group, Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Evelyn E Telfer
- Institute of Cell Biology, Hugh Robson Building, The University of Edinburgh, Edinburgh, UK
- Centre for Reproductive Health, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Heinmäe E, Mäemets-Allas K, Maasalu K, Vastšjonok D, Klaas M. Pathological Changes in Extracellular Matrix Composition Orchestrate the Fibrotic Feedback Loop Through Macrophage Activation in Dupuytren's Contracture. Int J Mol Sci 2025; 26:3146. [PMID: 40243889 PMCID: PMC11988646 DOI: 10.3390/ijms26073146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Dupuytren's contracture belongs to a group of fibrotic diseases that have similar mechanisms but lack effective treatment and prevention options. The excessive accumulation of connective tissue in Dupuytren's disease leads to palmar fibrosis that results in contracture deformities. The present study aimed to investigate how the tissue microenvironment in Dupuytren's contracture affects the phenotypic differentiation of macrophages, which leads to an inflammatory response and the development of chronicity in fibrotic disease. We utilized a decellularization-based method combined with proteomic analysis to identify shifts in extracellular matrix composition and the surrounding tissue microenvironment. We found that the expression of several matricellular proteins, such as MFAP4, EFEMP1 (fibulin-3), and ANGPTL2, was elevated in Dupuytren's tissue. We show that, in response to the changes in the extracellular matrix of Dupuytren's contracture, macrophages regulate the fibrotic process by cytokine production, promote myofibroblast differentiation, and increase the fibroblast migration rate. Moreover, we found that the extracellular matrix of Dupuytren's contracture directly supports the macrophage-to-myofibroblast transition, which could be another contributor to Dupuytren's disease pathogenesis. Our results suggest that interactions between macrophages and the extracellular matrix should be considered as targets for novel fibrotic disease treatment and prevention strategies in the future.
Collapse
Affiliation(s)
- Elizabeth Heinmäe
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010 Tartu, Estonia; (E.H.); (K.M.-A.); (D.V.)
- Department of Cell and Molecular Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Kristina Mäemets-Allas
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010 Tartu, Estonia; (E.H.); (K.M.-A.); (D.V.)
| | - Katre Maasalu
- Department of Traumatology and Orthopedics, Institute of Clinical Medicine, University of Tartu, 51010 Tartu, Estonia;
- Clinic of Traumatology and Orthopedics, Tartu University Hospital, 51010 Tartu, Estonia
| | - Darja Vastšjonok
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010 Tartu, Estonia; (E.H.); (K.M.-A.); (D.V.)
| | - Mariliis Klaas
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010 Tartu, Estonia; (E.H.); (K.M.-A.); (D.V.)
| |
Collapse
|
4
|
Vasse J, Fiscus J, Fraison E, Salle B, David L, Labrune E. Biomechanical properties of ovarian tissue and their impact on the activation of follicular growth: a narrative review. Reprod Biomed Online 2025; 50:104450. [PMID: 39919556 DOI: 10.1016/j.rbmo.2024.104450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 02/09/2025]
Abstract
Follicular recruitment is tightly regulated to ensure long-term balance between the pools of dormant and growing follicles. While the growth of secondary to antral follicles is well understood, the initiation of folliculogenesis remains elusive. Several processes have been described, and a new approach is mechanotransduction. The aim of this review is to present the latest findings on the biomechanical properties of the ovary, and their role during the initiation of folliculogenesis. A search of PubMed using keywords related to the biomechanical properties of ovarian tissue and ovarian mechanobiology identified 114 manuscripts, and 74 were included in this review. The investigation of mechanical properties of the ovary has revealed the existence of an elastic modulus gradient from the cortex to the medulla, which is essential for balancing the preservation of a pool of quiescent follicles and supporting folliculogenesis. Growing follicles subjected to different mechanical environments respond through mechanotransduction, leading to the activation or inhibition of folliculogenesis. The application of findings on ovarian mechanoreactivity revealed that stretching cortical tissue fragments may activate in-vitro folliculogenesis. Although these results require confirmation by larger studies, a comprehensive understanding of normal and pathological ovarian biomechanical functions offers new possibilities for managing patient infertility.
Collapse
Affiliation(s)
- Joséphine Vasse
- Hospices Civils de Lyon, service de médecine de la reproduction et préservation de fertilité, Inserm U1208, SBRI, Bron, France; Universite Claude Bernard Lyon 1, Faculté de Médecine Laennec, Lyon, France
| | - Julie Fiscus
- Hospices Civils de Lyon, service de médecine de la reproduction et préservation de fertilité, Inserm U1208, SBRI, Bron, France; Universite Claude Bernard Lyon 1, Faculté de Médecine Laennec, Lyon, France
| | - Eloïse Fraison
- Hospices Civils de Lyon, service de médecine de la reproduction et préservation de fertilité, Inserm U1208, SBRI, Bron, France
| | - Bruno Salle
- Hospices Civils de Lyon, service de médecine de la reproduction et préservation de fertilité, Inserm U1208, SBRI, Bron, France
| | - Laurent David
- Universite Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223 Ingénierie des Matériaux Polymères, France
| | - Elsa Labrune
- Hospices Civils de Lyon, service de médecine de la reproduction et préservation de fertilité, Inserm U1208, SBRI, Bron, France; Universite Claude Bernard Lyon 1, Faculté de Médecine Laennec, Lyon, France.
| |
Collapse
|
5
|
León-Félix CM, Ouni E, Herinckx G, Vertommen D, Amorim CA, Lucci CM. Decellularized extracellular matrix from bovine ovarian tissue maintains the protein composition of the native matrisome. J Proteomics 2025; 311:105347. [PMID: 39521401 DOI: 10.1016/j.jprot.2024.105347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Recent approaches of regenerative reproductive medicine investigate the decellularized extracellular matrix to develop a transplantable engineered ovary (TEO). However, a full proteomic analysis is not usually performed after the decellularization process to evaluate the preservation of the extracellular matrix (ECM). In this study, the ECM of the bovine ovarian cortex was analyzed before and after decellularization using mass spectrometry and bioinformatics. A total of 155 matrisome proteins were identified in the native ECM of the bovine ovarian cortex, with 145 matrisome proteins detected in the decellularized ECM. After decellularization, only 10 matrisome proteins were lost, and notably, none belonged to the category of reproductive biological processes. Histology and histochemistry analyses were employed to assess the general morphology of both native and decellularized ECM, allowing for the identification of the most abundant ECM proteins. Moreover, our study highlighted collagen type VI alpha 3 and heparan sulfate proteoglycan 2 as the most abundant components in the bovine ovarian ECM, mirroring the composition observed in the human ovary. These findings enhance our understanding of the composition of both native and decellularized ECM, with the potential implications for the development of a TEO. SIGNIFICANCE: The significance of the present study lies on the possibility of advancing towards developing a bioengineered ovary, which is the ultimate strategy to regain fertility in women. The results demonstrate that the decellularized extracellular matrix of the bovine ovary maintains the protein composition of the native matrisome, using a recently described decellularization protocol. The decellularized matrix may serve as scaffolding for seeding ovarian stromal cells and follicles to create a bioengineered ovary, and as closer its composition is to the native matrix the better. Also, comparing the bovine ovarian matrisome, which was described for the first time here, with the human ovarian matrisome, we could see a great similarity, suggesting that the bovine ovary decellularized matrix may serve as a model for developing a human bioengineered ovary.
Collapse
Affiliation(s)
- Cecibel M León-Félix
- Institute of Biological Sciences, Department of Physiology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Emna Ouni
- Tumor Cell Dynamics Unit, Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94800, France
| | - Gaëtan Herinckx
- PHOS Unit and MASSPROT Platform de Duve Institute, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Didier Vertommen
- PHOS Unit and MASSPROT Platform de Duve Institute, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels 1200, Belgium.
| | - Carolina M Lucci
- Institute of Biological Sciences, Department of Physiology, University of Brasilia, Brasilia 70910-900, Brazil.
| |
Collapse
|
6
|
Bomba-Warczak EK, Velez KM, Zhou LT, Guillermier C, Edassery S, Steinhauser ML, Savas JN, Duncan FE. Exceptional longevity of mammalian ovarian and oocyte macromolecules throughout the reproductive lifespan. eLife 2024; 13:RP93172. [PMID: 39480006 PMCID: PMC11527430 DOI: 10.7554/elife.93172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
The mechanisms contributing to age-related deterioration of the female reproductive system are complex, however aberrant protein homeostasis is a major contributor. We elucidated exceptionally stable proteins, structures, and macromolecules that persist in mammalian ovaries and gametes across the reproductive lifespan. Ovaries exhibit localized structural and cell-type-specific enrichment of stable macromolecules in both the follicular and extrafollicular environments. Moreover, ovaries and oocytes both harbor a panel of exceptionally long-lived proteins, including cytoskeletal, mitochondrial, and oocyte-derived proteins. The exceptional persistence of these long-lived molecules suggest a critical role in lifelong maintenance and age-dependent deterioration of reproductive tissues.
Collapse
Affiliation(s)
- Ewa K Bomba-Warczak
- Department of Neurology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Karen M Velez
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Luhan T Zhou
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Christelle Guillermier
- Department of Medicine, Aging Institute, University of Pittsburgh School of MedicinePittsburghUnited States
- Department of Medicine, Division of Genetics, Brigham and Women’s HospitalBostonUnited States
| | - Seby Edassery
- Department of Neurology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Matthew L Steinhauser
- Department of Medicine, Aging Institute, University of Pittsburgh School of MedicinePittsburghUnited States
- Department of Medicine, Division of Genetics, Brigham and Women’s HospitalBostonUnited States
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| |
Collapse
|
7
|
Takasugi M, Nonaka Y, Takemura K, Yoshida Y, Stein F, Schwarz JJ, Adachi J, Satoh J, Ito S, Tombline G, Biashad SA, Seluanov A, Gorbunova V, Ohtani N. An atlas of the aging mouse proteome reveals the features of age-related post-transcriptional dysregulation. Nat Commun 2024; 15:8520. [PMID: 39353907 PMCID: PMC11445428 DOI: 10.1038/s41467-024-52845-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
To what extent and how post-transcriptional dysregulation affects aging proteome remains unclear. Here, we provide proteomic data of whole-tissue lysates (WTL) and low-solubility protein-enriched fractions (LSF) of major tissues collected from mice of 6, 15, 24, and 30 months of age. Low-solubility proteins are preferentially affected by age and the analysis of LSF doubles the number of proteins identified to be differentially expressed with age. Simultaneous analysis of proteome and transcriptome using the same tissue homogenates reveals the features of age-related post-transcriptional dysregulation. Post-transcriptional dysregulation becomes evident especially after 24 months of age and age-related post-transcriptional dysregulation leads to accumulation of core matrisome proteins and reduction of mitochondrial membrane proteins in multiple tissues. Based on our in-depth proteomic data and sample-matched transcriptome data of adult, middle-aged, old, and geriatric mice, we construct the Mouse aging proteomic atlas ( https://aging-proteomics.info/ ), which provides a thorough and integrative view of age-related gene expression changes.
Collapse
Affiliation(s)
- Masaki Takasugi
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan.
| | - Yoshiki Nonaka
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Kazuaki Takemura
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Yuya Yoshida
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Frank Stein
- Proteomic Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | | | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Junko Satoh
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Gregory Tombline
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Naoko Ohtani
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
8
|
McDowell HB, Henning NF, Laronda MM. Heterogeneity of ovarian matrisome hydrogels elucidates factors that may influence follicle growth in vitro. Reproduction 2024; 168:e240135. [PMID: 38888996 PMCID: PMC11341246 DOI: 10.1530/rep-24-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 06/20/2024]
Abstract
This work describes a valuable and reproducible method for generating optically clear bovine ovary-derived hydrogels that support in vitro murine follicle growth. These techniques are the foundation in which follicle growth dynamics and matrisome protein composition may be correlated to reveal the influence of matrisome proteins on folliculogenesis.
Collapse
Affiliation(s)
- Hannah B. McDowell
- Department of Pediatrics, Division of Endocrinology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Nathaniel F. Henning
- Department of Chemistry and Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Monica M. Laronda
- Department of Pediatrics, Division of Endocrinology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern, University, Chicago, IL, USA
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Bomba-Warczak EK, Velez KM, Zhou LT, Guillermier C, Edassery S, Steinhauser ML, Savas JN, Elizabeth Duncan F. Exceptional longevity of mammalian ovarian and oocyte macromolecules throughout the reproductive lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.18.562852. [PMID: 37905022 PMCID: PMC10614913 DOI: 10.1101/2023.10.18.562852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The mechanisms contributing to age-related deterioration of the female reproductive system are complex, but aberrant protein homeostasis is a major contributor. We elucidated the exceptionally stable proteins, structures, and macromolecules that persist in mammalian ovaries and gametes across the reproductive lifespan. Ovaries exhibit localized structural and cell-type specific enrichment of stable macromolecules in both the follicular and extrafollicular environments. Moreover, both ovaries and oocytes harbor a panel of exceptionally long-lived proteins, including cytoskeletal components, mitochondrial, and oocyte-derived proteins. The exceptional persistence of these long-lived molecules might play a critical role in both lifelong maintenance and age-dependent deterioration of reproductive tissues.
Collapse
|
10
|
Zaniker EJ, Zhang M, Hughes L, La Follette L, Atazhanova T, Trofimchuk A, Babayev E, Duncan FE. Shear wave elastography to assess stiffness of the human ovary and other reproductive tissues across the reproductive lifespan in health and disease†. Biol Reprod 2024; 110:1100-1114. [PMID: 38609185 PMCID: PMC11180622 DOI: 10.1093/biolre/ioae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The ovary is one of the first organs to show overt signs of aging in the human body, and ovarian aging is associated with a loss of gamete quality and quantity. The age-dependent decline in ovarian function contributes to infertility and an altered endocrine milieu, which has ramifications for overall health. The aging ovarian microenvironment becomes fibro-inflammatory and stiff with age, and this has implications for ovarian physiology and pathology, including follicle growth, gamete quality, ovulation dynamics, and ovarian cancer. Thus, developing a non-invasive tool to measure and monitor the stiffness of the human ovary would represent a major advance for female reproductive health and longevity. Shear wave elastography is a quantitative ultrasound imaging method for evaluation of soft tissue stiffness. Shear wave elastography has been used clinically in assessment of liver fibrosis and characterization of tendinopathies and various neoplasms in thyroid, breast, prostate, and lymph nodes as a non-invasive diagnostic and prognostic tool. In this study, we review the underlying principles of shear wave elastography and its current clinical uses outside the reproductive tract as well as its successful application of shear wave elastography to reproductive tissues, including the uterus and cervix. We also describe an emerging use of this technology in evaluation of human ovarian stiffness via transvaginal ultrasound. Establishing ovarian stiffness as a clinical biomarker of ovarian aging may have implications for predicting the ovarian reserve and outcomes of Assisted Reproductive Technologies as well as for the assessment of the efficacy of emerging therapeutics to extend reproductive longevity. This parameter may also have broad relevance in other conditions where ovarian stiffness and fibrosis may be implicated, such as polycystic ovarian syndrome, late off target effects of chemotherapy and radiation, premature ovarian insufficiency, conditions of differences of sexual development, and ovarian cancer. Summary sentence: Shear Wave Elastography is a non-invasive technique to study human tissue stiffness, and here we review its clinical applications and implications for reproductive health and disease.
Collapse
Affiliation(s)
- Emily J Zaniker
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Man Zhang
- Department of Radiology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lydia Hughes
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Tomiris Atazhanova
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alexis Trofimchuk
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, USA
| |
Collapse
|
11
|
McDowell HB, McElhinney KL, Tsui EL, Laronda MM. Generation of Tailored Extracellular Matrix Hydrogels for the Study of In Vitro Folliculogenesis in Response to Matrisome-Dependent Biochemical Cues. Bioengineering (Basel) 2024; 11:543. [PMID: 38927779 PMCID: PMC11200611 DOI: 10.3390/bioengineering11060543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
While ovarian tissue cryopreservation (OTC) is an important fertility preservation option, it has its limitations. Improving OTC and ovarian tissue transplantation (OTT) must include extending the function of reimplanted tissue by reducing the extensive activation of primordial follicles (PMFs) and eliminating the risk of reimplanting malignant cells. To develop a more effective OTT, we must understand the effects of the ovarian microenvironment on folliculogenesis. Here, we describe a method for producing decellularized extracellular matrix (dECM) hydrogels that reflect the protein composition of the ovary. These ovarian dECM hydrogels were engineered to assess the effects of ECM on in vitro follicle growth, and we developed a novel method for selectively removing proteins of interest from dECM hydrogels. Finally, we validated the depletion of these proteins and successfully cultured murine follicles encapsulated in the compartment-specific ovarian dECM hydrogels and these same hydrogels depleted of EMILIN1. These are the first, optically clear, tailored tissue-specific hydrogels that support follicle survival and growth comparable to the "gold standard" alginate hydrogels. Furthermore, depleted hydrogels can serve as a novel tool for many tissue types to evaluate the impact of specific ECM proteins on cellular and molecular behavior.
Collapse
Affiliation(s)
- Hannah B. McDowell
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.B.M.)
- Department of Pediatrics, Division of Endocrinology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kathryn L. McElhinney
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.B.M.)
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth L. Tsui
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.B.M.)
- Department of Pediatrics, Division of Endocrinology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Monica M. Laronda
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.B.M.)
- Department of Pediatrics, Division of Endocrinology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
12
|
Tsui EL, McDowell HB, Laronda MM. Restoring Ovarian Fertility and Hormone Function: Recent Advancements, Ongoing Efforts and Future Applications. J Endocr Soc 2024; 8:bvae073. [PMID: 38698870 PMCID: PMC11065362 DOI: 10.1210/jendso/bvae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Indexed: 05/05/2024] Open
Abstract
The last 20 years have seen substantial improvements in fertility and hormone preservation and restoration technologies for a growing number of cancer survivors. However, further advancements are required to fill the gaps for those who cannot use current technologies or to improve the efficacy and longevity of current fertility and hormone restoration technologies. Ovarian tissue cryopreservation (OTC) followed by ovarian tissue transplantation (OTT) offers those unable to undergo ovarian stimulation for egg retrieval and cryopreservation an option that restores both fertility and hormone function. However, those with metastatic disease in their ovaries are unable to transplant this tissue. Therefore, new technologies to produce good-quality eggs and restore long-term cyclic ovarian function are being investigated and developed to expand options for a variety of patients. This mini-review describes current and near future technologies including in vitro maturation, in vitro follicle growth and maturation, bioprosthetic ovaries, and stem cell applications in fertility restoration research by their proximity to clinical application.
Collapse
Affiliation(s)
- Elizabeth L Tsui
- Department of Pediatrics, Division of Endocrinology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Hannah B McDowell
- Department of Pediatrics, Division of Endocrinology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Monica M Laronda
- Department of Pediatrics, Division of Endocrinology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
13
|
Nagashima JB, Zenilman S, Raab A, Aranda-Espinoza H, Songsasen N. Comparative Tensile Properties and Collagen Patterns in Domestic Cat ( Felis catus) and Dog ( Canis lupus familiaris) Ovarian Cortical Tissues. Bioengineering (Basel) 2023; 10:1285. [PMID: 38002409 PMCID: PMC10669533 DOI: 10.3390/bioengineering10111285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
The importance of the ovarian extracellular environment and tissue rigidity on follicle survival and development has gained attention in recent years. Our laboratory has anecdotally observed differences in the rigidity of domestic cat and dog ovarian cortical tissues, which have been postulated to underlie the differences in in vitro culture responses between the species, wherein cat ovarian tissues display higher survival in extended incubation. Here, the tensile strengths of cat and dog ovarian cortical tissues were compared via micropipette aspiration. The underlying collagen patterns, including fiber length, thickness, alignment, curvature, branch points and end points, and overall tissue lacunary and high-density matrix (HDM) were quantified via picrosirius red staining and TWOMBLI analysis. Finally, we explored the potential of MMP (-1 and -9) and TIMP1 supplementation in modulating tissue rigidity, collagen structure, and follicle activation in vitro. No differences in stiffness were observed between cat or dog cortical tissues, or pre- versus post-pubertal status. Cat ovarian collagen was characterized by an increased number of branch points, thinner fibers, and lower HDM compared with dog ovarian collagen, and cat tissues exposed to MMP9 in vitro displayed a reduced Young's modulus. Yet, MMP exposure had a minor impact on follicle development in vitro in either species. This study contributes to our growing understanding of the interactions among the physical properties of the ovarian microenvironment, collagen patterns, and follicle development in vitro.
Collapse
Affiliation(s)
- Jennifer B. Nagashima
- Center for Species Survival, Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Rd., Front Royal, VA 22630, USA;
| | - Shoshana Zenilman
- College of Veterinary Medicine, Cornell University, 144 East Ave, Ithaca, NY 14850, USA
| | - April Raab
- College of Veterinary Medicine, Michigan State University, 784 Wilson Rd., East Lansing, MI 48824, USA
| | - Helim Aranda-Espinoza
- Fischell Department of Bioengineering, University of Maryland, 3108 A. James Clark Hall, College Park, MD 20742, USA;
| | - Nucharin Songsasen
- Center for Species Survival, Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Rd., Front Royal, VA 22630, USA;
| |
Collapse
|
14
|
Dipali SS, King CD, Rose JP, Burdette JE, Campisi J, Schilling B, Duncan FE. Proteomic quantification of native and ECM-enriched mouse ovaries reveals an age-dependent fibro-inflammatory signature. Aging (Albany NY) 2023; 15:10821-10855. [PMID: 37899138 PMCID: PMC10637783 DOI: 10.18632/aging.205190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
The ovarian microenvironment becomes fibrotic and stiff with age, in part due to increased collagen and decreased hyaluronan. However, the extracellular matrix (ECM) is a complex network of hundreds of proteins, glycoproteins, and glycans which are highly tissue specific and undergo pronounced changes with age. To obtain an unbiased and comprehensive profile of age-associated alterations to the murine ovarian proteome and ECM, we used a label-free quantitative proteomic methodology. We validated conditions to enrich for the ECM prior to proteomic analysis. Following analysis by data-independent acquisition (DIA) and quantitative data processing, we observed that both native and ECM-enriched ovaries clustered separately based on age, indicating distinct age-dependent proteomic signatures. We identified a total of 4,721 proteins from both native and ECM-enriched ovaries, of which 383 proteins were significantly altered with advanced age, including 58 ECM proteins. Several ECM proteins upregulated with age have been associated with fibrosis in other organs, but to date their roles in ovarian fibrosis are unknown. Pathways regulating DNA metabolism and translation were downregulated with age, whereas pathways involved in ECM remodeling and immune response were upregulated. Interestingly, immune-related pathways were upregulated with age even in ECM-enriched ovaries, suggesting a novel interplay between the ECM and the immune system. Moreover, we identified putative markers of unique immune cell populations present in the ovary with age. These findings provide evidence from a proteomic perspective that the aging ovary provides a fibroinflammatory milieu, and our study suggests target proteins which may drive these age-associated phenotypes for future investigation.
Collapse
Affiliation(s)
- Shweta S. Dipali
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Jacob P. Rose
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| |
Collapse
|
15
|
Shuyuan Y, Meimei W, Fenghua L, Huishan Z, Min C, Hongchu B, Xuemei L. hUMSC transplantation restores follicle development in ovary damaged mice via re-establish extracellular matrix (ECM) components. J Ovarian Res 2023; 16:172. [PMID: 37620943 PMCID: PMC10464307 DOI: 10.1186/s13048-023-01217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/20/2023] [Indexed: 08/26/2023] Open
Abstract
OBJECTIVES Explore the therapeutic role of human umbilical mesenchymal stem cells (hUMSCs) transplantation for regeneration of ECM components and restoration of follicular development in mice. BACKGROUND The extracellular matrix (ECM) is crucial to maintain ovary function and regulate follicular development, as it participates in important cell signaling and provides physical support to the cells. However, it is unknown how hUMSCs affect the expression of ECM-related genes in ovaries treated with cyclophosphamide (CTX) and busulfan (BUS). METHODS In the present study, we used 64 six- to eight-week-old ICR female mice to established mouse model. The mice were randomly divided into four groups (n = 16/group): control, POI, POI + hUMSCs, and POI + PBS group. The premature ovarian insufficiency (POI) mouse model was established by intraperitoneal injection of CTX and BUS for 7days, then, hUMSCs or PBS were respectively injected via the tail vein in POI + hUMSCs or POI + PBS group. Another 7days after injection, the mice were sacrificed to harvest the ovary tissue. The ovaries were immediately frozen with liquid nitrogen or fixed with 4% PFA for subsequent experiments. To screen differentially expressed genes (DEGs), we performed transcriptome sequencing of ovaries. Thereafter, a Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to predict the related biological functions. Retrieval of interacting genes for ECM-related DEGs was performed using the function of STRINGdb (version 2.6.5) to evaluate potential protein-protein interaction (PPI) networks. Furthermore, qRT-PCR and IHC were performed to assess the differential expression of selected DEGs in control, damaged, hUMSCs-transplanted and non-transplanted ovaries. RESULTS Chemotherapy caused mouse ovarian follicular reserve depletion, and hUMSCs transplantation partially restored follicular development. Our results revealed that ECM-receptor interaction and ECM organization were both downregulated in the damaged ovaries. Further investigation showed that ECM-related genes were downregulated in the CTX and BUS treatment group and partially rescued in hUMSCs injection group but not in the PBS group. qRT-PCR and IHC verified the results: collagen IV and laminin gamma 3 were both expressed around follicle regions in normal ovaries, chemotherapy treatment disrupted their expression, and hUMSCs transplantation rescued their localization and expression to some extent. CONCLUSION Our data demonstrated that ECM-related genes participate in the regulation of ovarian reserve, hUMSCs treatment rescued abnormal expression and localization of collagen IV and laminin gamma 3 in the damaged ovaries. The results suggest that hUMSCs transplantation can maintain ECM-stable microenvironments, which is beneficial to follicular development.
Collapse
Affiliation(s)
- Yin Shuyuan
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Wang Meimei
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Li Fenghua
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Zhao Huishan
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Chu Min
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Bao Hongchu
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China.
| | - Liu Xuemei
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China.
| |
Collapse
|
16
|
Kulus J, Kranc W, Kulus M, Dzięgiel P, Bukowska D, Mozdziak P, Kempisty B, Antosik P. Expression of genes regulating cell division in porcine follicular granulosa cells. Cell Div 2023; 18:12. [PMID: 37550786 PMCID: PMC10408085 DOI: 10.1186/s13008-023-00094-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Cell cycle regulation influences the proliferation of granulosa cells and affects many processes related to ovarian folliclular growth and ovulation. Abnormal regulation of the cell cycle can lead to many diseases within the ovary. The aim of this study was to describe the expression profile of genes within granulosa cells, which are related to the formation of the cytoskeleton, organization of cell organelles inside the cell, and regulation of cell division. Established in vitro primary cultures from porcine ovarian follicle granulosa cells were maintained for 48, 96, 144 h and evaluated via microarray expression analysis. RESULTS Analyzed genes were assigned to 12 gene ontology groups "actin cytoskeleton organization", "actin filament organization", "actin filament-based process", "cell-matrix adhesion", "cell-substrate adhesion", "chromosome segregation", "chromosome separation", "cytoskeleton organization", "DNA integrity checkpoint", "DNA replication initiation", "organelle fision", "organelle organization". Among the genes with significantly changed expression, those whose role in processes within the ovary are selected for consideration. Genes with increased expression include (ITGA11, CNN1, CCl2, TPM2, ACTN1, VCAM-1, COL3A1, GSN, FRMD6, PLK2). Genes with reduced expression inlcude (KIF14, TACC3, ESPL1, CDC45, TTK, CDC20, CDK1, FBXO5, NEK2-NIMA, CCNE2). For the results obtained by microarray expressions, quantitative validation by RT-qPCR was performed. CONCLUSIONS The results indicated expression profile of genes, which can be considered as new molecular markers of cellular processes involved in signaling, cell structure organization. The expression profile of selected genes brings new insight into regulation of physiological processes in porcine follicular granulosa cells during primary in vitro culture.
Collapse
Affiliation(s)
- Jakub Kulus
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Department of Physiotherapy, Wroclaw University School of Physical Education, Wroclaw, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Paul Mozdziak
- Physiology Graduate Faculty, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland.
- Physiology Graduate Faculty, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland.
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic.
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| |
Collapse
|
17
|
Almeida GHDR, da Silva-Júnior LN, Gibin MS, Dos Santos H, de Oliveira Horvath-Pereira B, Pinho LBM, Baesso ML, Sato F, Hernandes L, Long CR, Relly L, Miglino MA, Carreira ACO. Perfusion and Ultrasonication Produce a Decellularized Porcine Whole-Ovary Scaffold with a Preserved Microarchitecture. Cells 2023; 12:1864. [PMID: 37508528 PMCID: PMC10378497 DOI: 10.3390/cells12141864] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 07/30/2023] Open
Abstract
The application of decellularized scaffolds for artificial tissue reconstruction has been an approach with great therapeutic potential in regenerative medicine. Recently, biomimetic ovarian tissue reconstruction was proposed to reestablish ovarian endocrine functions. Despite many decellularization methods proposed, there is no established protocol for whole ovaries by detergent perfusion that is able to preserve tissue macro and microstructure with higher efficiency. This generated biomaterial may have the potential to be applied for other purposes beyond reproduction and be translated to other areas in the tissue engineering field. Therefore, this study aimed to establish and standardize a protocol for porcine ovaries' decellularization based on detergent perfusion and ultrasonication to obtain functional whole-ovary scaffolds. For that, porcine ovaries (n = 5) were perfused with detergents (0.5% SDS and 1% Triton X-100) and submitted to an ultrasonication bath to produce acellular scaffolds. The decellularization efficiency was evaluated by DAPI staining and total genomic DNA quantification. ECM morphological evaluation was performed by histological, immunohistochemistry, and ultrastructural analyses. ECM physico-chemical composition was evaluated using FTIR and Raman spectroscopy. A cytocompatibility and cell adhesion assay using murine fibroblasts was performed. Results showed that the proposed method was able to remove cellular components efficiently. There was no significant ECM component loss in relation to native tissue, and the scaffolds were cytocompatible and allowed cell attachment. In conclusion, the proposed decellularization protocol produced whole-ovaries scaffolds with preserved ECM composition and great potential for application in tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Henrique Dos Santos
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil
| | | | - Leticia Beatriz Mazo Pinho
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
| | | | - Francielle Sato
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil
| | - Luzmarina Hernandes
- Department of Morphological Sciences, State University of Maringa, Maringá 87020-900, Brazil
| | - Charles R Long
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Luciana Relly
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
- Centre for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| |
Collapse
|
18
|
Tsui EL, Harris CJ, Rowell EE, Laronda MM. Human ovarian gross morphology and subanatomy across puberty: insights from tissue donated during fertility preservation. F S Rep 2023; 4:196-205. [PMID: 37398615 PMCID: PMC10310944 DOI: 10.1016/j.xfre.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Objective To study ovarian gross morphologic and subanatomic features across pubertal development. Design Prospective cohort study. Setting An academic medical center with specimens collected from 2018-2022. Patients Tissue was obtained from prepubertal and postpubertal participants (0.19-22.96 years) undergoing ovarian tissue cryopreservation before treatment that put them at a significantly or high increased risk of developing premature ovarian insufficiency. Most participants (64%) had not received chemotherapy at tissue collection. Interventions None. Main Outcome Measures Ovaries procured for fertility preservation were weighed and measured. Ovarian tissue fragments released during processing, biopsies used for pathology, and hormone panels were analyzed for gross morphology, subanatomic features, and reproductive hormones. Graphical analysis of best-fit lines determined age at maximum growth velocity. Results Prepubertal ovaries were significantly (1.4-fold and 2.4-fold) smaller than postpubertal ovaries by length and width and 5.7-fold lighter on average. Length, width, and weight grew in a sigmoidal pattern with age. Prepubertal ovaries were less likely to display a defined corticomedullary junction (53% vs. 77% in postpubertal specimens), less likely to have a tunica albuginea (22% vs. 93% in postpubertal specimens), contained significantly more (9.8-fold) primordial follicles, and contained primordial follicles at significantly deeper depths (2.9-fold) when compared with postpubertal ovaries. Conclusions Ovarian tissue cryopreservation is a resource to study human ovarian biology and pubertal development. Maximum growth velocity occurs late within the pubertal transition (Tanner 3+) after changes in subanatomic features. This ovarian morphology model adds to foundational knowledge of human ovarian development and supports ongoing transcriptomics research.
Collapse
Affiliation(s)
- Elizabeth L. Tsui
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Courtney J. Harris
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Division of Pediatric Surgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - Erin E. Rowell
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Division of Pediatric Surgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - Monica M. Laronda
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Division of Pediatric Surgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| |
Collapse
|
19
|
Grosbois J, Bailie EC, Kelsey TW, Anderson RA, Telfer EE. Spatio-temporal remodelling of the composition and architecture of the human ovarian cortical extracellular matrix during in vitro culture. Hum Reprod 2023; 38:444-458. [PMID: 36721914 PMCID: PMC9977129 DOI: 10.1093/humrep/dead008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/29/2022] [Indexed: 02/02/2023] Open
Abstract
STUDY QUESTION How does in vitro culture alter the human ovarian cortical extracellular matrix (ECM) network structure? SUMMARY ANSWER The ECM composition and architecture vary in the different layers of the ovarian cortex and are remodelled during in vitro culture. WHAT IS KNOWN ALREADY The ovarian ECM is the scaffold within which follicles and stromal cells are organized. Its composition and structural properties constantly evolve to accommodate follicle development and expansion. Tissue preparation for culture of primordial follicles within the native ECM involves mechanical loosening; this induces undefined modifications in the ECM network and alters cell-cell contact, leading to spontaneous follicle activation. STUDY DESIGN, SIZE, DURATION Fresh ovarian cortical biopsies were obtained from six women aged 28-38 years (mean ± SD: 32.7 ± 4.1 years) at elective caesarean section. Biopsies were cut into fragments of ∼4 × 1 × 1 mm and cultured for 0, 2, 4, or 6 days (D). PARTICIPANTS/MATERIALS, SETTING, METHODS Primordial follicle activation, stromal cell density, and ECM-related protein (collagen, elastin, fibronectin, laminin) positive area in the entire cortex were quantified at each time point using histological and immunohistological analysis. Collagen and elastin content, collagen fibre characteristics, and follicle distribution within the tissue were further quantified within each layer of the human ovarian cortex, namely the outer cortex, the mid-cortex, and the cortex-medulla junction regions. MAIN RESULTS AND THE ROLE OF CHANCE Primordial follicle activation occurred concomitantly with a loosening of the ovarian cortex during culture, characterized by an early decrease in stromal cell density from 3.6 ± 0.2 × 106 at day 0 (D0) to 2.8 ± 0.1 × 106 cells/mm3 at D2 (P = 0.033) and a dynamic remodelling of the ECM. Notably, collagen content gradually fell from 55.5 ± 1.7% positive area at D0 to 42.3 ± 1.1% at D6 (P = 0.001), while elastin increased from 1.1 ± 0.2% at D0 to 1.9 ± 0.1% at D6 (P = 0.001). Fibronectin and laminin content remained stable. Moreover, collagen and elastin distribution were uneven throughout the cortex and during culture. Analysis at the sub-region level showed that collagen deposition was maximal in the outer cortex and the lowest in the mid-cortex (69.4 ± 1.2% versus 53.8 ± 0.8% positive area, respectively, P < 0.0001), and cortical collagen staining overall decreased from D0 to D2 (65.2 ± 2.4% versus 60.6 ± 1.8%, P = 0.033) then stabilized. Elastin showed the converse distribution, being most concentrated at the cortex-medulla junction (3.7 ± 0.6% versus 0.9 ± 0.2% in the outer cortex, P < 0.0001), and cortical elastin peaked at D6 compared to D0 (3.1 ± 0.5% versus 1.3 ± 0.2%, P < 0.0001). This was corroborated by a specific signature of the collagen fibre type across the cortex, indicating a distinct phenotype of the ovarian cortical ECM depending on region and culture period that might be responsible for the spatio-temporal and developmental pattern of follicular distribution observed within the cortex. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Ovarian cortical biopsies were obtained from women undergoing caesarean sections. As such, the data obtained may not accurately reflect the ECM distribution and structure of non-pregnant women. WIDER IMPLICATIONS OF THE FINDINGS Clarifying the composition and architecture signature of the human ovarian cortical ECM provides a foundation for further exploration of ovarian microenvironments. It is also critical for understanding the ECM-follicle interactions regulating follicle quiescence and awakening, leading to improvements in both in vitro activation and in vitro growth techniques. STUDY FUNDING/COMPETING INTEREST(S) Medical Research Council grant MR/R003246/1 and Wellcome Trust Collaborative Award in Science: 215625/Z/19/Z. The authors have no conflicts to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Johanne Grosbois
- Institute of Cell Biology, Hugh Robson Building, University of Edinburgh, Edinburgh, UK
| | - Emily C Bailie
- Institute of Cell Biology, Hugh Robson Building, University of Edinburgh, Edinburgh, UK
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Tom W Kelsey
- School of Computer Science, University of St Andrews, St Andrews, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Evelyn E Telfer
- Institute of Cell Biology, Hugh Robson Building, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
20
|
Laronda MM. Factors within the Developing Embryo and Ovarian Microenvironment That Influence Primordial Germ Cell Fate. Sex Dev 2023; 17:134-144. [PMID: 36646055 PMCID: PMC10349905 DOI: 10.1159/000528209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 11/18/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Primordial germ cell (PGC) fate is dictated by the designation, taxis, and influence of the surrounding embryonic somatic cells. Whereas gonadal sex determination results from a balance of factors within the tissue microenvironment. SUMMARY Our understanding of mammalian ovary development is formed in large part from developmental time courses established using murine models. Genomic tools where genes implicated in the PGC designation or gonadal sex determination have been modulated through complete or conditional knockouts in vivo, and studies in in situ models with inhibitors or cultures that alter the native gonadal environment have pieced together the interplay of pioneering transcription factors, co-regulators and chromosomes critical for the progression of PGCs to oocytes. Tools such as pluripotent stem cell derivation, genomic modifications, and aggregate differentiation cultures have yielded some insight into the human condition. Additional understanding of sex determination, both gonadal and anatomical, may be inferred from phenotypes that arise from de novo or inherited gene variants in humans who have differences in sex development. KEY MESSAGES This review highlights major factors critical for PGC specification and migration, and in ovarian gonad specification by reviewing seminal murine models. These pathways are compared to what is known about the human condition from expression profiles of fetal gonadal tissue, use of human pluripotent stem cells, or disorders resulting from disease variants. Many of these pathways are challenging to decipher in human tissues. However, the impact of new single-cell technologies and whole-genome sequencing to reveal disease variants of idiopathic reproductive tract phenotypes will help elucidate the mechanisms involved in human ovary development.
Collapse
Affiliation(s)
- Monica M. Laronda
- Department of Endocrinology and Department of Pediatric Surgery, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, (IL,) USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, (IL,) USA
| |
Collapse
|
21
|
Tsui EL, O’Neill KE, LeDuc RD, Shikanov A, Gomez-Lobo V, Laronda MM. Creating a common language for the subanatomy of the ovary. Biol Reprod 2023; 108:1-4. [PMID: 36308436 PMCID: PMC9843671 DOI: 10.1093/biolre/ioac199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 01/21/2023] Open
Affiliation(s)
- Elizabeth L Tsui
- Department of Endocrinology and Department of Pediatric Surgery, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kathleen E O’Neill
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard D LeDuc
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Ariella Shikanov
- Department of Biomedical Engineering, Department of Obstetrics and Gynecology, Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Veronica Gomez-Lobo
- Pediatric and Adolescent Gynecology Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Monica M Laronda
- Department of Endocrinology and Department of Pediatric Surgery, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
22
|
Buckenmeyer MJ, Sukhwani M, Iftikhar A, Nolfi AL, Xian Z, Dadi S, Case ZW, Steimer SR, D’Amore A, Orwig KE, Brown BN. A bioengineered in situ ovary (ISO) supports follicle engraftment and live-births post-chemotherapy. J Tissue Eng 2023; 14:20417314231197282. [PMID: 38029018 PMCID: PMC10656812 DOI: 10.1177/20417314231197282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/10/2023] [Indexed: 12/01/2023] Open
Abstract
Female cancer patients who have undergone chemotherapy have an elevated risk of developing ovarian dysfunction and failure. Experimental approaches to treat iatrogenic infertility are evolving rapidly; however, challenges and risks remain that hinder clinical translation. Biomaterials have improved in vitro follicle maturation and in vivo transplantation in mice, but there has only been marginal success for early-stage human follicles. Here, we developed methods to obtain an ovarian-specific extracellular matrix hydrogel to facilitate follicle delivery and establish an in situ ovary (ISO), which offers a permissive environment to enhance follicle survival. We demonstrate sustainable follicle engraftment, natural pregnancy, and the birth of healthy pups after intraovarian microinjection of isolated exogenous follicles into chemotherapy-treated (CTx) mice. Our results confirm that hydrogel-based follicle microinjection could offer a minimally invasive delivery platform to enhance follicle integration for patients post-chemotherapy.
Collapse
Affiliation(s)
- Michael J Buckenmeyer
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Meena Sukhwani
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aimon Iftikhar
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexis L Nolfi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ziyu Xian
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Srujan Dadi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zachary W Case
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah R Steimer
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Antonio D’Amore
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Fondazione RiMED, Palermo, Italy
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bryan N Brown
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Ataman LM, Laronda MM, Gowett M, Trotter K, Anvari H, Fei F, Ingram A, Minette M, Suebthawinkul C, Taghvaei Z, Torres-Vélez M, Velez K, Adiga SK, Anazodo A, Appiah L, Bourlon MT, Daniels N, Dolmans MM, Finlayson C, Gilchrist RB, Gomez-Lobo V, Greenblatt E, Halpern JA, Hutt K, Johnson EK, Kawamura K, Khrouf M, Kimelman D, Kristensen S, Mitchell RT, Moravek MB, Nahata L, Orwig KE, Pavone ME, Pépin D, Pesce R, Quinn GP, Rosen MP, Rowell E, Smith K, Venter C, Whiteside S, Xiao S, Zelinski M, Goldman KN, Woodruff TK, Duncan FE. A synopsis of global frontiers in fertility preservation. J Assist Reprod Genet 2022; 39:1693-1712. [PMID: 35870095 PMCID: PMC9307970 DOI: 10.1007/s10815-022-02570-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Since 2007, the Oncofertility Consortium Annual Conference has brought together a diverse network of individuals from a wide range of backgrounds and professional levels to disseminate emerging basic and clinical research findings in fertility preservation. This network also developed enduring educational materials to accelerate the pace and quality of field-wide scientific communication. Between 2007 and 2019, the Oncofertility Consortium Annual Conference was held as an in-person event in Chicago, IL. The conference attracted approximately 250 attendees each year representing 20 countries around the world. In 2020, however, the COVID-19 pandemic disrupted this paradigm and precluded an in-person meeting. Nevertheless, there remained an undeniable demand for the oncofertility community to convene. To maintain the momentum of the field, the Oncofertility Consortium hosted a day-long virtual meeting on March 5, 2021, with the theme of "Oncofertility Around the Globe" to highlight the diversity of clinical care and translational research that is ongoing around the world in this discipline. This virtual meeting was hosted using the vFairs ® conference platform and allowed over 700 people to participate, many of whom were first-time conference attendees. The agenda featured concurrent sessions from presenters in six continents which provided attendees a complete overview of the field and furthered our mission to create a global community of oncofertility practice. This paper provides a synopsis of talks delivered at this event and highlights the new advances and frontiers in the fields of oncofertility and fertility preservation around the globe from clinical practice and patient-centered efforts to translational research.
Collapse
Affiliation(s)
- L M Ataman
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 7-117, Chicago, IL, 60611, USA
| | - M M Laronda
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - M Gowett
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 7-117, Chicago, IL, 60611, USA
| | - K Trotter
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 7-117, Chicago, IL, 60611, USA
| | - H Anvari
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 7-117, Chicago, IL, 60611, USA
| | - F Fei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 7-117, Chicago, IL, 60611, USA
| | - A Ingram
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 7-117, Chicago, IL, 60611, USA
| | - M Minette
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 7-117, Chicago, IL, 60611, USA
| | - C Suebthawinkul
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 7-117, Chicago, IL, 60611, USA
| | - Z Taghvaei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 7-117, Chicago, IL, 60611, USA
| | - M Torres-Vélez
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 7-117, Chicago, IL, 60611, USA
| | - K Velez
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 7-117, Chicago, IL, 60611, USA
| | - S K Adiga
- Department of Clinical Embryology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, India
| | - A Anazodo
- Kids Cancer Centre, Sydney Children's Hospital, Nelune Comprehensive Cancer Centre, Sydney, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - L Appiah
- Department of Obstetrics and Gynecology, The University of Colorado School of Medicine, Aurora, CO, USA
| | - M T Bourlon
- Hemato-Oncology Department, Instituto Nacional de Ciencias Médicas Y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - N Daniels
- The Oncology and Fertility Centres of Ekocorp, Eko Hospitals, Lagos, Nigeria
| | - M M Dolmans
- Gynecology Research Unit, Institut de Recherche Expérimentale Et Clinique, Université Catholique de Louvain, Av. Mounier 52, 1200, Brussels, Belgium
- Department of Gynecology, Cliniques Universitaires Saint-Luc, Av. Hippocrate 10, 1200, Brussels, Belgium
| | - C Finlayson
- Department of Pediatrics (Endocrinology), Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - R B Gilchrist
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - V Gomez-Lobo
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - J A Halpern
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - K Hutt
- Anatomy & Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - E K Johnson
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Division of Urology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - K Kawamura
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - M Khrouf
- FERTILLIA, Clinique la Rose, Tunis, Tunisia
| | - D Kimelman
- Centro de Esterilidad Montevideo, Montevideo, Uruguay
| | - S Kristensen
- Department of Fertility, Copenhagen University Hospital, Copenhagen, Denmark
| | - R T Mitchell
- Department of Developmental Endocrinology, University of Edinburgh, Edinburgh, UK
| | - M B Moravek
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - L Nahata
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Endocrinology and Center for Biobehavioral Health, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - K E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M E Pavone
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - D Pépin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - R Pesce
- Reproductive Medicine Unit, Obstetrics and Gynecology Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - G P Quinn
- Departments of Obstetrics and Gynecology, Center for Medical Ethics, Population Health, Grossman School of Medicine, New York University, New York, NY, USA
| | - M P Rosen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Reproductive Endocrinology and Infertility, University of California, San Francisco, CA, USA
| | - E Rowell
- Department of Surgery (Pediatric Surgery), Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - K Smith
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - C Venter
- Vitalab, Johannesburg, South Africa
| | - S Whiteside
- Fertility & Reproductive Health Program, Department of Hematology/Oncology/BMT, Nationwide Children's Hospital, Columbus, OH, USA
| | - S Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental Health Sciences Institute, Rutgers University, New Brunswick, NJ, USA
| | - M Zelinski
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - K N Goldman
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 7-117, Chicago, IL, 60611, USA
| | - T K Woodruff
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - F E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 7-117, Chicago, IL, 60611, USA.
| |
Collapse
|
24
|
Francés-Herrero E, Rodríguez-Eguren A, Gómez-Álvarez M, de Miguel-Gómez L, Ferrero H, Cervelló I. Future Challenges and Opportunities of Extracellular Matrix Hydrogels in Female Reproductive Medicine. Int J Mol Sci 2022; 23:3765. [PMID: 35409119 PMCID: PMC8998701 DOI: 10.3390/ijms23073765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Bioengineering and reproductive medicine have progressed shoulder to shoulder for several decades. A key point of overlap is the development and clinical translation of technologies to support reproductive health, e.g., scaffold-free constructs, polymeric scaffolds, bioprinting or microfluidics, and hydrogels. Hydrogels are the focus of intense study, and those that are derived from the extracellular matrix (ECM) of reproductive tissues and organs are emerging as promising new players given their results in pre-clinical models. This literature review addresses the recent advances in the use of organ-specific ECM hydrogels in reproductive medicine, considering the entire female reproductive tract. We discuss in-depth papers describing the development of ECM hydrogels, their use in in vitro models, and their in vivo application in preclinical studies. We also summarize the functions of hydrogels, including as grafts, carriers for cell transplantation, or drug depots, and present the potential and possible scope for use of ECM hydrogels in the near future based on recent scientific advances.
Collapse
Affiliation(s)
- Emilio Francés-Herrero
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain;
- Fundación IVI, IVI-RMA Global, 46026 Valencia, Spain; (A.R.-E.); (M.G.-Á.); (L.d.M.-G.); (H.F.)
| | - Adolfo Rodríguez-Eguren
- Fundación IVI, IVI-RMA Global, 46026 Valencia, Spain; (A.R.-E.); (M.G.-Á.); (L.d.M.-G.); (H.F.)
- Reproductive Medicine Research Group, IIS La Fe, 46026 Valencia, Spain
| | - María Gómez-Álvarez
- Fundación IVI, IVI-RMA Global, 46026 Valencia, Spain; (A.R.-E.); (M.G.-Á.); (L.d.M.-G.); (H.F.)
- Reproductive Medicine Research Group, IIS La Fe, 46026 Valencia, Spain
| | - Lucía de Miguel-Gómez
- Fundación IVI, IVI-RMA Global, 46026 Valencia, Spain; (A.R.-E.); (M.G.-Á.); (L.d.M.-G.); (H.F.)
| | - Hortensia Ferrero
- Fundación IVI, IVI-RMA Global, 46026 Valencia, Spain; (A.R.-E.); (M.G.-Á.); (L.d.M.-G.); (H.F.)
- Reproductive Medicine Research Group, IIS La Fe, 46026 Valencia, Spain
| | - Irene Cervelló
- Fundación IVI, IVI-RMA Global, 46026 Valencia, Spain; (A.R.-E.); (M.G.-Á.); (L.d.M.-G.); (H.F.)
- Reproductive Medicine Research Group, IIS La Fe, 46026 Valencia, Spain
| |
Collapse
|
25
|
Chen H, Xue L, Gong G, Pan J, Wang X, Zhang Y, Guo J, Qin L. Collagen-based materials in reproductive medicine and engineered reproductive tissues. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-021-00075-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractCollagen, the main component of mammal skin, has been traditionally used in leather manufacturing for thousands of years due to its diverse physicochemical properties. Collagen is the most abundant protein in mammals and the main component of the extracellular matrix (ECM). The properties of collagen also make it an ideal building block for the engineering of materials for a range of biomedical applications. Reproductive medicine, especially human fertility preservation strategies and reproductive organ regeneration, has attracted significant attention in recent years as it is key in resolving the growing social concern over aging populations worldwide. Collagen-based biomaterials such as collagen hydrogels, decellularized ECM (dECM), and bioengineering techniques including collagen-based 3D bioprinting have facilitated the engineering of reproductive tissues. This review summarizes the recent progress in applying collagen-based biomaterials in reproductive. Furthermore, we discuss the prospects of collagen-based materials for engineering artificial reproductive tissues, hormone replacement therapy, and reproductive organ reconstruction, aiming to inspire new thoughts and advancements in engineered reproductive tissues research.
Graphical abstract
Collapse
|
26
|
Transcriptomic Profile of New Gene Markers Encoding Proteins Responsible for Structure of Porcine Ovarian Granulosa Cells. BIOLOGY 2021; 10:biology10111214. [PMID: 34827207 PMCID: PMC8615192 DOI: 10.3390/biology10111214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/06/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary The extracellular matrix (ECM) is involved in many physiological processes that occur in the ovary and affect reproduction in animals and humans. The ECM has been shown to significantly affect folliculogenesis, ovulation, and corpus luteum formation. This is mainly due to the involvement of ECM in intercellular signaling. In the present study, we report the gene expression profile of porcine granulosa cells during their primary in vitro culture. The genes presented are related to ECM formation but also to cadherins and integrins that influence intercellular dialogue. During the study, it was shown that most of the genes were upregulated. A detailed understanding of the expression of genes such as POSTN, CHI3L1, CAV-1, IRS1, DCN in in vitro culture of granulosa cells may provide a basis for further studies on the molecular mechanisms occurring within the ovary. Knowledge of ECM-related gene expression within granulosa cells can also be used to study the recently discovered stemness of these cells. Moreover, the presented data may serve for the development of assisted reproduction techniques, which, especially in vitro, are becoming increasingly common. Abstract The extracellular matrix (ECM) in granulosa cells is functionally very important, and it is involved in many processes related to ovarian follicle growth and ovulation. The aim of this study was to describe the expression profile of genes within granulosa cells that are associated with extracellular matrix formation, intercellular signaling, and cell–cell fusion. The material for this study was ovaries of sexually mature pigs obtained from a commercial slaughterhouse. Laboratory-derived granulosa cells (GCs) from ovarian follicles were cultured in a primary in vitro culture model. The extracted genetic material (0, 48, 96, and 144 h) were subjected to microarray expression analysis. Among 81 genes, 66 showed increased expression and only 15 showed decreased expression were assigned to 7 gene ontology groups “extracellular matrix binding”, “extracellular matrix structural constituent”, “binding, bridging”, “cadherin binding”, “cell adhesion molecule binding”, “collagen binding” and “cadherin binding involved in cell-cell adhesion”. The 10 genes with the highest expression (POSTN, ITGA2, FN1, LAMB1, ITGB3, CHI3L1, PCOLCE2, CAV1, DCN, COL14A1) and 10 of the most down-regulated (SPP1, IRS1, CNTLN, TMPO, PAICS, ANK2, ADAM23, ABI3BP, DNAJB1, IGF1) were selected for further analysis. The results were validated by RT-qPCR. The current results may serve as preliminary data for further analyses using in vitro granulosa cell cultures in assisted reproduction technologies, studies of pathological processes in the ovary as well as in the use of the stemness potential of GCs.
Collapse
|
27
|
Hopkins TIR, Bemmer VL, Franks S, Dunlop C, Hardy K, Dunlop IE. Micromechanical mapping of the intact ovary interior reveals contrasting mechanical roles for follicles and stroma. Biomaterials 2021; 277:121099. [PMID: 34537501 DOI: 10.1016/j.biomaterials.2021.121099] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/08/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022]
Abstract
Follicle development in the ovary must be tightly regulated to ensure cyclical release of oocytes (ovulation). Disruption of this process is a common cause of infertility, for example via polycystic ovary syndrome (PCOS) and premature ovarian insufficiency (POI). Recent ex vivo studies suggest that follicle growth is mechanically regulated, however, crucially, the actual mechanical properties of the follicle microenvironment have remained unknown. Here we use atomic force microscopy (AFM) spherical probe indentation to map and quantify the mechanical microenvironment in the mouse ovary, at high resolution and across the entire width of the intact (bisected) ovarian interior. Averaging over the entire organ, we find the ovary to be a fairly soft tissue comparable to fat or kidney (mean Young's Modulus 3.3±2.5 kPa). This average, however, conceals substantial spatial variations, with the overall range of tissue stiffnesses from c. 0.5-10 kPa, challenging the concept that a single Young's Modulus can effectively summarize this complex organ. Considering the internal architecture of the ovary, we find that stiffness is low at the edge and centre which are dominated by stromal tissue, and highest in an intermediate zone that is dominated by large developmentally-advanced follicles, confirmed by comparison with immunohistology images. These results suggest that large follicles are mechanically dominant structures in the ovary, contrasting with previous expectations that collagen-rich stroma would dominate. Extending our study to the highest resolutions (c. 5 μm) showed substantial mechanical variations within the larger zones, even over very short (sub-100 μm) lengths, and especially within the stiffer regions of the ovary. Taken together, our results provide a new, physiologically accurate, framework for ovarian biomechanics and follicle tissue engineering.
Collapse
Affiliation(s)
- Thomas I R Hopkins
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK; Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London, W12 0NN, UK
| | - Victoria L Bemmer
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Stephen Franks
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London, W12 0NN, UK
| | - Carina Dunlop
- Department of Mathematics, University of Surrey, GU2 7XH, UK
| | - Kate Hardy
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London, W12 0NN, UK
| | - Iain E Dunlop
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| |
Collapse
|
28
|
Ovarian Decellularized Bioscaffolds Provide an Optimal Microenvironment for Cell Growth and Differentiation In Vitro. Cells 2021; 10:cells10082126. [PMID: 34440895 PMCID: PMC8393799 DOI: 10.3390/cells10082126] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
Ovarian failure is the most common cause of infertility. Although numerous strategies have been proposed, a definitive solution for recovering ovarian functions and restoring fertility is currently unavailable. One innovative alternative may be represented by the development of an “artificial ovary” that could be transplanted in patients for re-establishing reproductive activities. Here, we describe a novel approach for successful repopulation of decellularized ovarian bioscaffolds in vitro. Porcine whole ovaries were subjected to a decellularization protocol that removed the cell compartment, while maintaining the macrostructure and microstructure of the original tissue. The obtained bioscaffolds were then repopulated with porcine ovarian cells or with epigenetically erased porcine and human dermal fibroblasts. The results obtained demonstrated that the decellularized extracellular matrix (ECM)-based scaffold may constitute a suitable niche for ex vivo culture of ovarian cells. Furthermore, it was able to properly drive epigenetically erased cell differentiation, fate, and viability. Overall, the method described represents a powerful tool for the in vitro creation of a bioengineered ovary that may constitute a promising solution for hormone and fertility restoration. In addition, it allows for the creation of a suitable 3D platform with useful applications both in toxicological and transplantation studies.
Collapse
|
29
|
Tang LJW, Zaseela A, Toh CCM, Adine C, Aydar AO, Iyer NG, Fong ELS. Engineering stromal heterogeneity in cancer. Adv Drug Deliv Rev 2021; 175:113817. [PMID: 34087326 DOI: 10.1016/j.addr.2021.05.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/19/2021] [Accepted: 05/29/2021] [Indexed: 02/09/2023]
Abstract
Based on our exponentially increasing knowledge of stromal heterogeneity from advances in single-cell technologies, the notion that stromal cell types exist as a spectrum of unique subpopulations that have specific functions and spatial distributions in the tumor microenvironment has significant impact on tumor modeling for drug development and personalized drug testing. In this Review, we discuss the importance of incorporating stromal heterogeneity and tumor architecture, and propose an overall approach to guide the reconstruction of stromal heterogeneity in vitro for tumor modeling. These next-generation tumor models may support the development of more precise drugs targeting specific stromal cell subpopulations, as well as enable improved recapitulation of patient tumors in vitro for personalized drug testing.
Collapse
Affiliation(s)
- Leon Jia Wei Tang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Ayshath Zaseela
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | | | - Christabella Adine
- Department of Biomedical Engineering, National University of Singapore, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore
| | - Abdullah Omer Aydar
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - N Gopalakrishna Iyer
- National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Singapore.
| | - Eliza Li Shan Fong
- Department of Biomedical Engineering, National University of Singapore, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore.
| |
Collapse
|
30
|
Parkes WS, Amargant F, Zhou LT, Villanueva CE, Duncan FE, Pritchard MT. Hyaluronan and Collagen Are Prominent Extracellular Matrix Components in Bovine and Porcine Ovaries. Genes (Basel) 2021; 12:genes12081186. [PMID: 34440360 PMCID: PMC8392036 DOI: 10.3390/genes12081186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix (ECM) is a major component of the ovarian stroma. Collagen and hyaluronan (HA) are critical ovarian stromal ECM molecules that undergo age-dependent changes in the mouse and human. How these matrix components are regulated and organized in other mammalian species with reproductive characteristics similar to women such as cows and pigs, has not been systematically investigated. Therefore, we performed histological, molecular, and biochemical analyses to characterize collagen and HA in these animals. Bovine ovaries had more collagen than porcine ovaries when assessed biochemically, and this was associated with species-specific differences in collagen gene transcripts: Col3a1 was predominant in cow ovaries while Col1a1 was predominant in pig ovaries. We also observed more HA in the porcine vs. bovine ovary. HA was distributed across three molecular weight ranges (<100 kDa, 100-300 kDa, and >300 kDa) in ovarian tissue and follicular fluid, with tissue having more >300 kDa HA than the other two ranges. Transcripts for HA synthesis and degradation enzymes, Has3 and Hyal2, respectively, were predominant in cow ovaries, whereas Has2, Kiaa1199, and Tmem2 tended to be predominant in pig ovaries. Together, our findings have implications for the composition, organization, and regulation of the ovarian ECM in large mammalian species, including humans.
Collapse
Affiliation(s)
- Wendena S. Parkes
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA; (W.S.P.); (C.E.V.)
| | - Farners Amargant
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (F.A.); (L.T.Z.)
| | - Luhan T. Zhou
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (F.A.); (L.T.Z.)
| | - Cecilia E. Villanueva
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA; (W.S.P.); (C.E.V.)
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (F.A.); (L.T.Z.)
- Correspondence: (F.E.D.); (M.T.P.)
| | - Michele T. Pritchard
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA; (W.S.P.); (C.E.V.)
- Institute for Reproductive and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Correspondence: (F.E.D.); (M.T.P.)
| |
Collapse
|
31
|
Premature Ovarian Insufficiency (POI) Induced by Dynamic Intensity Modulated Radiation Therapy via P13K-AKT-FOXO3a in Rat Models. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7273846. [PMID: 34258281 PMCID: PMC8260315 DOI: 10.1155/2021/7273846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/30/2020] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
This study is aimed to investigate the mechanisms of radiation-induced mouse models of premature ovarian insufficiency (POI). Wistar female rats were grouped into the control, 3.2 Gy, 4.0 Gy, and 4.8 Gy groups. Overall ovarian functions were assessed with the H&E staining and ELISA. Proinflammatory cytokine secretion was analyzed ELISA, and the reactive oxygen species (ROS) levels were analyzed with immunohistochemistry. Protein expressions were analyzed by Western blot analysis. The 4.0 Gy and 4.8 Gy groups had significantly lower ovarian weight coefficients than the control and 3.2 Gy groups (after only one irradiation therapy). The 3.2 Gy radiation group induced periodic disturbance and hormone change at 4 weeks after radiation. In the 4.0 Gy and 4.8 Gy groups, the preantral follicles and antral follicles were decreased, while Atresia follicles were increased. E2 was decreased, while FSH and LH secretions were increased. The ovaries in the 4.0 Gy group were not completely atrophied, and some preantral follicles remained. Ovarian atrophy and follicular Atresia were found in the 4.8 Gy group. Inflammatory and oxidative markers were upregulated. PI3K and AKT were downregulated in the 4.0 Gy and 4.8 Gy groups, while FOXO3a was upregulated. Ovarian injuries may lead to oxidative damages and inflammatory injuries, downregulate the expression of P13k and Akt, upregulate the expression of FOXO3a, and lead to follicular atresia in the ovary.
Collapse
|
32
|
Kim SW, Kim YY, Kim H, Ku SY. Recent Advancements in Engineered Biomaterials for the Regeneration of Female Reproductive Organs. Reprod Sci 2021; 28:1612-1625. [PMID: 33797052 DOI: 10.1007/s43032-021-00553-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/17/2021] [Indexed: 12/14/2022]
Abstract
Various gynecologic diseases and chemoradiation or surgery for the management of gynecologic malignancies may damage the uterus and ovaries, leading to clinical problems such as infertility or early menopause. Embryo or oocyte cryopreservation-the standard method for fertility preservation-is not a feasible option for patients who require urgent treatment because the procedure requires ovarian stimulation for at least several days. Hormone replacement therapy (HRT) for patients diagnosed with premature menopause is contraindicated for patients with estrogen-dependent tumors or a history of thrombosis. Furthermore, these methods cannot restore the function of the uterus and ovaries. Although autologous transplantation of cryopreserved ovarian tissue is being attempted, it may re-introduce malignant cells after cancer treatment. With the recent development in regenerative medicine, research on engineered biomaterials for the restoration of female reproductive organs is being actively conducted. The use of engineered biomaterials is a promising option in the field of reproductive medicine because it can overcome the limitations of current therapies. Here, we review the ideal properties of biomaterials for reproductive tissue engineering and the recent advancements in engineered biomaterials for the regeneration of female reproductive organs.
Collapse
Affiliation(s)
- Sung Woo Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, 03080, South Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, 03080, South Korea.
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea.
| | - Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, 03080, South Korea.
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, 2024 E. Monument St, Baltimore, MD, 21205, USA.
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, 03080, South Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
33
|
Ouni E, Bouzin C, Dolmans MM, Marbaix E, Pyr Dit Ruys S, Vertommen D, Amorim CA. Spatiotemporal changes in mechanical matrisome components of the human ovary from prepuberty to menopause. Hum Reprod 2021; 35:1391-1410. [PMID: 32539154 DOI: 10.1093/humrep/deaa100] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 01/12/2023] Open
Abstract
STUDY QUESTION How do elastic matrisome components change during the lifetime of the human ovary? SUMMARY ANSWER The deposition and remodeling of mechanical matrisome components (collagen, elastin, elastin microfibril interface-located protein 1 (EMILIN-1), fibrillin-1 and glycosaminoglycans (GAGs)) that play key roles in signaling pathways related to follicle activation and development evolve in an age- and follicle stage-related manner. WHAT IS KNOWN ALREADY The mechanobiology of the human ovary and dynamic reciprocity that exists between ovarian cells and their microenvironment is of high importance. Indeed, while the localization of primordial follicles in the collagen-rich ovarian cortex offers a rigid physical environment that supports follicle architecture and probably plays a role in their survival, ovarian extracellular matrix (ECM) stiffness limits follicle expansion and hence oocyte maturation, maintaining follicles in their quiescent state. As growing follicles migrate to the medulla of the ovary, they encounter a softer, more pliant ECM, allowing expansion and development. Thus, changes in the rigidity of the ovarian ECM have a direct effect on follicle behavior. Evidence supporting a role for the physical environment in follicle activation was provided in clinical practice by ovarian tissue fragmentation, which promoted actin polymerization and disrupted ovarian Hippo signaling, leading to increased expression of downstream growth factors, promotion of follicle growth and generation of mature oocytes. STUDY DESIGN, SIZE, DURATION We investigated quantitative spatiotemporal changes in collagen, elastin, EMILIN-1, fibrillin-1 and GAGs from prepuberty to menopause, before conducting a closer analysis of the ECM surrounding follicles, from primordial to secondary stages, in both prepubertal and tissue from women of reproductive age. The study included ovarian tissue (cortex) from 68 patients of different ages: prepubertal (n = 16; mean age [±SD]=8 ± 2 years); reproductive (n = 21; mean age [±SD]=27 ± 4 years); menopausal with estrogen-based HRT (n = 7; mean age [±SD]=58 ± 4 years); and menopausal without HRT (n = 24; mean age [±SD]=61 ± 5 years). PARTICIPANTS/MATERIALS, SETTING, METHODS Quantitative investigations of collagen and GAG deposition in ovarian tissue throughout a woman's lifetime were conducted by analyzing brightfield images. Characteristic features of collagen fiber content were based on polarized light microscopy, since polarized light changes with fiber thickness. To evaluate the deposition and distribution of elastin, fibrillin-1 and EMILIN-1, multiplex immunofluorescence was used on at least three sections from each patient. Image processing and tailored bioinformatic analysis were applied to enable spatiotemporal quantitative evaluation of elastic system component deposition in the human ovary over its lifetime. MAIN RESULTS AND THE ROLE OF CHANCE While collagen levels increased with age, fibrillin-1 and EMILIN-1 declined. Interestingly, collagen and elastin reached their peak in reproductive-age women compared to prepubertal (P < 0.01; P = 0.262) and menopausal subjects with (P = 0.706; P < 0.01) and without (P = 0.987; P = 0.610) HRT, indicating a positive impact of secreted estrogen and hormone treatment on collagen and elastin preservation. Interestingly, HRT appears to affect elastin presence in ovarian tissue, since a significantly higher (P < 0.05) proportion of elastin was detected in biopsies from menopausal women taking HRT compared to those not. Higher GAG levels were found in adult ovaries compared to prepubertal ovaries (P < 0.05), suggesting changes in tissue ultrastructure and elasticity with age. In this context, elevated GAG values are suspected to participate in hampering formation of the fibrillin-1 network (r = -0.2475; P = 0.04687), which explains its decline over time. This decline partially accounts for the decrease in EMILIN-1 (r = 0.4149; P = 0.00059). Closer examination of the ECM surrounding follicles from the primordial to the secondary stage, both before and after puberty, points to high levels of mechanical stress placed on prepubertal follicles compared to the more compliant ECM around reproductive-age follicles, as suggested by the higher collagen levels and lower elastin content detected mainly around primordial (P < 0.0001; P < 0.0001, respectively) and primary (P < 0.0001; P < 0.001, respectively) follicles. Such a stiff niche is nonpermissive to prepubertal follicle activation and growth, and is more inclined to quiescence. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION The duration and form of administered HRT were not considered when studying the menopausal patient group undergoing treatment. Moreover, we cannot exclude interference from other nongynecological medications taken by the study patients on ovarian ECM properties since there is no information in the literature describing the impact of each medication on the ECM. Finally, since the ECM is by definition a very heterogeneous meshwork of proteins, the use of two-dimensional histology could be a limitation. Single time points on fixed tissues could also present limitations, since following ovary dynamics from prepuberty to menopause in the same patient is not feasible. WIDER IMPLICATIONS OF THE FINDINGS From a biomechanical perspective, our study revealed important changes to ECM properties dictating the mechanical features of ovarian tissue, in line with the existing literature. Our findings pave the way for possible therapeutic targets at the ECM level in the context of female fertility and ovarian rejuvenation, such as mechanical stimulation, antifibrotic treatments, and prevention or reversion of elastic ECM degradation. Our study also sheds light on the follicle-specific ECM composition that is dependent on follicle stage and age. These data will prove very useful in designing biomimetic scaffolds and tissue-engineered models like the artificial ovary. Indeed, they emphasize the importance of encapsulating each type of isolated follicle in an appropriate biomaterial that must replicate the corresponding functional perifollicular ECM and respect ovarian tissue heterogeneity in order to guarantee its biomimicry. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (FNRS) (C.A.A. is an FRS-FNRS research associate; grant 5/4/150/5 awarded to M.M.D.) and the Université Catholique de Louvain (PhD grant 'Coopération au développement' awarded to E.O.). None of the authors have any competing interests to declare.
Collapse
Affiliation(s)
- E Ouni
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - C Bouzin
- IREC Imaging Platform (2IP), Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - M M Dolmans
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium.,Gynecology and Andrology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - E Marbaix
- Pathology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium.,Cell Biology Unit, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - S Pyr Dit Ruys
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - D Vertommen
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - C A Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
34
|
Building Organs Using Tissue-Specific Microenvironments: Perspectives from a Bioprosthetic Ovary. Trends Biotechnol 2021; 39:824-837. [PMID: 33593603 DOI: 10.1016/j.tibtech.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
Recent research in tissue engineering and regenerative medicine has elucidated the importance of the matrisome. The matrisome, effectively the skeleton of an organ, provides physical and biochemical cues that drive important processes such as differentiation, proliferation, migration, and cellular morphology. Leveraging the matrisome to control these and other tissue-specific processes will be key to developing transplantable bioprosthetics. In the ovary, the physical and biological properties of the matrisome have been implicated in controlling the important processes of follicle quiescence and folliculogenesis. This expanding body of knowledge is being applied in conjunction with new manufacturing processes to enable increasingly complex matrisome engineering, moving closer to emulating tissue structure, composition, and subsequent functions which can be applied to a variety of tissue engineering applications.
Collapse
|
35
|
Liao J, Xu B, Zhang R, Fan Y, Xie H, Li X. Applications of decellularized materials in tissue engineering: advantages, drawbacks and current improvements, and future perspectives. J Mater Chem B 2020; 8:10023-10049. [PMID: 33053004 DOI: 10.1039/d0tb01534b] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Decellularized materials (DMs) are attracting more and more attention because of their native structures, comparatively high bioactivity, low immunogenicity and good biodegradability, which are difficult to be imitated by synthetic materials. Recently, DMs have been demonstrated to possess great potential to overcome the disadvantages of autografts and have become a kind of promising material for tissue engineering. In this systematic review, we aimed to not only provide a quick access for understanding DMs, but also bring new ideas to utilize them more appropriately in tissue engineering. Firstly, the preparation of DMs was introduced. Then, the updated applications of DMs derived from different tissues and organs in tissue engineering were comprehensively summarized. In particular, their advantages, drawbacks and current improvements were emphasized. Moreover, we analyzed and proposed future perspectives.
Collapse
Affiliation(s)
- Jie Liao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| | | | | | | | | | | |
Collapse
|
36
|
Brevini T, Tysoe OC, Sampaziotis F. Tissue engineering of the biliary tract and modelling of cholestatic disorders. J Hepatol 2020; 73:918-932. [PMID: 32535061 DOI: 10.1016/j.jhep.2020.05.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/20/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022]
Abstract
Our insight into the pathogenesis of cholestatic liver disease remains limited, partly owing to challenges in capturing the multitude of factors that contribute to disease pathogenesis in vitro. Tissue engineering could address this challenge by combining cells, materials and fabrication strategies into dynamic modelling platforms, recapitulating the multifaceted aetiology of cholangiopathies. Herein, we review the advantages and limitations of platforms for bioengineering the biliary tree, looking at how these can be applied to model biliary disorders, as well as exploring future directions for the field.
Collapse
Affiliation(s)
- Teresa Brevini
- Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Olivia C Tysoe
- Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Fotios Sampaziotis
- Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Hepatology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
37
|
Kinnear HM, Tomaszewski CE, Chang FL, Moravek MB, Xu M, Padmanabhan V, Shikanov A. The ovarian stroma as a new frontier. Reproduction 2020; 160:R25-R39. [PMID: 32716007 PMCID: PMC7453977 DOI: 10.1530/rep-19-0501] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
Historically, research in ovarian biology has focused on folliculogenesis, but recently the ovarian stroma has become an exciting new frontier for research, holding critical keys to understanding complex ovarian dynamics. Ovarian follicles, which are the functional units of the ovary, comprise the ovarian parenchyma, while the ovarian stroma thus refers to the inverse or the components of the ovary that are not ovarian follicles. The ovarian stroma includes more general components such as immune cells, blood vessels, nerves, and lymphatic vessels, as well as ovary-specific components including ovarian surface epithelium, tunica albuginea, intraovarian rete ovarii, hilar cells, stem cells, and a majority of incompletely characterized stromal cells including the fibroblast-like, spindle-shaped, and interstitial cells. The stroma also includes ovarian extracellular matrix components. This review combines foundational and emerging scholarship regarding the structures and roles of the different components of the ovarian stroma in normal physiology. This is followed by a discussion of key areas for further research regarding the ovarian stroma, including elucidating theca cell origins, understanding stromal cell hormone production and responsiveness, investigating pathological conditions such as polycystic ovary syndrome (PCOS), developing artificial ovary technology, and using technological advances to further delineate the multiple stromal cell types.
Collapse
Affiliation(s)
- Hadrian M Kinnear
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Claire E Tomaszewski
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Faith L Chang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Molly B Moravek
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Reproductive Endocrinology and Infertility, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Min Xu
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Reproductive Endocrinology and Infertility, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vasantha Padmanabhan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ariella Shikanov
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
38
|
Quan N, Mara JN, Grover AR, Pavone ME, Duncan FE. Spatial Analysis of Growing Follicles in the Human Ovary to Inform Tissue Engineering Strategies. Tissue Eng Part A 2020; 26:733-746. [PMID: 32598235 DOI: 10.1089/ten.tea.2020.0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cancer survivorship has increased considerably, but common cancer treatments may threaten female reproductive health and fertility. In females, standard fertility preservation techniques include egg and embryo banking and ovarian tissue cryopreservation, but these methods are not suitable for all individuals. Emerging fertility preservation technologies include in vitro follicle growth and ovarian bioprosthetics. Although these platforms hold tremendous promise, they remain in the preclinical phase likely because of our inability to adequately phenocopy the complexity of the in vivo ovarian environment. The goal of this study was to use an established research archive of fixed human ovarian tissue established through the Oncofertility Consortium to better understand the dynamics and milieu of growing follicles within the human ovary. We performed a histological analysis of the immediate surroundings of primary and secondary stage follicles. We evaluated oocyte and follicle diameters of these growing follicles, analyzed their growth trajectories, and mapped their precise relationships to other stage follicles within a defined area. We also stratified our findings according to participant age and previous treatment history. Our results serve as in vivo benchmarks for follicles grown in vitro and provide insight into how follicles should be seeded spatially within bioprosthetic ovaries, potentially improving the efficacy and clinical translation of these emerging technologies. Impact statement Life-preserving cancer treatments have greatly increased survivorship. However, treatments often have off-target health consequences that threaten female reproductive health and fertility. Although several standard fertility preservation options exist, there is a constant need to explore and expand options for all populations. In vitro follicle growth and ovarian bioprosthetics are new experimental procedures, which are currently limited to proof of concept. In this study, we analyzed human ovarian tissue from a deidentified biospecimen repository to characterize the growing follicle landscape with the ultimate goal of informing bioengineering practices. This spatial analysis pinpoints the geometry of growing follicles within the human ovary and provides a framework for paralleling this environment in ex vivo platforms.
Collapse
Affiliation(s)
- Natalie Quan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jamie N Mara
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Allison R Grover
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mary Ellen Pavone
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
39
|
Gargus ES, Jakubowski KL, Arenas GA, Miller SJ, Lee SSM, Woodruff TK. Ultrasound Shear Wave Velocity Varies Across Anatomical Region in Ex Vivo Bovine Ovaries. Tissue Eng Part A 2020; 26:720-732. [PMID: 32609070 DOI: 10.1089/ten.tea.2020.0037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The physical properties of the ovarian extracellular matrix (ECM) regulate the function of ovarian cells, specifically the ability of the ovary to maintain a quiescent primordial follicle pool while allowing a subset of follicles to grow and mature in the estrous cycle. Design of a long-term, cycling artificial ovary has been hindered by the limited information regarding the mechanical properties of the ovary. In particular, differences in the mechanical properties of the two ovarian compartments, the cortex and medulla, have never been quantified. Shear wave (SW) ultrasound elastography is an imaging modality that enables assessment of material properties, such as the mechanical properties, based on the velocity of SWs, and visualization of internal anatomy, when coupled with B-mode ultrasound. We used SW ultrasound elastography to assess whole, ex vivo bovine ovaries. We demonstrated, for the first time, a difference in mechanical properties, as inferred from SW velocity, between the cortex and medulla, as measured along the length (cortex: 2.57 ± 0.53 m/s, medulla: 2.87 ± 0.77 m/s, p < 0.0001) and width (cortex: 2.99 ± 0.81 m/s, medulla: 3.24 ± 0.97 m/s, p < 0.05) and that the spatial distribution and magnitude of SW velocity vary between these two anatomical planes. This work contributes to a larger body of literature assessing the mechanical properties of the ovary and related cells and specialized ECMs and will enable the rational design of biomimetic tissue engineered models and durable bioprostheses. Impact Statement Shear wave (SW) ultrasound elastography can be used to simultaneously assess the material properties and tissue structures when accompanied with B-mode ultrasound. We report a quantitative difference in mechanical properties, as inferred from SW velocity, between the cortex and medulla, with SW velocity being 11.4% and 8.4% higher in the medulla than the cortex when measured along the length and width, respectively. This investigation into the spatial and temporal variation in SW velocity in bovine ovaries will encourage and improve design of more biomimetic scaffolds for ovarian tissue engineering.
Collapse
Affiliation(s)
- Emma S Gargus
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA
| | - Kristen L Jakubowski
- Department of Physical Therapy and Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA.,Shirley Ryan AbilityLab, Chicago, Illinois, USA
| | - Gabriel A Arenas
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Scott J Miller
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sabrina S M Lee
- Department of Physical Therapy and Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
40
|
Pennarossa G, Ghiringhelli M, Gandolfi F, Brevini TAL. Whole-ovary decellularization generates an effective 3D bioscaffold for ovarian bioengineering. J Assist Reprod Genet 2020; 37:1329-1339. [PMID: 32361917 PMCID: PMC7311562 DOI: 10.1007/s10815-020-01784-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To develop a new protocol for whole-ovary decellularization for the production of a 3D bioscaffold suitable for in vitro/ex vivo studies and for the reconstruction of a bioengineered ovary. METHODS Porcine ovaries were subjected to the decellularization process (DECELL; n = 20) that involved a freeze-thaw cycle, followed by sequential incubations in 0.5% SDS for 3 h, 1% Triton X-100 for 9 h, and 2% deoxycholate for 12 h. Untreated ovaries were used as a control (CTR; n = 6). Both groups were analyzed to evaluate cell and DNA removal as well as ECM preservation. DECELL bioscaffolds were assessed for cytotoxicity and cell homing ability. RESULTS DECELL ovaries maintained shape and homogeneity without any deformation, while their color turned from red to white. Histological staining and DNA quantification confirmed a decrease of 98.11% in DNA content, compared with the native tissue (CTR). Histochemical assessments demonstrated the preservation of intact ECM microarchitecture after the decellularization process. This was also confirmed by quantitative analysis of collagen, elastin, and GAG contents. DECELL bioscaffold showed no cytotoxic effects in co-culture and, when re-seeded with homologous fibroblasts, encouraged a rapid cell adhesion and migration, with repopulating cells increasing in number and aggregating in cluster-like structures, consistent with its ability to sustain cell adherence, proliferation, and differentiation. CONCLUSION The protocol described allows for the generation of a 3D bioscaffold that may constitute a suitable model for ex vivo culture of ovarian cells and follicles, as well as a promising tool for the reconstruction of a bioengineered ovary.
Collapse
Affiliation(s)
- Georgia Pennarossa
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, via Celoria 10, 20133, Milan, Italy
| | - Matteo Ghiringhelli
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, via Celoria 10, 20133, Milan, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy and Center for Stem Cell Research, Università degli Studi di Milano, via Celoria 2, 20133, Milan, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, via Celoria 10, 20133, Milan, Italy.
| |
Collapse
|
41
|
Gargus ES, Rogers HB, McKinnon KE, Edmonds ME, Woodruff TK. Engineered reproductive tissues. Nat Biomed Eng 2020; 4:381-393. [PMID: 32251392 PMCID: PMC7416444 DOI: 10.1038/s41551-020-0525-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022]
Abstract
Engineered male and female biomimetic reproductive tissues are being developed as autonomous in vitro units or as integrated multi-organ in vitro systems to support germ cell and embryo function, and to display characteristic endocrine phenotypic patterns, such as the 28-day human ovulatory cycle. In this Review, we summarize how engineered reproductive tissues facilitate research in reproductive biology, and overview strategies for making engineered reproductive tissues that might eventually allow the restoration of reproductive capacity in patients.
Collapse
Affiliation(s)
- Emma S Gargus
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hunter B Rogers
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kelly E McKinnon
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Maxwell E Edmonds
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
42
|
Laronda MM. Engineering a bioprosthetic ovary for fertility and hormone restoration. Theriogenology 2020; 150:8-14. [PMID: 31973967 DOI: 10.1016/j.theriogenology.2020.01.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/14/2022]
Abstract
There has been an increase in childhood cancer survivors over the past few decades, and with this, an increased awareness of the co-morbidities of the treatment or disease that affect the survivor's quality-of-life. The increased rate of infertility among this patient group and the desire to have biological children voiced by childhood cancer survivors underscores the urgent need for fertility preservation and development of techniques to restore fertility and gonadal hormone function for this population. The ovarian tissue contains a finite source of female gametes that can be transplanted to restore ovarian function and has resulted in over one hundred reported live births. However, the success of biological offspring per ovarian tissue transplant, the reduced lifespan of these transplants, and the potential for these tissues to contain cancer cells from patients with metastatic diseases supports the need for improved options. One innovation that could improve ovarian transplantation is the development of a bioprosthetic ovary comprised of a 3D printed scaffold with isolated ovarian follicles. A murine bioprosthetic ovary restored ovarian hormones in ovariectomized mice, which also gave birth to healthy offspring. Research is ongoing to create the next iteration of the scaffold that would support ovarian follicles from large animal models and humans with the hopes of translating this technology for patients.
Collapse
Affiliation(s)
- Monica M Laronda
- Department of Endocrinology, Department of Surgery and Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, USA.
| |
Collapse
|