1
|
Liu Y, Ge Y, Wang L, Dong J, Wang Z, Wang Y. Population Genetics, Demographic History, and Potential Distributions of the New Important Pests Monolepta signata (Coleoptera: Chrysomelidae) on Corn in China. INSECTS 2025; 16:323. [PMID: 40266817 PMCID: PMC11942702 DOI: 10.3390/insects16030323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 04/25/2025]
Abstract
Monolepta signata are polyphagous pest widely distributed in China, and the damage as well as economic losses it caused were increasing in recent years. Knowledge of species diversity, population structure and habitat suitability could enhance the efforts of pest control. Here, we sampled the populations of M. signata in almost all of China's major corn-producing regions. A total of 568 sequences were obtained from each gene. There were 48, 29, and 30 haplotypes of COI, ITS2 and EF-1α, respectively. The genetic distance between the HuangHuaiHai population and other populations was the largest. There were 61.90%, 71.43% and 61.90% of Nm values smaller than 1 in COI, ITS2 and EF-1α, respectively, which indicated that gene flow between most populations was weak. The degree of differentiation in most populations of M. signata was relatively high. The population of M. signata has also experienced rapid expansion. Population history dynamic analysis showed that the effective population size of M. signata remained relatively stable before 0.075 Ma. There was a slow contraction trend from 0.075 to 0.010 Ma. It has been rapidly and continuously expanding since 0.010 Ma. Among the investigated geographical populations, the "yellow-spot type" was only present in the populations of southern and southwestern regions, while the "two-spot type" and "four-spot type" were widely distributed in all other geographical populations. Predictions of the potential distribution areas of M. signata indicated that the northeast and north China regions will remain being the high suitability areas of M. signata in the future. Our results will not only facilitate studies on the phylogeography of M. signata but also benefit the effective monitoring and management of this agricultural pest.
Collapse
Affiliation(s)
- Yang Liu
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (Y.L.); (Y.G.); (L.W.)
| | - Yacong Ge
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (Y.L.); (Y.G.); (L.W.)
| | - Liming Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (Y.L.); (Y.G.); (L.W.)
| | - Jingao Dong
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (Y.L.); (Y.G.); (L.W.)
| | - Zhenying Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuyu Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (Y.L.); (Y.G.); (L.W.)
| |
Collapse
|
2
|
Liu Q, Zhu P, Xu S, Yang C, Song F, Meng Y, Zhou J, Yang H, Huang W. Comparative Mitogenomes and Phylogenetic Analyses of Coccinellidae (Coleoptera: Coccinelloidea). Ecol Evol 2025; 15:e71053. [PMID: 40114665 PMCID: PMC11925485 DOI: 10.1002/ece3.71053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/09/2025] [Accepted: 02/16/2025] [Indexed: 03/22/2025] Open
Abstract
Coccinellidae (ladybird beetles) comprises around 6900 described species with a worldwide distribution and exhibits a broad trophic diversity. Complete mitochondrial genomes (mitogenomes) are valuable resources in many research fields, such as genomics, population genetics, molecular evolution, and phylogenetics. Here we sequenced and report the complete mitogenome of Calvia chinensis, Micraspis discolor, Harmonia eucharis, and Oenopia kirbyi. By comparing with the 36 complete mitogenomes published in GenBank, we found that the long noncoding region (LNCR) between trnI and trnQ is present in the mitogenome of Chilocorini and Coccinellini, and the size of LNCR is positively correlated with their mitogenome size. The variable number tandem repeat (VNTR) was detected in the LNCR of Calvia chinensis and Oenopia kirbyi, indicating that the LNCR may be associated with the transcriptional regulation of the mitogenome. Heterogeneity in the base composition was encountered among the mitogenomes in Coccinellidae, especially in Noviini and some species of Epilachnini and Coccinellini, which may lead to unstable phylogenetic topologies. Phylogenetic relationships have been reconstructed by maximum likelihood and Bayesian inferences based on two mitogenomic datasets, PCG_rRNA (all 13 PCGs and two rRNAs) and PCG12_rRNA (all 13 PCGs with the third codon position excluded and two rRNAs). Our results are close to the subfamily and tribe classification system reported in previous studies and suggest the maximum likelihood analysis based on the PCG12_rRNA dataset is more sensitive in avoiding the false grouping of unrelated taxa with similar base composition in the reconstruction of the phylogeny.
Collapse
Affiliation(s)
- Qiaoqiao Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Pingzhou Zhu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Shiwen Xu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Chunyan Yang
- Genome Center of BiodiversityKunming Institute of Zoology, Chinese Academy of ScienceKunmingChina
- Yunnan Key Laboratory of Biodiversity InformationKunmingChina
- Yunnan International Joint Center of Urban BiodiversityKunmingChina
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | | | | | | | - Weidong Huang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management College of Plant ProtectionChina Agricultural UniversityBeijingChina
| |
Collapse
|
3
|
Soumia P, Shirsat DV, Karuppaiah V, Divekar PA, Mahajan V. Unravelling the complete mitochondrial genomes of Thrips tabaci Lindeman and Thrips parvispinus Karny (Thysanoptera: Thripidae) and their phylogenetic implications. FRONTIERS IN INSECT SCIENCE 2025; 5:1536160. [PMID: 40093569 PMCID: PMC11906450 DOI: 10.3389/finsc.2025.1536160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025]
Abstract
Onion (Allium cepa Linnaeus) is an important vegetable crop valued for its nutritional properties and economics worldwide. Onion cultivation faces serious threats from pests and diseases, particularly onion thrips (Thrips tabaci), which cause substantial yield losses. Recently, Black thrips (Thrips parvispinus), an invasive key pest of chili, have been reported to cause severe damage in onion crop and is likely to devastate the onion cultivation in near future. Therefore, this study was conducted to address the knowledge gap concerning the genetic basis and evolutionary history of T. tabaci and T. parvispinus through sequencing of their mitochondrial genomes. T. tabaci and T. parvispinus were collected from different locations in Maharashtra, India, and reared in the laboratory. The mitochondrial genomes of T. tabaci and T. parvispinus were sequenced to a length of 15,277 and 15,285 bp, respectively. Both genomes exhibited similar gene organization with regard to thirteen protein-coding genes and two rRNA genes. T. tabaci contained 19 tRNA genes whereas T. parvispinus contained 18 tRNA genes. The evolutionary positions of T. tabaci and T. parvispinus within the Thysanoptera order were elucidated through phylogenetic analysis of the mitogenomes of 15 thrips species. These findings provide crucial insights into the genetic makeup and evolutionary dynamics of both the thrips species, thereby aiding the development of novel and sustainable pest management strategies to mitigate their impacts on crops in the changing climate scenario.
Collapse
Affiliation(s)
- P.S. Soumia
- Crop Protection Section, ICAR-Directorate of Onion and Garlic Research, Pune, Maharashtra, India
| | - Dhananjay V. Shirsat
- Crop Protection Section, ICAR-Directorate of Onion and Garlic Research, Pune, Maharashtra, India
| | - Vadivelu Karuppaiah
- Crop Protection Section, ICAR-Directorate of Onion and Garlic Research, Pune, Maharashtra, India
| | - Pratap A. Divekar
- Division of Crop Protection, ICAR- Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Vijay Mahajan
- Crop Protection Section, ICAR-Directorate of Onion and Garlic Research, Pune, Maharashtra, India
| |
Collapse
|
4
|
Cameron SL. Insect Mitochondrial Genomics: A Decade of Progress. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:83-101. [PMID: 39259965 DOI: 10.1146/annurev-ento-013024-015553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The past decade has seen the availability of insect genomic data explode, with mitochondrial (mt) genome data seeing the greatest growth. The widespread adoption of next-generation sequencing has solved many earlier methodological limitations, allowing the routine sequencing of whole mt genomes, including from degraded or museum specimens and in parallel to nuclear genomic projects. The diversity of available taxa now allows finer-scale comparisons between mt and nuclear phylogenomic analyses; high levels of congruence have been found for most orders, with some significant exceptions (e.g., Odonata, Mantodea, Diptera). The evolution of mt gene rearrangements and their association with haplodiploidy have been tested with expanded taxonomic sampling, and earlier proposed trends have been largely supported. Multiple model systems have been developed based on findings unique to insects, including mt genome fragmentation (lice and relatives) and control region duplication (thrips), allowing testing of hypothesized evolutionary drivers of these aberrant genomic phenomena. Finally, emerging research topics consider the contributions of mt genomes to insect speciation and habitat adaption, with very broad potential impacts. Integration between insect mt genomic research and other fields within entomology continues to be our field's greatest opportunity and challenge.
Collapse
Affiliation(s)
- Stephen L Cameron
- Department of Entomology, Purdue University, West Lafayette, Indiana, USA;
| |
Collapse
|
5
|
Yao H, Ma W, Su Z, Yan Y, Li Y, Cui W, Yang J, Zhan F, Hou M. Phylogenetic and Comparative Genomics Study of Cephalopina titillator Based on Mitochondrial Genomes. INSECTS 2024; 16:6. [PMID: 39859587 PMCID: PMC11766325 DOI: 10.3390/insects16010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025]
Abstract
Camel bot fly (Cephalopina titillator) larvae cause myiasis in domesticated and wild camels, resulting in significant economic losses to the camel industry and posing a serious global public health concern. To date, only one mitochondrial genome (mitogenome) of C. titillator isolated from the Alxa Bactrian camel has been reported. Herein, C. titillator was isolated from the Junggar Bactrian camel to assemble a complete circular mitogenome with a length of 16,552 bp encoding 13 protein-coding genes, 22 tRNA genes, and two rRNA genes. The mitogenome showed a high A + T content (73.31%), positive AT-skew (0.12), and negative GC-skew (-0.34) base composition patterns. All protein-coding genes (PCGs) employed ATG, ATA, ATT, GTG, or TCG as the start codons and TAA, TAG, or single T as the stop codons. Similar to other parasites in the Oestridae subfamily, the mitogenome was structurally conserved, with genes retaining the same order and direction as those in the ancestral insect mitogenome. The phylogenetic analysis clustered this species with the Oestrinae, showing that the subfamily did not exhibit monophyly. C. titillator isolated from the Junggar Bactrian camel was found to be a sister lineage to that isolated from the Alxa Bactrian camel. Despite the lack of data on the mitogenome of C. titillator isolated from dromedaries in the Middle East, phylogenetic analysis of C. titillator isolated from Xinjiang revealed one distinct lineage of the Xinjiang camel nasal bot fly. In conclusion, this study reports the complete mitogenome of Xinjiang C. titillator for the first time, providing valuable data for future studies on the phylogenetic relationships in this subfamily.
Collapse
Affiliation(s)
- Huaibing Yao
- Xinjiang Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (H.Y.); (Y.Y.); (Y.L.); (W.C.)
| | - Wanpeng Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (W.M.); (Z.S.)
| | - Zhanqiang Su
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (W.M.); (Z.S.)
| | - Yuanyuan Yan
- Xinjiang Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (H.Y.); (Y.Y.); (Y.L.); (W.C.)
| | - Yang Li
- Xinjiang Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (H.Y.); (Y.Y.); (Y.L.); (W.C.)
| | - Weidong Cui
- Xinjiang Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (H.Y.); (Y.Y.); (Y.L.); (W.C.)
| | - Jie Yang
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China;
| | - Faqiang Zhan
- Xinjiang Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (H.Y.); (Y.Y.); (Y.L.); (W.C.)
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China;
| | - Min Hou
- Xinjiang Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (H.Y.); (Y.Y.); (Y.L.); (W.C.)
| |
Collapse
|
6
|
Yi J, Liu J, Mao Y, Cheng Y, Lin M, Xu H, An Y, Li J, Wu H. The Complete Mitochondrial Genome of Chilo infuscatellus (Lepidoptera: Pyralidae), and Related Phylogenetic Analysis. Biochem Genet 2024; 62:4380-4395. [PMID: 38306003 DOI: 10.1007/s10528-023-10639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/12/2023] [Indexed: 02/03/2024]
Abstract
The Chilo infuscatellus (Lepidoptera: Pyralidae) is a significant pest of sugarcane in China. The genome-level characteristics of this pest are important genetic resources for identification, phylogenetic analysis, and even management. In the present study, the complete mitogenome of C. infuscatellus was sequenced and characterized. The assembled mitochondrial genome is 15,252 bp in length and includes 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and an A + T-rich region. Except for the CGA codon for the cox1 gene, the PCGs are initiated with ATN codons (ATG, ATT, and ATA). These PCGs are terminated with TAA or an incomplete termination codon of a single T. Except for the loss of the "DHU" arm for trnS1, the tRNA genes were folded into the typical cloverleaf structure. The A + T-rich region has a high AT content of 96.19% and contains the motifs "ATAGA" and "ATTTA", as well as a 19 bp poly-T stretch and microsatellite regions. The C. infuscatellus mitogenome exhibits a conserved gene order among lepidopteran insects, with a rearrangement of the trnM gene compared to the ancestral insect gene order. Phylogenetic analysis based on the 13 PCGs using Bayesian inference (BI) and maximum likelihood (ML) methods confirmed the monophyly of Pyralidae and Crambidae within Pyraloidea. The relationships between subfamilies in Pyralidae can be described as (Galleriinae + (Phycitinae + (Pyralinae + Epipaschiinae))). The "PS clade" and "non-PS clade" were formed within the family Crambidae. These findings provide valuable genetic resources for the identification, phylogenetic analysis, and management of sugarcane borers, contributing significantly to our understanding of the phylogeny of Pyraloidea insects and their evolution.
Collapse
Affiliation(s)
- Jiequn Yi
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Jianbai Liu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yongkai Mao
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yinjie Cheng
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Minjiang Lin
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Hanliang Xu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yuxing An
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Jihu Li
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China.
| | - Han Wu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China.
| |
Collapse
|
7
|
Pham LTK, Van Quyen D, Saijuntha W, Doan HTT, Le TH, Lawton SP. Mitogenomics of the zoonotic parasite Echinostoma miyagawai and insights into the evolution of tandem repeat regions within the mitochondrial non-coding control region. Parasitology 2024; 151:1543-1554. [PMID: 39540328 PMCID: PMC12052430 DOI: 10.1017/s0031182024001422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Echinostoma miyagawai is a cosmopolitan parasite within the Echinostomatidae and is a cause of human echinostomiasis. Species within the family have been a challenge to disentangle with E. miyagawai being synonyms of several other Echinostoma species. However, complete mitochondrial genomes have been shown to be vital in distinguishing echinostomatid species, but detailed comparisons of not only gene content but also structural features have been limited. Using long range sequencing techniques, the complete mitochondrial genome of E. miyagawai was sequenced and compared to other members of Echinostomatidae. In total 12 protein coding genes, 2 ribosomal RNA genes and 22 transfer RNA genes were identified, as was an extensive noncoding control region (CR), consisting of 2 types of multiple tandem repeat units. Phylogenetic analyses of complete mitochondrial genomes corresponded to previous studies on single mitochondrial genes and nuclear ribosomal nuclear markers confirmed E. miyagawai to be within in the ‘Echinostoma revolutum’ group. The tandem repeat units found in the CR contained promoter sequences containing domains typical of initiation sites for replication and transcription as well as several palindromic regions which were shared between echinostomatid species. The study illustrates not only the utility complete mitogenomes in disentangling the relationship between these parasite species, but also provides some insight into the potential adaptations and other evolutionary processes that may govern the divergence of mitochondrial genomes for the first time in echinostomatids.
Collapse
Affiliation(s)
- Linh Thi Khanh Pham
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Dong Van Quyen
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Molecular Microbiology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST). 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam
| | | | - Huong Thi Thanh Doan
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam
| | - Thanh Hoa Le
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam
| | - Scott P. Lawton
- Centre for Epidemiology & Planetary Health, School of Veterinary Medicine & Biosciences, Scotland's Rural College, Inverness Campus, Inverness IV2 5NA, UK
| |
Collapse
|
8
|
Aydemir HB. Quantification of rearrangements and evolution of mitochondrial gene order of Acari (Chelicerata: Arachnida). Parasitol Res 2024; 123:389. [PMID: 39565455 DOI: 10.1007/s00436-024-08416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Invertebrate mitogenomes are generally fixed with formal 37 genes: 13 PCGs encoded subunits of OXPHOS, 2 ribosomal RNA (rRNA) functional in the translation of these PCGs and 22 transfer RNA (tRNA) genes. The order of these genes varies greatly among organisms and named rearrangement. Rearrangement patterns of mitochondrial genomes may shed light on mutation processes and evolutionary relationships of organisms. Mitochondrial gene organization is highly variable among Acari, so rearrangement is a very common mitogenomic pattern in this group. In this study, 258 unique Acari (Acariformes + Parasitiformes) mitogenomes were downloaded from NCBI and studied about rearrangement patterns. Sixty-seven mitotypes were determined among Acari and the most rearranged genes were trnL1 and nad2. Following that, trnI, trnS1, trnN, trnE, trnT, and trnP genes are remarkably mobile (RF > 95%). Conversely, atp6, cox3, trnG, and cytb genes also appears to be quite stable (RF < 20%). Within Acari, mean distance calculations are varied from 1.210 in atp8 to 0.155 in rrnS. Contrary to expectations, among Acari mobile tRNA genes appear to be conserved in sequences, whereas PCGs have higher distance values and seem to be mutated. Consistently, tRNA genes seem saturated, but some PCGs (atp6, cox genes, cytb, nad1, and nad6) are not saturated. These values do not correlate with each other (p > 0.005). This discrepancy may indicate that the genes were rearranged after mutation load; consistent with this, DAMBE saturation values are also not correlated with RF values. Parasitiformes mitogenomes are more mobile than Acariformes mitogenomes and may be under the effect of selective sweeping.
Collapse
Affiliation(s)
- Habeş Bilal Aydemir
- Faculty of Science and Lecture, Molecular Biology and Genetics, Tokat Gaziosmanpaşa University, Tokat, Türkey, Türkiye.
| |
Collapse
|
9
|
Li Y, Thomas GWC, Richards S, Waterhouse RM, Zhou X, Pfrender ME. Rapid evolution of mitochondrion-related genes in haplodiploid arthropods. BMC Biol 2024; 22:229. [PMID: 39390511 PMCID: PMC11465517 DOI: 10.1186/s12915-024-02027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Mitochondrial genes and nuclear genes cooperate closely to maintain the functions of mitochondria, especially in the oxidative phosphorylation (OXPHOS) pathway. However, mitochondrial genes among arthropod lineages have dramatic evolutionary rate differences. Haplodiploid arthropods often show fast-evolving mitochondrial genes. One hypothesis predicts that the small effective population size of haplodiploid species could enhance the effect of genetic drift leading to higher substitution rates in mitochondrial and nuclear genes. Alternatively, positive selection or compensatory changes in nuclear OXPHOS genes could lead to the fast-evolving mitochondrial genes. However, due to the limited number of arthropod genomes, the rates of evolution for nuclear genes in haplodiploid species, besides hymenopterans, are largely unknown. To test these hypotheses, we used data from 76 arthropod genomes, including 5 independently evolved haplodiploid lineages, to estimate the evolutionary rates and patterns of gene family turnover of mitochondrial and nuclear genes. RESULTS We show that five haplodiploid lineages tested here have fast-evolving mitochondrial genes and fast-evolving nuclear genes related to mitochondrial functions, while nuclear genes not related to mitochondrion showed no significant evolutionary rate differences. Among hymenopterans, bees and ants show faster rates of molecular evolution in mitochondrial genes and mitochondrion-related nuclear genes than sawflies and wasps. With genome data, we also find gene family expansions and contractions in mitochondrion-related genes of bees and ants. CONCLUSIONS Our results reject the small population size hypothesis in haplodiploid species. A combination of positive selection and compensatory changes could lead to the observed patterns in haplodiploid species. The elevated evolutionary rates in OXPHOS complex 2 genes of bees and ants suggest a unique evolutionary history of social hymenopterans.
Collapse
Affiliation(s)
- Yiyuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Gregg W C Thomas
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Computer Science, Indiana University, Bloomington, IN, USA
- Current Address: Informatics Group, Harvard University, Cambridge, MA, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Robert M Waterhouse
- Department of Ecology & Evolution and Swiss Institute of Bioinformatics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Michael E Pfrender
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- Environmental Change Initiative, Notre Dame, IN, USA
| |
Collapse
|
10
|
Yin J, Luo ZM, Li YH, Wang CM, Li J, Zhang RY, Shan HL, Wang XY, Chen YQ. Mitochondrial Genome Characteristics and Phylogenetic Analysis of Fulmekiola serrata (Kobus) (Thysanoptera: Thripidae). Int J Mol Sci 2024; 25:10431. [PMID: 39408766 PMCID: PMC11477041 DOI: 10.3390/ijms251910431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Sugarcane thrips, Fulmekiola serrata (Kobus) (Thysanoptera: Thripidae), is a common foliar pest that infests sugarcane and is found throughout tropical and subtropical countries. In this study, we obtained and analyzed the complete mitochondrial genome of F. serrata for the first time and explored the phylogenetic relationships of the higher-order elements of Thysanoptera members at the mitochondrial level. The complete mitochondrial genome of F. serrata is 16,596 bp in length and includes 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and 1 noncoding control region. A+T accounted for 75% of the total bases in the mitochondrial genome of F. serrata, revealing an obvious AT bias. Among the 13 PCGs, except for nad5, which had a start codon of TTG, the remaining genes had ATNs typical of insects (ATA, ATT, ATC, and ATG); nad1, nad2, nad3, and atp8 had incomplete termination codons of TA or T. The remaining nine PCGs were complete with the termination codon TAA. Of the 22 tRNA secondary structures, all were typical cloverleaf secondary structures except for trnS1, which was missing the DHU arm. Compared with the hypothetical ancestral gene arrangement of arthropods, F. serrata presented extensive gene rearrangement, with 23 translocated genes, 8 inverted genes, and 5 shuffled genes. Both maximum likelihood (ML) and Bayesian inference (BI) phylogenetic trees resulted in similar topologies: ((Thripidae + (Stenurothripidae + Aeolothripidae)) + Phlaeothripidae), with Thripidae, Aeolothripidae and Phlaeothripidae being monophyletic groups, whereas F. serrata is closely related to Thrips palmi, and the two are sister groups.
Collapse
Affiliation(s)
- Jiong Yin
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650233, China;
- Graduate School of Nanjing Forestry University, Nanjing 210037, China
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Engineering Research Center of Sugar Industry, Kaiyuan 661699, China
| | - Zhi-Ming Luo
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Engineering Research Center of Sugar Industry, Kaiyuan 661699, China
| | - Yin-Hu Li
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Engineering Research Center of Sugar Industry, Kaiyuan 661699, China
| | - Chang-Mi Wang
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Engineering Research Center of Sugar Industry, Kaiyuan 661699, China
| | - Jie Li
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Engineering Research Center of Sugar Industry, Kaiyuan 661699, China
| | - Rong-Yue Zhang
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Engineering Research Center of Sugar Industry, Kaiyuan 661699, China
| | - Hong-Li Shan
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Engineering Research Center of Sugar Industry, Kaiyuan 661699, China
| | - Xiao-Yan Wang
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Engineering Research Center of Sugar Industry, Kaiyuan 661699, China
| | - You-Qing Chen
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650233, China;
| |
Collapse
|
11
|
Guo ZQ, Shen CY, Cheng HY, Chen YX, Wu HY, Storey KB, Yu DN, Zhang JY. Mitogenome-Based Phylogeny with Divergence Time Estimates Revealed the Presence of Cryptic Species within Heptageniidae (Insecta, Ephemeroptera). INSECTS 2024; 15:745. [PMID: 39452321 PMCID: PMC11509038 DOI: 10.3390/insects15100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Heptageniidae are known for their flat heads and bodies and are divided into three subfamilies. Despite the extensive diversity within this group and considerable efforts made to understand their evolutionary history, the internal classifications and origin time of Heptageniidae remains controversial. In this study, we newly sequenced 17 complete mitogenomes of Heptageniidae to reconstruct their phylogenetic positions within this family. Because of the ambiguous time of origin, our study also estimated the divergence time within Heptageniidae based on five fossil calibration points. The results of BI and ML trees all highly supported the monophyly of Heptageniidae and three subfamilies. The phylogenetic relationship of Rhithrogeninae + (Ecdyonurinae + Heptageniinae) was also recovered. The divergence time showed that Heptageniidae originated from 164.38 Mya (95% HPD, 150.23-181.53 Mya) in the mid-Jurassic, and Rhithrogeninae originated from 95.54 Mya (95% HPD, 73.86-120.19 Mya) in the mid-Cretaceous. Ecdyonurinae and Heptageniinae began to diverge at 90.08 Mya (95% HPD, 68.81-113.16 Mya) in the middle Cretaceous. After morphological identification, analysis of the mitogenome's composition, genetic distance calculation, phylogenetic analysis, and divergence time calculation, we suggest that two different populations of Epeorus montanus collected from Aksu, Xinjiang Uygur Autonomous Region (40°16' N, 80°26' E) and Xinyuan, Xinjiang Uygur Autonomous Region (43°20' N, 83°43' E) in China are cryptic species of E. montanus, but further detailed information on their morphological characteristics is needed to fully identify them.
Collapse
Affiliation(s)
- Zhi-Qiang Guo
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Chen-Yang Shen
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hong-Yi Cheng
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yu-Xin Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hui-Yuan Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Dan-Na Yu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Jia-Yong Zhang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
12
|
Liu Q, Xu S, He J, Cai W, Wang X, Song F. Full-Length Transcriptome Profiling of the Complete Mitochondrial Genome of Sericothrips houjii (Thysanoptera: Thripidae: Sericothripinae) Featuring Extensive Gene Rearrangement and Duplicated Control Regions. INSECTS 2024; 15:700. [PMID: 39336667 PMCID: PMC11432214 DOI: 10.3390/insects15090700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
The mitochondrial genome (mitogenome) of Thysanoptera has extensive gene rearrangement, and some species have repeatable control regions. To investigate the characteristics of the gene expression, transcription and post-transcriptional processes in such extensively gene-rearranged mitogenomes, we sequenced the mitogenome and mitochondrial transcriptome of Sericothrips houjii to analyze. The mitogenome was 14,965 bp in length and included two CRs contains 140 bp repeats between COIII-trnN (CR1) and trnT-trnP (CR2). Unlike the putative ancestral arrangement of insects, S. houjii exhibited only six conserved gene blocks encompassing 14 genes (trnL2-COII, trnD-trnK, ND2-trnW, ATP8-ATP6, ND5-trnH-ND4-ND4L and trnV-lrRNA). A quantitative transcription map showed the gene with the highest relative expression in the mitogenome was ND4-ND4L. Based on analyses of polycistronic transcripts, non-coding RNAs (ncRNAs) and antisense transcripts, we proposed a transcriptional model of this mitogenome. Both CRs contained the transcription initiation sites (TISs) and transcription termination sites (TTSs) of both strands, and an additional TIS for the majority strand (J-strand) was found within antisense lrRNA. The post-transcriptional cleavage processes followed the "tRNA punctuation" model. After the cleavage of transfer RNAs (tRNAs), COI and ND3 matured as bicistronic mRNA COI/ND3 due to the translocation of intervening tRNAs, and the 3' untranslated region (UTR) remained in the mRNAs for COII, COIII, CYTB and ND5. Additionally, isoform RNAs of ND2, srRNA and lrRNA were identified. In summary, the relative mitochondrial gene expression levels, transcriptional model and post-transcriptional cleavage process of S. houjii are notably different from those insects with typical mitochondrial gene arrangements. In addition, the phylogenetic tree of Thripidae including S. houjii was reconstructed. Our study provides insights into the phylogenetic status of Sericothripinae and the transcriptional and post-transcriptional regulation processes of extensively gene-rearranged insect mitogenomes.
Collapse
Affiliation(s)
- Qiaoqiao Liu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640, China
- MOA Key Lab of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shiwen Xu
- MOA Key Lab of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jia He
- MOA Key Lab of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Ningxia Key Lab of Plant Disease and Pest Control, Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Science, Yinchuan 750002, China
| | - Wanzhi Cai
- MOA Key Lab of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xingmin Wang
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640, China
| | - Fan Song
- MOA Key Lab of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Liu W, Wang C, Wang J, Tang Y, Pei W, Ge X, Yan C. Phylogenetic and Comparative Analysis of Cryptochironomus, Demicryptochironomus and Harnischia Inferred from Mitogenomes (Diptera: Chironomidae). INSECTS 2024; 15:642. [PMID: 39336610 PMCID: PMC11432083 DOI: 10.3390/insects15090642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024]
Abstract
(1) Background: Mitochondrial genomes have been extensively employed as a crucial marker in numerous dipteran families for understanding phylogenetics and systematics relations, thereby playing a pivotal role in molecular biology studies. The phylogenetic relationship of the Harnischia generic complex remains contentious due to the paucity of taxonomic and molecular data. Specifically, the evolutionary relationships among Cryptochironomus, Demicryptochironomus, and Harnischia are still unclear. (2) Methods: In this study, Polypedilum and Endochironomus were used as outgroups to analyze phylogenetic relationships among Cryptochironomus, Demicryptochironomus, and Harnischia, mitogenomes of four Cryptochironomus, two Demicryptochironomus, two Harnischia, and two Cladopelma were newly sequenced. Subsequently, we conducted a thorough analysis of the nucleotide composition, sequence length, and evolutionary rate. (3) Results: All mitogenomes exhibited structural conservation, with all genes consistently arranged in the identical order as that of the ancestral mitogenome. Nucleotide composition varied significantly among different genes, and the control region displayed the highest A + T content. All protein-coding genes undergo rigorous purification selection, with the ATP8 gene exhibiting the most rapid evolutionary rate among them. Utilizing Bayesian Inference (BI) and Maximum Likelihood (ML) methods across various databases, we reconstructed the phylogenetic relationships among the genera within the Harnischia generic complex, drawing insights from an analysis of 14 mitochondrial genomes. (4) Conclusions: Our results showed that the monophyly of the genera Harnischia was well supported in all topologies; Cryptochironomus is sister to Demicryptochironomus.
Collapse
Affiliation(s)
- Wenbin Liu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin 300387, China
| | - Chengyan Wang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin 300387, China
| | - Jingyuan Wang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin 300387, China
| | - Yaning Tang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin 300387, China
| | - Wenxuan Pei
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin 300387, China
| | - Xinyu Ge
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin 300387, China
| | - Chuncai Yan
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
14
|
Wang D, Li C, Dang L. Characterizing the complete mitogenome of Odontothrips phaseoli (Thysanoptera: Thripidae) and its mitochondrial phylogeny. Mitochondrial DNA B Resour 2024; 9:965-970. [PMID: 39091514 PMCID: PMC11293258 DOI: 10.1080/23802359.2024.2386418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
Described originally from Heilongjiang, China, Odontothrips phaseoli is a potential pest of threatening bean plant in northern China. The complete mitochondrial genome of O. phaseoli was sequenced and assembled, with a total length of 15,540 bp. Within this genome, 37 genes have been identified: 13 PCGs, 22 tRNAs, two rRNAs, and two putative control regions. Most PCGs terminate with TAA, while four genes (atp8, nad1, nad2 and nad4) use an incomplete 'T' and nad6 employs TAG as the stop codon. Compared to the mitogenome of the ancestral insect, O. phaseoli displays significant gene rearrangement. However, it retains three conserved gene blocks in common with its related species, Megalurothrips usitatus, both of which belong to the Megalurothrips genus-group. The phylogenetic tree, constructed based on the entire mitogenome dataset of all thrips species available in NCBI, shows that the two species cluster closely together. This alignment might underscore the close link between gene arrangements and the phylogeny relationships.
Collapse
Affiliation(s)
- Dongxue Wang
- School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Chengwen Li
- School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Lihong Dang
- School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, China
- Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Hanzhong, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong, China
| |
Collapse
|
15
|
Ghosh A, Tyagi K, Dubey AK, Sweet AD, Singha D, Goswami P, Kumar V. Purifying selection drove the adaptation of mitochondrial genes along with correlation of gene rearrangements and evolutionary rates in two subfamilies of Whitefly (Insecta: Hemiptera). Funct Integr Genomics 2024; 24:121. [PMID: 38976062 DOI: 10.1007/s10142-024-01400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/06/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Insect mitochondrial genomes (mitogenomes) are usually represented by a conserved gene order. Whiteflies exhibit gene rearrangement in their mitogenomes; however, understanding how nucleotide substitution rates shape gene rearrangement in whiteflies is unclear due to the limited number of mitogenomes. Additionally, the mechanisms by which selection pressure drives adaptations in mitochondrial genes in the two subfamilies of whiteflies are not yet known. Here, we analyzed 18 whitefly mitogenomes, including one newly generated mitogenome, to compare nucleotide substitution rates, selection pressure, and gene arrangements. The newly generated mitogenome is reported along with reannotation of Pealius mori and comparisons to other whitefly mitogenomes. Comparative studies on nucleotide composition of 18 whiteflies revealed the positive GC skewness, confirming the reversal of strand asymmetry. We found 11 rearranged gene orders within two subfamilies of whiteflies with 8-18 breakpoints of gene rearrangements. Members of the subfamily Aleyrodinae exhibit more complex pathways in the evolution of gene order as compared to the subfamily Aleurodicinae. Our findings also revealed that the increase or reduction of nucleotide substitution rates does not have an impact on any of the gene rearrangement scenarios depicting neutral correlation. Selection pressure analysis revealed that the mitogenomes from members of both the subfamilies Aleurodicinae and Aleyrodinae are characterized by intense purifying selection pressure.
Collapse
Affiliation(s)
- Abhishek Ghosh
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, West Bengal, India
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Kaomud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, West Bengal, India.
| | - Anil Kumar Dubey
- Hemiptera Section, Zoological Survey of India, West Bengal, Kolkata, India
| | | | - Devkant Singha
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, West Bengal, India
| | - Prathana Goswami
- Lepidoptera Section, Zoological Survey of India, Kolkata, West Bengal, India
- Department of Zoology, Gauhati University, Guwahati, Assam, India
| | - Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, West Bengal, India.
| |
Collapse
|
16
|
Dallagnol LC, Cônsoli FL. Evolutionary and phylogenetic insights from the mitochondrial genomic analysis of Diceraeus melacanthus and D. furcatus (Hemiptera: Pentatomidae). Sci Rep 2024; 14:12861. [PMID: 38834792 DOI: 10.1038/s41598-024-63584-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
The mitochondrial genomes of D. melacanthus and D. furcatus were sequenced and used to investigate the phylogenetic relationships with 54 species of Pentatomidae. Their mitogenomes are 17,197 and 15,444 bp-long, respectively, including 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, and 22/21 transfer RNA genes, with conserved gene arrangement. Leu, Lys, and Ser were the most common amino acids in their PCGs. PCGs evolutionary analysis indicated their mitogenomes are under purifying selection, and the most conserved genes are from the cytochrome complex, reinforcing their suitability as markers for molecular taxonomy. We identified 490 mtSSRs in 56 Pentatomidae species, with large variation and a positive correlation between mtSSR number and genome size. Three mtSSRs were identified in each Diceraeus species. Only the mtSSR in the nad6 (D. melacanthus) and nad4 (D. furcatus) appear to have application as molecular markers for species characterization. Phylogenetic analysis confirmed the monophyly of Pentatomidae. However, our analysis challenged the monophyly of Pentatominae and Podopinae. We also detected unexpected relationships among some tribes and genera, highlighting the complexity of the internal taxonomic structure of Pentatomidae. Both Diceraeus species were grouped in the same clade with the remaining Carpocorini analyzed.
Collapse
Affiliation(s)
- Lilian Cris Dallagnol
- Insect Interactions Laboratory, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Fernando Luís Cônsoli
- Insect Interactions Laboratory, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil.
| |
Collapse
|
17
|
Shi Q, Xie J, Wu J, Chen S, Sun G, Zhang J. Characterization of the complete mitochondrial genome of an endemic species in China, Aulocera merlina (Lepidoptera: Nymphalidae: Satyrinae) and phylogenetic analysis within Satyrinae. Ecol Evol 2024; 14:e11355. [PMID: 38694754 PMCID: PMC11061544 DOI: 10.1002/ece3.11355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 05/04/2024] Open
Abstract
The mitochondrial genome (mitogenome) has been extensively used as molecular markers in determining the insect phylogenetic relationships. In order to resolve the relationships among tribes and subtribes of Satyrinae at the mitochondrial genomic level, we obtained the complete mitogenome of Aulocera merlina (Oberthür, 1890) (Lepidoptera: Nymphalidae: Satyrinae) with a size of 15,259 bp. The mitogenome consisted of 37 typical genes, including 13 protein-coding genes (PCGs), 2 ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and an A + T-rich region. The gene organization and arrangement were similar to those of all other known Satyrinae mitogenomes. All PCGs were initiated with the canonical codon pattern ATN, except for the cox1 gene, which used an atypical CGA codon. Nine PCGs used the complete stop codon TAA, while the remaining PCGs (cox1, cox2, nad4, and nad5) were terminated with a single T nucleotide. The canonical cloverleaf secondary structures were found in all tRNAs, except for trnS1 which lacked a dihydrouridine arm. The 448 bp A + T-rich region was located between rrnS and trnM, and it included the motif ATAGA followed by a 19-bp poly-T stretch and a microsatellite-like (TA)6 element preceded by the ATTTA motif. The phylogenetic tree, inferred using Bayesian inference and maximum likelihood methods, generated similar tree topologies, revealing well-supported monophyletic groups at the tribe level and recovering the relationship ((Satyrini + Melanitini) + ((Amathusiini + Elymniini) + Zetherini)). The close relationship between Satyrina and Melanargiina within the Satyrini was widely accepted. Additionally, Lethina, Parargina, and Mycalesina were closely related and collectively formed a sister group to Coenonymphina. Moreover, A. merlina was closely related to Oeneis buddha within the Satyrina. These findings will provide valuable information for future studies aiming to elucidate the phylogenetic relationships of Satyrinae.
Collapse
Affiliation(s)
- Qinghui Shi
- Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and UtilizationSanming UniversitySanmingChina
| | - Jinling Xie
- Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and UtilizationSanming UniversitySanmingChina
| | - Jialing Wu
- Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and UtilizationSanming UniversitySanmingChina
| | - Shengchung Chen
- Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and UtilizationSanming UniversitySanmingChina
| | - Gang Sun
- Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and UtilizationSanming UniversitySanmingChina
| | - Juncheng Zhang
- Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and UtilizationSanming UniversitySanmingChina
- Medical Plant Exploitation and Utilization Engineering Research CenterSanming UniversitySanmingChina
| |
Collapse
|
18
|
Wu X, Wang X, Kuang G, Jin K, Liu X. The complete mitochondrial genome of Tauraco livingstonii (Musophagidae: Tauraco). Mitochondrial DNA B Resour 2024; 9:408-410. [PMID: 38562437 PMCID: PMC10984224 DOI: 10.1080/23802359.2024.2334024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Livingstone's turaco, Tauraco livingstonii, belongs to the family Musophagidae. In this study, we obtained the complete mitochondrial genome sequence of Livingstone's turaco by high-throughput sequencing technology and constructed a phylogenetic tree. It was found that the mitochondria of this species are 19,015 bp in length and contain a total of 37 genes, comprising 13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes. The base composition of the mitochondrial genome is 31.61% A, 24.22% T, 30.64% C, and 13.52% G, with a GC content of 44%. Notably, an intriguing phenomenon of mitochondrial genome rearrangements was observed, characterized by the duplication of the tRNA Glu-L-CR gene order. In addition, the results of the phylogenetic tree analysis shed light on the taxonomic position of Livingstone's turaco and supported the taxonomy of Otidimorphae. The study provides a basis for future phylogenetic and taxonomic investigations of Musophagiformes.
Collapse
Affiliation(s)
- Xuanye Wu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | | | | | - Kun Jin
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Xuedong Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| |
Collapse
|
19
|
Zhang G, Gao M, Chen Y, Wang Y, Gan T, Zhu F, Liu H. The First Complete Mitochondrial Genome of the Genus Litostrophus: Insights into the Rearrangement and Evolution of Mitochondrial Genomes in Diplopoda. Genes (Basel) 2024; 15:254. [PMID: 38397243 PMCID: PMC10888367 DOI: 10.3390/genes15020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
This study presents the complete mitochondrial genome (mitogenome) of Litostrophus scaber, which is the first mitogenome of the genus Litostrophus. The mitogenome is a circular molecule with a length of 15,081 bp. The proportion of adenine and thymine (A + T) was 69.25%. The gene ND4L used TGA as the initiation codon, while the other PCGs utilized ATN (A, T, G, C) as the initiation codons. More than half of the PCGs used T as an incomplete termination codon. The transcription direction of the L. scaber mitogenome matched Spirobolus bungii, in contrast to most millipedes. Novel rearrangements were found in the L. scaber mitogenome: trnQ -trnC and trnL1- trnP underwent short-distance translocations and the gene block rrnS-rrnL-ND1 moved to a position between ND4 and ND5, resulting in the formation of a novel gene order. The phylogenetic analysis showed that L. scaber is most closely related to S. bungii, followed by Narceus magnum. These findings enhance our understanding of the rearrangement and evolution of Diplopoda mitogenomes.
Collapse
Affiliation(s)
- Gaoji Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (G.Z.); (M.G.); (Y.C.); (Y.W.); (F.Z.)
| | - Ming Gao
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (G.Z.); (M.G.); (Y.C.); (Y.W.); (F.Z.)
| | - Yukun Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (G.Z.); (M.G.); (Y.C.); (Y.W.); (F.Z.)
| | - Yinuo Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (G.Z.); (M.G.); (Y.C.); (Y.W.); (F.Z.)
| | - Tianyi Gan
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China;
| | - Fuyuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (G.Z.); (M.G.); (Y.C.); (Y.W.); (F.Z.)
| | - Hongyi Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (G.Z.); (M.G.); (Y.C.); (Y.W.); (F.Z.)
| |
Collapse
|
20
|
Sterling-Montealegre RA, Prada CF. Variability and evolution of gene order rearrangement in mitochondrial genomes of arthropods (except Hexapoda). Gene 2024; 892:147906. [PMID: 37844850 DOI: 10.1016/j.gene.2023.147906] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
In the species-rich Phylum Arthropoda, the mitochondrial genome is relatively well conserved both in terms of number and order of genes. However, specific clades have a 'typical' gene order that differs from the putative arthropod ancestral arrangement. The aim of this work was to compare the rate of mitochondrial gene rearrangements at inter- and intra-taxonomic levels in the Arthropoda and to postulate the most parsimonious ancestral orders representing the four major arthropod lineages. For this purpose, we performed a comparative genomic analysis of arthropod mitochondrial genomes available in the NCBI database. Using a combination of bioinformatics methods that examined mitochondrial gene rearrangements in 464 species of arthropods from three subphyla (Chelicerata, Myriapoda, and Crustacea [except Hexapoda, previously analyzed]), we observed differences in the rate of rearrangement within major lineages. A higher rate of mitochondrial genome rearrangement was observed in Crustacea and Chelicerata compared to Myriapoda. Likewise, early branching clades exhibit less variability in mitochondrial genome order than late branching clades, within each subphylum. We identified 'hot regions' in the mitochondrial genome of each studied subphylum, and postulated the most likely ancestral gene order in each subphylum and taxonomic order. Our work provides new evidence on the evolutionary dynamics of mitochondrial genome gene order in arthropods and new mitochondrial genome architectures in different taxonomic divisions within each major lineage of arthropods.
Collapse
Affiliation(s)
| | - Carlos Fernando Prada
- Grupo de Investigación de Biología y Ecología de Artrópodos, Facultad de Ciencias, Universidad del Tolima, Colombia.
| |
Collapse
|
21
|
Meng X, Wang D, Pang Q, Wang H, Zhou H. Multiple independent origins of duplicated mitochondrial control regions indicate an apomorphy in the Thysanoptera (Insecta). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22087. [PMID: 38288498 DOI: 10.1002/arch.22087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/20/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
The mitochondrial genome (mitogenome) of thrips is characterized by the presence of control region (CR) duplication. However, the evolution pattern of duplicated CRs in thrips is still unclear. In this study, the multiple independent origins of duplicated CR indicated that the CR duplication was not an ancestral state for Thysanoptera. The macroevolutionary pattern suggested that the earliest CR duplication event occurred in the middle Cretaceous (94.85 Ma) coincided with rearrangement events forming the ancestors of Aeolothripidae, but much later than that forming the ancestors of the suborder Terebrantia. The mitogenome with duplicated CRs showed a higher rate of gene rearrangement. The sequence similarity of the CR copies and divergence time were negatively correlated, indicating age-related deterioration of mitochondrial function. No significant differences were found in the mitochondrial DNA, the P123 and P4FD between the single and multiple-CR charactered mitogenomes, which suggested that the duplicated CRs may not affect the replication process in thrip mitogenome. The mitogenomes with duplicated CRs (mean: 0.0088 subs/s/my) show a significantly increased evolutionary rate than that with a single one (mean: 0.0058 subs/s/my). However, it seems that this higher evolutionary rate did not have adaptive mechanisms in Terebrantia. We speculated that the duplicated CRs may cause a more intense production of energy by mitochondria, and an accelerated mutation and substitution rate is expected in such mitogenomes. Our study provided new insights into the presence of CR duplications and their evolution in the mitogenomes of thrips.
Collapse
Affiliation(s)
| | - Dong Wang
- Qingdao Technical College, Qingdao, China
| | - Qiang Pang
- Qingdao Technical College, Qingdao, China
| | - Heng Wang
- Rizhao Agricultural Technology Service Center, Rizhao, China
| | - Hongxu Zhou
- Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
22
|
Liu Q, Cai YD, Ma L, Liu H, Linghu T, Guo S, Wei S, Song F, Tian L, Cai W, Li H. Relaxed purifying selection pressure drives accelerated and dynamic gene rearrangements in thrips (Insecta: Thysanoptera) mitochondrial genomes. Int J Biol Macromol 2023; 253:126742. [PMID: 37689283 DOI: 10.1016/j.ijbiomac.2023.126742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/06/2023] [Accepted: 08/26/2023] [Indexed: 09/11/2023]
Abstract
Insect mitochondrial genomes (mitogenome) generally present a typical gene order, which is considered as the ancestral arrangement. All sequenced mitogenomes in the Thysanoptera display high levels of gene rearrangement. Due to limited number of thrips mitogenomes sequenced, how gene rearrangement may be shaped by evolution remain unclear. Here, we analyzed 33 thrips mitogenomes, including 14 newly sequenced. These mitogenomes were diverse in organization, nucleotides substitution and gene arrangements. We found 28 highly rearranged gene orders with the breakpoints of gene rearrangements from 25 to 33. Reconstruction of the ancestors mitochondrial gene arrangements states indicated that Tubulifera have more complex pathways than Terebrantia in the gene order evolution. Molecular calibration estimated that divergence of two suborders occurred in the middle Triassic while the radiation of thrips was associated with the arose and flourish of angiosperm. Our evolutionary hypothesis testing suggests that relaxation of selection pressure enabled the early phase of Thysanoptera evolution, followed by a stronger selective pressure fixed diversification. Our analyses found gene inversion increases the nonsynonymous substitution rates and provide an evolutionary hypothesis driving the diverse gene orders.
Collapse
Affiliation(s)
- Qiaoqiao Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Ling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hangrui Liu
- Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Tianye Linghu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shaokun Guo
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shujun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
23
|
Ling MK, Yap NWL, Iesa IB, Yip ZT, Huang D, Quek ZBR. Revisiting mitogenome evolution in Medusozoa with eight new mitochondrial genomes. iScience 2023; 26:108252. [PMID: 37965150 PMCID: PMC10641506 DOI: 10.1016/j.isci.2023.108252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Mitogenomics has improved our understanding of medusozoan phylogeny. However, sequenced medusozoan mitogenomes remain scarce, and Medusozoa phylogeny studies often analyze mitogenomic sequences without incorporating mitogenome rearrangements. To better understand medusozoan evolution, we analyzed Medusozoa mitogenome phylogeny by sequencing and assembling eight mitogenomes from three classes (Cubozoa, Hydrozoa, and Scyphozoa). We reconstructed the mitogenome phylogeny using these mitogenomes and 84 other existing cnidarian mitogenomes to study mitochondrial gene rearrangements. All reconstructed mitogenomes had 13 mitochondrial protein-coding genes and two ribosomal genes typical for Medusozoa. Non-cubozoan mitogenomes were all linear and had typical gene orders, while arrangement of genes in the fragmented Cubozoa (Morbakka sp.) mitogenome differed from other Cubozoa mitogenomes. Gene order comparisons and ancestral state reconstruction suggest minimal rearrangements within medusozoan classes except for Hydrozoa. Our findings support a staurozoan ancestral medusozoan gene order, expand the pool of available medusozoan mitogenomes, and enhance our understanding of medusozoan phylogenetic relationships.
Collapse
Affiliation(s)
- Min Kang Ling
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Nicholas Wei Liang Yap
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore
- St. John’s Island National Marine Laboratory, c/o Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore
| | - Iffah Binte Iesa
- Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Singapore
| | - Zhi Ting Yip
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore
- Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Singapore
| | - Zheng Bin Randolph Quek
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
- Yale-NUS College, National University of Singapore, Singapore 138527, Singapore
| |
Collapse
|
24
|
Su CY, Zhu DH, Abe Y, Ide T, Liu Z. The complete mitochondrial genome and gene rearrangements in a gall wasp species, Dryocosmus liui (Hymenoptera: Cynipoidea: Cynipidae). PeerJ 2023; 11:e15865. [PMID: 37810770 PMCID: PMC10557937 DOI: 10.7717/peerj.15865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/17/2023] [Indexed: 10/10/2023] Open
Abstract
Mitochondrial genomes (mitogenomes) have been widely used in comparative and evolutionary genomics, molecular evolution, phylogenetics, and population genetics, but very limited information is available for the family Cynipidae. In this report, we describe the mitogenome of Dryocosmus liui Pang, Su et Zhu, providing the first complete mitogenomic data for a cynipid gall wasp species. The mitogenome of D. liui is 16,819 bp in length, and contains the typical set of 37 genes. Two control regions were detected, with the second being a perfect inverted repeat of the major portion of the first. Gene rearrangements were found in transfer RNA (tRNA) genes, protein-coding genes (PCGs) and ribosomal RNA (rRNA) genes, compared with the putative ancestral mitogenome. Similar to two other Cynipidae species with mitogenome data available, D. liui has a novel tRNA gene cluster trnL1-trnI-trnL2-trnW-trnM-trnQ between nad1 and nad2. Phylogenetic analysis based on sequences of PCGs and rRNA genes with D. liui included obtained topologies identical to previous studies supporting the a relationship of (Cynipoidea , (Platygastroidea, Proctotrupoidea)) within the monophyletic Proctotrupomorpha and (Cynipidae, Figitidae), Ibaliidae) within the Cynipoidea.
Collapse
Affiliation(s)
- Cheng-Yuan Su
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Science and Technology, Central South University of Forestry & Technology (CSUFT), Changsha, Hunan, China
| | - Dao-Hong Zhu
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Science and Technology, Central South University of Forestry & Technology (CSUFT), Changsha, Hunan, China
| | - Yoshihisa Abe
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, Kyushu, Japan
| | - Tatsuya Ide
- Department of Zoology, National Museum of Nature and Science, Tsukuba, Ibaraki, Japan
| | - Zhiwei Liu
- Biological Sciences Department, Eastern Illinois University, Charleston, IL, United States of America
| |
Collapse
|
25
|
Xing-Ming L, Pan L, Du-Cheng C, Jin-Hua L. Characterization of the complete mitochondrial genome and phylogenetic analysis of bean thrips Megalurothrips usitatus (Bagnall, 1913) (Thysanoptera: thripidae). Mitochondrial DNA B Resour 2023; 8:1032-1035. [PMID: 37799451 PMCID: PMC10548845 DOI: 10.1080/23802359.2023.2261644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/17/2023] [Indexed: 10/07/2023] Open
Abstract
Megalurothrips usitatus (Bagnall, 1913) (Thysanoptera: Thripidae) is a widely distributed pest in Asia that primarily affects the production of snap beans and cowpea. The complete mitochondrial genome of Megalurothrips usitatus has been sequenced and annotated in this study, which is 17,209 bp long and contains 13 protein-coding genes (PCGs), two rRNAs, and 22 tRNA genes. Most of the protein-coding genes (PCGs) start with ATG except ND4 using TTG. Meanwhile, eight PCGs stop with TAA, four PCGs have an incomplete stop codon, and the gene Cytb ends with TAG. Phylogenetic analysis showed that M. usitatus is closely related to Frankliniella intonsa and F. occidentalis, providing a basis for the study of the mitochondrial evolution of Thripinae.
Collapse
Affiliation(s)
- Lin Xing-Ming
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education/School of Plant Protection, Hainan University, Haikou, P.R. China
| | - Li Pan
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education/School of Plant Protection, Hainan University, Haikou, P.R. China
| | - Cai Du-Cheng
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education/School of Plant Protection, Hainan University, Haikou, P.R. China
| | - Li Jin-Hua
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education/School of Plant Protection, Hainan University, Haikou, P.R. China
| |
Collapse
|
26
|
Pakrashi A, Patidar A, Singha D, Kumar V, Tyagi K. Comparative analysis of the two suborders of Thysanoptera and characterization of the complete mitochondrial genome of Thrips parvispinus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:1-15. [PMID: 36915951 DOI: 10.1002/arch.22010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/02/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Thrips parvispinus is a serious sucking pest on a number of economically important crops in the oriental region. It has gained importance recently for its drastic range extension distribution as an invasive pest. Here, the complete mitochondrial genome (15,067 bp) of Thrips parvispinus was sequenced and characterized. It possesses 37 genes and the putative noncoding region is duplicated. Comparative analyses of nucleotide diversity, skewness, codon usage bias, and selection pressure in mitochondrial protein-coding genes of the available 31 thrips mitogenomes (24 Terebrantia + 7 Tubulifera) were performed. Phylogenetic analysis showed a sister relationship of T. parvispinus to the clade (T. florum + T. hawaiiensis). Phylogenetic analyses formed the monophyly of subfamilies Phlaeothripinae and Idolothripinae within the family Phlaeothripidae (Suborder Tubulifera). Low nucleotide diversity was indicative of reversal of strand asymmetry in the Tubulifera. Neutrality analysis showed that directional mutation plays a major role in shaping codon usage bias in both suborders. Principal component analysis indicated distinct codon usage patterns in each suborder. Our data suggested weaker selection constrains on Terebrantia than in the Tubulifera. More tubuliferan mitogenomes are required to resolve previous classification hypotheses and elucidate genome evolution in these two suborders.
Collapse
Affiliation(s)
- Avas Pakrashi
- Molecular Systematics Division, Centre for DNA Taxonomy, Zoological Survey of India, Kolkata, West Bengal, India
| | - Abhishek Patidar
- Molecular Systematics Division, Centre for DNA Taxonomy, Zoological Survey of India, Kolkata, West Bengal, India
| | - Devkant Singha
- Molecular Systematics Division, Centre for DNA Taxonomy, Zoological Survey of India, Kolkata, West Bengal, India
| | - Vikas Kumar
- Molecular Systematics Division, Centre for DNA Taxonomy, Zoological Survey of India, Kolkata, West Bengal, India
| | - Kaomud Tyagi
- Molecular Systematics Division, Centre for DNA Taxonomy, Zoological Survey of India, Kolkata, West Bengal, India
| |
Collapse
|
27
|
Zhang N, Pu T, Wang J, Tan W, Yuan Z, Li C, Song Y. Phylogenetic Analysis of Two New Mitochondrial Genomes of Singapora shinshana and Seriana bacilla from the Karst Region of Southwest China. Genes (Basel) 2023; 14:1318. [PMID: 37510223 PMCID: PMC10379811 DOI: 10.3390/genes14071318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Leafhoppers have been identified as a serious threat to different plants. To explore the characteristics of mitogenomes and reveal the phylogenetic positions of two species in the Typhlocybinae, complete mitogenomes of Singapora shinshana and Seriana bacilla were sequenced and annotated for the first time with lengths of 15,402 bp and 15,383 bp, respectively. The two mitogenomes contained 13 PCGs, 22 tRNA genes and 2 rRNA genes. The genome content, gene order, nucleotide composition, codon usage and amino acid composition are similar to those of other typical mitogenomes of Typhlocybinae. All 13 PCGs started with ATN codons, except for atp8 (TTA) and nad5 (TTG). All tRNAs were folded into a typical cloverleaf secondary structure, except for tRNA-Ser1 and tRNA-Val. Moreover, phylogenetic trees were constructed and analyzed based on all the PCGs from 42 mitogenomes using maximum likelihood (ML) and Bayesian inference (BI) methods. The results supported that eleven subfamilies are all monophyletic groups, S. shinshana and S. bacilla are members of Erythroneurini, but S. shinshana and the genus Empoascanara have a very close relationship with ((((Empoascanara sipra+ Empoascanara wengangensis) + Empoascanara dwalata) + Empoascanara gracilis) + S. shinshana), and S. bacilla is closely related to the genus Mitjaevia ((Mitjaevia dworakowskae + Mitjaevia shibingensis) + S. bacilla). These results provide valuable information for future study of evolutionary relationships in Typhlocybinae.
Collapse
Affiliation(s)
- Ni Zhang
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China
| | - Tianyi Pu
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China
| | - Jinqiu Wang
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China
| | - Weiwen Tan
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China
| | - Zhouwei Yuan
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang 550005, China
| | - Yuehua Song
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China
| |
Collapse
|
28
|
Yuan Y, Zhang L, Li K, Hong Y, Storey KB, Zhang J, Yu D. Nine Mitochondrial Genomes of Phasmatodea with Two Novel Mitochondrial Gene Rearrangements and Phylogeny. INSECTS 2023; 14:insects14050485. [PMID: 37233113 DOI: 10.3390/insects14050485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
The classification of stick and leaf insects (Order Phasmatodea) is flawed at various taxonomic ranks due to a lack of robust phylogenetic relationships and convergent morphological characteristics. In this study, we sequenced nine new mitogenomes that ranged from 15,011 bp to 17,761 bp in length. In the mitogenome of Carausis sp., we found a translocation of trnR and trnA, which can be explained by the tandem duplication/random loss (TDRL) model. In the Stheneboea repudiosa Brunner von Wattenwyl, 1907, a novel mitochondrial structure of 12S rRNA-CR1-trnI-CR2-trnQ-trnM was found for the first time in Phasmatodea. Due to the low homology of CR1 and CR2, we hypothesized that trnI was inverted through recombination and then translocated into the middle of the control region. Control region repeats were frequently detected in the newly sequenced mitogenomes. To explore phylogenetic relationships in Phasmatodea, mtPCGs from 56 Phasmatodean species (composed of 9 stick insects from this study, 31 GenBank data, and 16 data derived from transcriptome splicing) were used for Bayesian inference (BI), and maximum likelihood (ML) analyses. Both analyses supported the monophyly of Lonchodinae and Necrosciinae, but Lonchodidae was polyphyletic. Phasmatidae was monophyletic, and Clitumninae was paraphyletic. Phyllidae was located at the base of Neophasmatodea and formed a sister group with the remaining Neophasmatodea. Bacillidae and Pseudophasmatidae were recovered as a sister group. Heteroptergidae was monophyletic, and the Heteropteryginae sister to the clade (Obriminae + Dataminae) was supported by BI analysis and ML analysis.
Collapse
Affiliation(s)
- Yani Yuan
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Lihua Zhang
- Taishun County Forestry Bureau, Wenzhou 325500, China
| | - Ke Li
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yuehuan Hong
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Jiayong Zhang
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Danna Yu
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
29
|
An JQ, Yu SH, Wei SJ, Zhang HP, Shi YC, Zhao QY, Fu ZY, Yang P. The Complete Mitochondrial Genome of the Chinese White Wax Scale Insect, Ericerus pela Chavannes (Hemiptera: Coccidae), with Novel Gene Arrangement and Truncated tRNA Genes. INSECTS 2023; 14:290. [PMID: 36975975 PMCID: PMC10055984 DOI: 10.3390/insects14030290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
The Chinese white wax scale insect, Ericerus pela Chavannes (Hemiptera: Coccidae), is one of the scale insects with great economic value and has been dispersed and reared in China for over one thousand years. Its mitochondrial genome provides essential information for the molecular identification and genetic study of this species. We assembled the complete mitochondrial genome of E. pela based on PacBio sequencing and analyzed its genomic features. The genome was 17,766 bp in length with 13 protein-coding genes, 22 tRNAs, and two rRNA genes. The analysis results showed E. pela had significant gene rearrangements involving tRNAs compared with other Coccoidea species. Furthermore, E. pela's nine tRNAs were identified to have obvious truncated structures. The phylogenetic tree compiled of the species showed a long branch of the Coccoidea lineage, which indicated the high evolutionary rate in this group. Our study revealed the mitochondrial characteristics of E. pela and enriched the mitochondrial genetic information on Coccoidea species. It also determined the occurrence of gene rearrangement for the species in this superfamily.
Collapse
Affiliation(s)
- Jia-Qi An
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China
- College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Shu-Hui Yu
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hong-Ping Zhang
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China
| | - Yuan-Chong Shi
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China
| | - Qiu-Yu Zhao
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China
| | - Zuo-Yi Fu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China
| | - Pu Yang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
| |
Collapse
|
30
|
Song N, Wei SJ, Wang M. Mitochondrial genome rearrangements and phylogenomics of the Hymenoptera (Insecta) using an expanded taxon sample. Mitochondrial DNA A DNA Mapp Seq Anal 2023; 34:49-65. [PMID: 38753301 DOI: 10.1080/24701394.2024.2345663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/16/2024] [Indexed: 01/30/2025]
Abstract
The order Hymenoptera is one of the most species-rich insect orders, with more than 150,000 described extant species. Many hymenopteran insects have very different mitochondrial genome (mitogenome) organizations compared to the putative ancestral organization of insects. In this study, we sequenced 18 mitogenomes of representatives in the order Hymenoptera to increase taxonomic sampling. A total of 475 species were used in phylogenetic analyses, including 18 new mitogenomes and 457 existing mitogenomes. Using a site-heterogeneous model, Bayesian's inference from amino acid data yielded more resolved relationships among Hymenoptera than maximum-likelihood analysis and coalescent-based species analyses. The monophyly of Symphyta was not supported. The Xyeloidea was the earliest branching clade in the Hymenoptera. The Orussoidea was closely related to Apocrita. Within Apocrita, the Parasitoida was non-monophyletic. The monophyly of most Parasitoida superfamilies received strong support. The Proctotrupomorpha clade was supported in Bayesian's analysis. The Apoidea was monophyletic when excluding Ampulex compressa from consideration. The superfamilies Vespoidea and Chrysidoidea were found to be non-monophyletic. Comparisons of mitochondrial gene order revealed a higher frequency of gene rearrangement among lineages with a parasitoid lifestyle, particularly prominent in Chalcidoidea. The degree of gene rearrangement ranked second in specific taxa of Cynipoidea and Ichneumonoidea.
Collapse
Affiliation(s)
- Nan Song
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shu-Jun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Miaomiao Wang
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
31
|
Han L, Yang Y, Li H, Zhou X, Zhou M, Liu T, Lu Y, Wang Q, Yang S, Shi M, Li X, Du S, Guan C, Zhang Y, Guo W, Wang J, Chai H, Lan T, Liu H, Liu Q, Sun H, Hou Z. Gene rearrangements in the mitochondrial genome of ten ascaris species and phylogenetic implications for Ascaridoidea and Heterakoidea families. Int J Biol Macromol 2022; 221:1394-1403. [PMID: 36116597 DOI: 10.1016/j.ijbiomac.2022.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 08/03/2022] [Indexed: 11/05/2022]
Abstract
The Ascaridoidea family and Heterakoidea family are the most common and typical representative of large parasites. Although our understanding of these parasites' diversity has expanded by analyses of some mitochondrial genes, there is limited information on these species' evolutionary rates. Here we determined ten complete mitogenome sequences of five subfamilies of Ascaridoidea and one subfamily of Heterakoidea. The phylogenetic tree divided the Ascaridoidea into six monophyletic major clades, and the divergence time of Heterakoidea family and Ascaridoidea family can be placed during the early Carboniferous Period (300-360 Mya). The reconstruction of the ancestral state showed that the gene orders of all species in Ascaridoidea were conserved, and the Heterakoidea had obvious genome rearrangement. The conserved blocks between them were divided into five and the main types are tandem-duplication/random loss (TDRL). These results will help to better understand the gene rearrangements and evolutionary position of ascaris species.
Collapse
Affiliation(s)
- Lei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin 150040, China
| | - Yuling Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Haimeng Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Mengchao Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Tianlu Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Yaxian Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Qing Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangcheng Yang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minhui Shi
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuyun Li
- Harbin Northern Forest Zoo, Harbin 150040, China
| | - Shan Du
- Inner Mongolia Agriculture University, Hohhot 010000, China
| | - Chunyu Guan
- Harbin Northern Forest Zoo, Harbin 150040, China
| | - Yong Zhang
- Center for Animal Disease Control and Prevention of Ordos, Inner Mongolia, Ordos 017000, China
| | - Wei Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150040, China
| | - Jiangang Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Hongliang Chai
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Wildlife Conservation, China State Forestry Administration, Harbin 150040, China
| | - Tianming Lan
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; BGI Life Science Joint Research Center, Northeast Forestry University, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; BGI Life Science Joint Research Center, Northeast Forestry University, China
| | - Quan Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China.
| | - Heting Sun
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang, China.
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Wildlife Conservation, China State Forestry Administration, Harbin 150040, China.
| |
Collapse
|
32
|
Ge X, Zang H, Ye X, Peng L, Wang B, Lian G, Sun C. Comparative Mitogenomic Analyses of Hydropsychidae Revealing the Novel Rearrangement of Protein-Coding Gene and tRNA (Trichoptera: Annulipalpia). INSECTS 2022; 13:759. [PMID: 36135460 PMCID: PMC9501032 DOI: 10.3390/insects13090759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 06/16/2023]
Abstract
Gene rearrangement of the mitochondrial genome of insects, especially the rearrangement of protein-coding genes, has long been a hot topic for entomologists. Although mitochondrial gene rearrangement is common within Annulipalpia, protein-coding gene rearrangement is relatively rare. As the largest family in Annulipalpia, the available mitogenomes from Hydropsychidae Curtis, 1835 are scarce, and thus restrict our interpretation of the mitogenome characteristic. In this study, we obtained 19 novel mitogenomes of Hydropsychidae, of which the mitogenomes of the genus Arctopsyche are published for the first time. Coupled with published hydropsychid mitogenome, we analyzed the nucleotide composition evolutionary rates and gene rearrangements of the mitogenomes among subfamilies. As a result, we found two novel gene rearrangement patterns within Hydropsychidae, including rearrangement of protein-coding genes. Meanwhile, our results consider that the protein-coding gene arrangement of Potamyia can be interpreted by the tandem duplication/random loss (TDRL) model. In addition, the phylogenetic relationships within Hydropsychidae constructed by two strategies (Bayesian inference and maximum likelihood) strongly support the monophyly of Arctopscychinae, Diplectroninae, Hydropsychinae, and Macronematinae. Our study provides new insights into the mechanisms and patterns of mitogenome rearrangements in Hydropsychidae.
Collapse
Affiliation(s)
- Xinyu Ge
- Lab of Taxonomy & Aquatic Insects, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Haoming Zang
- Lab of Taxonomy & Aquatic Insects, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyun Ye
- Environmental Monitoring Station of Qingtian County, Lishui 323999, China
| | - Lang Peng
- Lab of Taxonomy & Aquatic Insects, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Beixin Wang
- Lab of Taxonomy & Aquatic Insects, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Gang Lian
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Province Ecological Environment Monitoring Centre, Hangzhou 310012, China
| | - Changhai Sun
- Lab of Taxonomy & Aquatic Insects, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
33
|
Zhang H, Lu C, Liu Q, Zou T, Qiao G, Huang X. Insights into the Evolution of Aphid Mitogenome Features from New Data and Comparative Analysis. Animals (Basel) 2022; 12:ani12151970. [PMID: 35953959 PMCID: PMC9367533 DOI: 10.3390/ani12151970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
The complete mitochondrial genomes and their rearrangement patterns can provide useful information for inferring evolutionary history of organisms. Aphids are one of the insect groups with some unique mitogenome features. In this study, to examine whether some features in aphid mitogenomes are independent species-specific evolutionary events or clade-specific events at certain taxonomic levels, we sequenced three new aphid mitogenomes (Hormaphidinae: Ceratovacuna keduensis, Pseudoregma panicola; Lachninae: Nippolachnus piri) and compared them with all known aphid mitogenomes. The three mitogenomes are 16,059–17,033 bp in length, with a set of 37 typical mitochondrial genes, a non-coding control region and a tandem repeat region. The gene orders of them are all highly rearranged. Within the subfamily Hormaphidinae, the presence of repeat region and mitogenome rearrangement in Cerataphidini species but not in the other two tribes indicate that these may be Cerataphidini-specific features. The same gene rearrangement pattern in the two Lachninae species, N. piri (Tuberolachnini) and Stomaphis sinisalicis (Stomaphidini), supports that this feature should be at least derived from the common ancestor of two tribes. Overall, our data and analyses provide new insights into the evolutionary patterns of gene rearrangement and repeat region in aphid mitogenomes, and further corroborate the potential role of gene rearrangement in elucidating the evolutionary history of different insect lineages.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (Q.L.); (T.Z.)
| | - Congcong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (Q.L.); (T.Z.)
| | - Qian Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (Q.L.); (T.Z.)
| | - Tianmin Zou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (Q.L.); (T.Z.)
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
- Correspondence: (G.Q.); (X.H.)
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (Q.L.); (T.Z.)
- Correspondence: (G.Q.); (X.H.)
| |
Collapse
|
34
|
Yu M, Zhang D, Zhao X. Sequencing and phylogenomics of the complete mitochondrial genome of Allodiplogaster sp. (Rhabditida: Diplogasteridae): A new gene order and its phylogenetic implications. Gene 2022; 840:146761. [PMID: 35905856 DOI: 10.1016/j.gene.2022.146761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/13/2022] [Accepted: 07/24/2022] [Indexed: 11/18/2022]
Abstract
Gene order has been utilized as a phylogenetic signal for many taxa. However, its phylogenetic performance has not been evaluated in Nematoda. As there is only one nematode mitogenome available to date, in the Diplogasteridae family, we sequenced the mitogenome of Allodiplogaster sp. and constructed a phylogeny for Nematoda using this updated mitogenome dataset. We then compared this phylogeny to one constructed using gene order. The complete mitochondrial genome of Allodiplogaster sp. was 13,953 bp in size and included 22 tRNAs, two rRNAs, and 12 protein-coding genes. To assess how Allodiplogaster sp. is related to other nematode species, we used Bayesian inference and maximum likelihood algorithms to construct phylogenetic trees of the Nematoda. We found that: 1) The target species Allodiplogaster sp. is closely related to Allodiplogaster sudhausi. The topology of the mitogenome based phylogeny was nearly identical to previous phylogenies created using 18S rRNA data, except for the placement of the Strongyloididae family. 2) The maximum likelihood tree constructed using gene order was roughly consistent with the mitogenome-based tree at the family level, but not at the species level. 3) Protein-coding genes were ordered differently in Allodiplogaster sp. versus Allodiplogaster sudhausi; this represents the first report of such a reordering in the class Chromadorea in our study. Our study confirms that gene order represents useful phylogenetic information for the Nematoda: the maximum likelihood tree based on gene order provided additional support for the nematode phylogeny constructed using molecular data.
Collapse
Affiliation(s)
- Min Yu
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Dong Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Xumao Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
35
|
Ding J, Lan H, Xu W, Chen Y, Wu H, Jiang H, Wang J, Wu Y, Liu H. Two complete mitochondrial genomes in Scolopendra and a comparative analysis of tRNA rearrangements in centipedes. Mol Biol Rep 2022; 49:6173-6180. [PMID: 35411482 DOI: 10.1007/s11033-022-07409-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/21/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Centipedes are one of the oldest terrestrial arthropods belonging to the sub phylum Myriapoda. With the expansion of our understanding of the application of the two centipedes Scolopendra morsitans and Scolopendra hainanum, belonging to the order Scolopendromorpha, an exhaustive classification was required. Although consensus has been reached on the phylogeny of Chilopoda based on morphological traits, recent analyses based on molecular data exhibited differences in results. METHODS AND RESULTS The mitochondrial genome sequences of S. morsitans and S. hainanum were obtained by next-generation sequencing. S. morsitans contains 13 PCGs, two rRNAs, 11 tRNAs, and one CR. whereas S. hainanum contains 12 PCGs, of which ATP8 remains unpredicted, two rRNAs, 14 tRNAs, and one CR. An obvious tRNA rearrangement was found in the genus Scolopendra. S. morsitans exhibited a loss of trnW, trnC, trnI, trnK, trnD, trnA, trnN, trnQ, trnF, trnT, trnS, trnL, and trnV, and a repeat of trnR and trnL. S. hainanum exhibited a loss of trnQ, trnC, trnW, trnI, trnD, trnQ, trnP, and trnV. Phylogenetic analyses of centipedes based on 12 PCGs supported the sister relationship between the orders Geophilomorpha and Lithobiomorpha and a close relationship between Scolopendra dehaani and S. hainanum. CONCLUSIONS The new mitogenomes determined in this study provide new genomic resources for gene rearrangements and contribute to the understanding of the evolution of gene rearrangement in Chilopoda.
Collapse
Affiliation(s)
- Jiayu Ding
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu Province, People's Republic of China
| | - Hong Lan
- Department of Agriculture, Zhejiang Open University, Hangzhou, 310030, China
| | - Wei Xu
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu Province, People's Republic of China
| | - Yining Chen
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu Province, People's Republic of China
| | - Han Wu
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu Province, People's Republic of China
| | - Haoming Jiang
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu Province, People's Republic of China
| | - Jiachen Wang
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu Province, People's Republic of China
| | - Yongbo Wu
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu Province, People's Republic of China
| | - Hongyi Liu
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu Province, People's Republic of China.
| |
Collapse
|
36
|
Yan B, Dietrich CH, Yu X, Jiao M, Dai R, Yang M. Mitogenomic phylogeny of Typhlocybinae (Hemiptera: Cicadellidae) reveals homoplasy in tribal diagnostic morphological traits. Ecol Evol 2022; 12:e8982. [PMID: 35784083 PMCID: PMC9170537 DOI: 10.1002/ece3.8982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
The subfamily Typhlocybinae is a ubiquitous, highly diverse group of mostly tiny, delicate leafhoppers. The tribal classification has long been controversial and phylogenetic methods have only recently begun to test the phylogenetic status and relationships of tribes. To shed light on the evolution of Typhlocybinae, we performed phylogenetic analyses based on 28 newly sequenced and 19 previously sequenced mitochondrial genomes representing all currently recognized tribes. The results support the monophyly of the subfamily and its sister-group relationship to Mileewinae. The tribe Zyginellini is polyphyletic with some included genera derived independently within Typhlocybini. Ancestral character state reconstruction suggests that some morphological characters traditionally considered important for diagnosing tribes (presence/absence of ocelli, development of hind wing submarginal vein) are homoplastic. Divergence time estimates indicate that the subfamily arose during the Middle Cretaceous and that the extant tribes arose during the Late Cretaceous. Phylogenetic results support establishment of a new genus, Subtilissimia Yan & Yang gen. nov., with two new species, Subtilissimia fulva Yan & Yang sp. nov. and Subtilissimia pellicula Yan & Yang sp. nov.; but indicate that two previously recognized species of Farynala distinguished only by the direction of curvature of the processes of the aedeagus are synonyms, that is, Farynala dextra Yan & Yang, 2017 equals Farynala sinistra Yan & Yang, 2017 syn. nov. A key to tribes of Typhlocybinae is provided.
Collapse
Affiliation(s)
- Bin Yan
- Institute of Entomology Guizhou University Guiyang Guizhou China
| | | | | | - Meng Jiao
- Institute of Entomology Guizhou University Guiyang Guizhou China
- Illinois Natural History Survey Prairie Research Institute University of Illinois Champaign Illinois USA
| | - Renhuai Dai
- Institute of Entomology Guizhou University Guiyang Guizhou China
| | - Maofa Yang
- Institute of Entomology Guizhou University Guiyang Guizhou China
- Shandong Museum Jinan Shandong China
| |
Collapse
|
37
|
Liu Q, He J, Song F, Tian L, Cai W, Li H. Positive Correlation of the Gene Rearrangements and Evolutionary Rates in the Mitochondrial Genomes of Thrips (Insecta: Thysanoptera). INSECTS 2022; 13:insects13070585. [PMID: 35886761 PMCID: PMC9321049 DOI: 10.3390/insects13070585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/04/2023]
Abstract
Simple Summary Aeolothrips, commonly known as banded thrips, is the largest genus of the family Aeolothripidae (predatory thrips). In the current study, we sequenced the mitochondrial genome (mitogenome) of the banded thrip species Aeolothrips xinjiangensis. We found a novel gene arrangement in this mitogenome that has not been reported in Thysanoptera. By comparing the gene order and rearrangement patterns, we found seven identical gene blocks and three identical rearrangement events in two mitogenomes of banded thrips. There was marked variation in the mitochondrial gene order across thrip species, with only two conserved gene blocks shared by all 14 thrips. In addition, we found a positive correlation between the degree of gene rearrangement and evolutionary rate. Our results suggested that the mitogenomes of thrips have tended to be stable since their massive rearrangement. Abstract Extensive gene rearrangement is characteristic in the mitogenomes of thrips (Thysanoptera), but the historical process giving rise to the contemporary gene rearrangement pattern remains unclear. To better understand the evolutionary processes of gene rearrangement in the mitogenomes of thrips, we sequenced the mitogenome of the banded thrip species Aeolothrips xinjiangensis. First, we found a novel mitochondrial gene order in this species. This mitogenome is 16,947 bp in length and encodes the typical 37 coding genes (13 protein-coding genes, 22 tRNA genes, and two rRNA genes) of insects. The gene arrangement was dramatically different from the putative ancestral mitogenome, with 26 genes being translocated, eight of which were inverted. Moreover, we found a novel, conserved gene block, trnC-trnY, which has not been previously reported in the mitogenomes of thrips. With this newly assembled mitogenome, we compared mitogenome sequences across Thysanoptera to assess the evolutionary processes giving rise to the current gene rearrangement pattern in thrips. Seven identical gene blocks were shared by two sequenced banded thrip mitogenomes, while the reversal of ND2 combined with TDRL events resulted in the different gene orders of these two species. In phylogenetic analysis, the monophyly of the suborders and families of Thysanoptera was well supported. Across the gene orders of 14 thrips, only two conserved gene blocks, ATP8-ATP6 and ND4-ND4L, could be found. Correlation analysis showed that the degree of gene rearrangement was positively correlated with the non-synonymous substitution rate in thrips. Our study suggests that the mitogenomes of thrips remain stable over long evolutionary timescales after massive rearrangement during early diversification.
Collapse
Affiliation(s)
- Qiaoqiao Liu
- MOA Key Lab of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Q.L.); (J.H.); (F.S.); (L.T.); (W.C.)
| | - Jia He
- MOA Key Lab of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Q.L.); (J.H.); (F.S.); (L.T.); (W.C.)
- Institute of Plant Protection, Academy of Ningxia Agriculture and Forestry Science, Yinchuan 750002, China
| | - Fan Song
- MOA Key Lab of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Q.L.); (J.H.); (F.S.); (L.T.); (W.C.)
| | - Li Tian
- MOA Key Lab of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Q.L.); (J.H.); (F.S.); (L.T.); (W.C.)
| | - Wanzhi Cai
- MOA Key Lab of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Q.L.); (J.H.); (F.S.); (L.T.); (W.C.)
| | - Hu Li
- MOA Key Lab of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Q.L.); (J.H.); (F.S.); (L.T.); (W.C.)
- Correspondence:
| |
Collapse
|
38
|
Zuo Q, Zhang Z, Shen Y. Novel mitochondrial gene rearrangements pattern in the millipede Polydesmus sp. GZCS-2019 and phylogenetic analysis of the Myriapoda. Ecol Evol 2022; 12:e8764. [PMID: 35356579 PMCID: PMC8948135 DOI: 10.1002/ece3.8764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/29/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
The subphylum Myriapoda included four extant classes (Chilopoda, Symphyla, Diplopoda, and Pauropoda). Due to the limitation of taxon sampling, the phylogenetic relationships within Myriapoda remained contentious, especially for Diplopoda. Herein, we determined the complete mitochondrial genome of Polydesmus sp. GZCS-2019 (Myriapoda: Polydesmida) and the mitochondrial genomes are circular molecules of 15,036 bp, with all genes encoded on + strand. The A+T content is 66.1%, making the chain asymmetric, and exhibits negative AT-skew (-0.236). Several genes rearrangements were detected and we propose a new rearrangement model: "TD (N\R) L + C" based on the genome-scale duplication + (non-random/random) loss + recombination. Phylogenetic analyses demonstrated that Chilopoda and Symphyla both were monophyletic group, whereas Pauropoda was embedded in Diplopoda to form the Dignatha. Divergence time showed the first split of Myriapoda occurred between the Chilopoda and other classes (Wenlock period of Silurian). We combine phylogenetic analysis, divergence time, and gene arrangement to yield valuable insights into the evolutionary history and classification relationship of Myriapoda and these results support a monophyletic Progoneata and the relationship (Chilopoda + (Symphyla + (Diplopoda + Pauropoda))) within myriapod. Our results help to better explain the gene rearrangement events of the invertebrate mitogenome and lay the foundation for further phylogenetic study of Myriapoda.
Collapse
Affiliation(s)
- Qing Zuo
- Key Laboratory of Eco‐Environments in Three Gorges Reservoir Region (Ministry of Education)School of Life SciencesSouthwest UniversityChongqingChina
| | - Zhisheng Zhang
- Key Laboratory of Eco‐Environments in Three Gorges Reservoir Region (Ministry of Education)School of Life SciencesSouthwest UniversityChongqingChina
| | - Yanjun Shen
- Chongqing Key Laboratory of Animal BiologySchool of Life SciencesChongqing Normal UniversityChongqingChina
| |
Collapse
|
39
|
Yi J, Wu H, Liu J, Li J, Lu Y, Zhang Y, Cheng Y, Guo Y, Li D, An Y. Novel gene rearrangement in the mitochondrial genome of Anastatus fulloi (Hymenoptera Chalcidoidea) and phylogenetic implications for Chalcidoidea. Sci Rep 2022; 12:1351. [PMID: 35079090 PMCID: PMC8789778 DOI: 10.1038/s41598-022-05419-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
The genus Anastatus comprises a large group of parasitoids, including several biological control agents in agricultural and forest systems. The taxonomy and phylogeny of these species remain controversial. In this study, the mitogenome of A. fulloi Sheng and Wang was sequenced and characterized. The nearly full-length mitogenome of A. fulloi was 15,692 bp, compromising 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes and a control region (CR). The total A + T contents were 83.83%, 82.18%, 87.58%, 87.27%, and 82.13% in the whole mitogenome, 13 PCGs, 22 tRNA genes, 2 rRNA genes, and CR, respectively. The mitogenome presented negative AT skews and positive GC skews, except for the CR. Most PCGs were encoded on the heavy strand, started with ATN codons, and ended with TAA codons. Among the 3736 amino acid-encoding codons, TTA (Leu1), CGA (Arg), TCA (Ser2), and TCT (Ser2) were predominant. Most tRNAs had cloverleaf secondary structures, except trnS1, with the absence of a dihydrouridine (DHU) arm. Compared with mitogenomes of the ancestral insect and another parasitoid within Eupelmidae, large-scale rearrangements were found in the mitogenome of A. fulloi, especially inversions and inverse transpositions of tRNA genes. The gene arrangements of parasitoid mitogenomes within Chalcidoidea were variable. A novel gene arrangement was presented in the mitogenome of A. fulloi. Phylogenetic analyses based on the 13 protein-coding genes of 20 parasitoids indicated that the phylogenetic relationship of 6 superfamilies could be presented as Mymaridae + (Eupelmidae + (Encyrtidae + (Trichogrammatidae + (Pteromalidae + Eulophidae)))). This study presents the first mitogenome of the Anastatus genus and offers insights into the identification, taxonomy, and phylogeny of these parasitoids.
Collapse
Affiliation(s)
- Jiequn Yi
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Han Wu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Jianbai Liu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Jihu Li
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yinglin Lu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yifei Zhang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yinjie Cheng
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yi Guo
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection/Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Dunsong Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection/Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yuxing An
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China.
| |
Collapse
|
40
|
Zhao W, Liu D, Jia Q, Wu X, Zhang H. Characterization of the complete mitochondrial genome of Myrmuslateralis (Heteroptera, Rhopalidae) and its implication for phylogenetic analyses. Zookeys 2021; 1070:13-30. [PMID: 34819768 PMCID: PMC8599289 DOI: 10.3897/zookeys.1070.72742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
Mitochondrial genomes (mitogenomes) are widely used in research studies on phylogenetic relationships and evolutionary history. Here, we sequenced and analyzed the mitogenome of the scentless plant bug Myrmuslateralis Hsiao, 1964 (Heteroptera, Rhopalidae). The complete 17,309 bp genome encoded 37 genes, including 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and a control region. The mitogenome revealed a high A+T content (75.8%), a positive AT-skew (0.092), and a negative GC-skew (-0.165). All 13 PCGs were found to start with ATN codons, except for cox1, in which TTG was the start codon. The Ka/Ks ratios of 13 PCGs were all lower than 1, indicating that purifying selection evolved in these genes. All tRNAs could be folded into the typical cloverleaf secondary structure, except for trnS1 and trnV, which lack dihydrouridine arms. Phylogenetic trees were constructed and analyzed based on the PCG+rRNA from 38 mitogenomes, using maximum likelihood and Bayesian inference methods, showed that M.lateralis and Chorosomamacilentum Stål, 1858 grouped together in the tribe Chorosomatini. In addition, Coreoidea and Pyrrhocoroidea were sister groups among the superfamilies of Trichophora, and Rhopalidae was a sister group to Alydidae + Coreidae.
Collapse
Affiliation(s)
- Wanqing Zhao
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, Shanxi, ChinaXinzhou Teachers UniversityXinzhouChina
| | - Dajun Liu
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, Shanxi, ChinaXinzhou Teachers UniversityXinzhouChina
| | - Qian Jia
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, Shanxi, ChinaXinzhou Teachers UniversityXinzhouChina
| | - Xin Wu
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, Shanxi, ChinaXinzhou Teachers UniversityXinzhouChina
| | - Hufang Zhang
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, Shanxi, ChinaXinzhou Teachers UniversityXinzhouChina
| |
Collapse
|
41
|
Pakrashi A, Tyagi K, Kumar V. The complete mitochondrial genome of Aeolothrips indicus Bhatti, 1964 (Thysanoptera: Thripidae). Mitochondrial DNA B Resour 2021; 6:2808-2809. [PMID: 34514135 PMCID: PMC8425699 DOI: 10.1080/23802359.2021.1970647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/15/2021] [Indexed: 11/20/2022] Open
Abstract
Here, we have generated the complete mitochondrial sequence of Aeolothrips indicus Bhatti, 1964. So far, this is the first largest mitogenome with 17,042 bp length in order Thysanoptera. It includes 13 protein-coding genes, 22 transfer RNA genes, and two ribosomal RNA genes along with three non-coding regions. AT composition of A. indicus is 72.5% (37.7% A and 34.8% T) and GC 27.5% (15.6% C and 11.9% G). The constructed phylogeny revealed the monophyly of family Aeolothripidae in the order Thysanoptera. The data would provide further insight into the evolution and phylogeny of the order Thysanoptera.
Collapse
Affiliation(s)
- Avas Pakrashi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
- Department of Zoology, University of Calcutta, Kolkata, India
| | - Kaomud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
| | - Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
| |
Collapse
|
42
|
Ye F, Li H, Xie Q. Mitochondrial Genomes from Two Specialized Subfamilies of Reduviidae (Insecta: Hemiptera) Reveal Novel Gene Rearrangements of True Bugs. Genes (Basel) 2021; 12:1134. [PMID: 34440308 PMCID: PMC8392325 DOI: 10.3390/genes12081134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/11/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Reduviidae, a hyper-diverse family, comprise 25 subfamilies with nearly 7000 species and include many natural enemies of crop pests and vectors of human disease. To date, 75 mitochondrial genomes (mitogenomes) of assassin bugs from only 11 subfamilies have been reported. The limited sampling of mitogenome at higher categories hinders a deep understanding of mitogenome evolution and reduviid phylogeny. In this study, the first mitogenomes of Holoptilinae (Ptilocnemus lemur) and Emesinae (Ischnobaenella hainana) were sequenced. Two novel gene orders were detected in the newly sequenced mitogenomes. Combined 421 heteropteran mitogenomes, we identified 21 different gene orders and six gene rearrangement units located in three gene blocks. Comparative analyses of the diversity of gene order for each unit reveal that the tRNA gene cluster trnI-trnQ-trnM is the hotspot of heteropteran gene rearrangement. Furthermore, combined analyses of the gene rearrangement richness of each unit and the whole mitogenome among heteropteran lineages confirm Reduviidae as a 'hot-spot group' of gene rearrangement in Heteroptera. The phylogenetic analyses corroborate the current view of phylogenetic relationships between basal groups of Reduviidae with high support values. Our study provides deeper insights into the evolution of mitochondrial gene arrangement in Heteroptera and the early divergence of reduviids.
Collapse
Affiliation(s)
- Fei Ye
- Department of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qiang Xie
- Department of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
43
|
Xu XD, Guan JY, Zhang ZY, Cao YR, Cai YY, Storey KB, Yu DN, Zhang JY. Insight into the Phylogenetic Relationships among Three Subfamilies within Heptageniidae (Insecta: Ephemeroptera) along with Low-Temperature Selection Pressure Analyses Using Mitogenomes. INSECTS 2021; 12:656. [PMID: 34357316 PMCID: PMC8307263 DOI: 10.3390/insects12070656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
Abstract
We determined 15 complete and two nearly complete mitogenomes of Heptageniidae belonging to three subfamilies (Heptageniinae, Rhithrogeninae, and Ecdyonurinae) and six genera (Afronurus, Epeorus, Leucrocuta, Maccaffertium, Stenacron, and Stenonema). Species of Rhithrogeninae and Ecdyonurinae had the same gene rearrangement of CR-I-M-Q-M-ND2, whereas a novel gene rearrangement of CR-I-M-Q-NCR-ND2 was found in Heptageniinae. Non-coding regions (NCRs) of 25-47 bp located between trnA and trnR were observed in all mayflies of Heptageniidae, which may be a synapomorphy for Heptageniidae. Both the BI and ML phylogenetic analyses supported the monophyly of Heptageniidae and its subfamilies (Heptageniinae, Rhithrogeninae, and Ecdyonurinae). The phylogenetic results combined with gene rearrangements and NCR locations confirmed the relationship of the subfamilies as (Heptageniinae + (Rhithrogeninae + Ecdyonurinae)). To assess the effects of low-temperature stress on Heptageniidae species from Ottawa, Canada, we found 27 positive selection sites in eight protein-coding genes (PCGs) using the branch-site model. The selection pressure analyses suggested that mitochondrial PCGs underwent positive selection to meet the energy requirements under low-temperature stress.
Collapse
Affiliation(s)
- Xiao-Dong Xu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (X.-D.X.); (J.-Y.G.); (Z.-Y.Z.); (Y.-R.C.); (Y.-Y.C.)
| | - Jia-Yin Guan
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (X.-D.X.); (J.-Y.G.); (Z.-Y.Z.); (Y.-R.C.); (Y.-Y.C.)
| | - Zi-Yi Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (X.-D.X.); (J.-Y.G.); (Z.-Y.Z.); (Y.-R.C.); (Y.-Y.C.)
| | - Yu-Rou Cao
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (X.-D.X.); (J.-Y.G.); (Z.-Y.Z.); (Y.-R.C.); (Y.-Y.C.)
| | - Yin-Yin Cai
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (X.-D.X.); (J.-Y.G.); (Z.-Y.Z.); (Y.-R.C.); (Y.-Y.C.)
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Dan-Na Yu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (X.-D.X.); (J.-Y.G.); (Z.-Y.Z.); (Y.-R.C.); (Y.-Y.C.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Jia-Yong Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (X.-D.X.); (J.-Y.G.); (Z.-Y.Z.); (Y.-R.C.); (Y.-Y.C.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
44
|
Quek ZBR, Chang JJM, Ip YCA, Chan YKS, Huang D. Mitogenomes Reveal Alternative Initiation Codons and Lineage-Specific Gene Order Conservation in Echinoderms. Mol Biol Evol 2021; 38:981-985. [PMID: 33027524 PMCID: PMC7947835 DOI: 10.1093/molbev/msaa262] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The mitochondrial genetic code is much more varied than the standard genetic code. The invertebrate mitochondrial code, for instance, comprises six initiation codons, including five alternative start codons. However, only two initiation codons are known in the echinoderm and flatworm mitochondrial code, the canonical ATG and alternative GTG. Here, we analyzed 23 Asteroidea mitogenomes, including ten newly sequenced species and unambiguously identified at least two other start codons, ATT and ATC, both of which also initiate translation of mitochondrial genes in other invertebrates. These findings underscore the diversity of the genetic code and expand upon the suite of initiation codons among echinoderms to avoid erroneous annotations. Our analyses have also uncovered the remarkable conservation of gene order among asteroids, echinoids, and holothuroids, with only an interchange between two gene positions in asteroids over ∼500 Ma of echinoderm evolution.
Collapse
Affiliation(s)
| | - Jia Jin Marc Chang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yin Cheong Aden Ip
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yong Kit Samuel Chan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
45
|
Wang Y, Wu C, Xie Y, Liu H, Zhang H. Complete mitochondrial genome sequence for the Thrips hawaiiensis (Thysanoptera: Thripidae). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:2092-2094. [PMID: 34212107 PMCID: PMC8221127 DOI: 10.1080/23802359.2021.1942268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thrips hawaiiensis (Morgan) (Thysanoptera: Thripidae) is a common Thysanoptera insect widely distributed in Asia and the Pacific, it damages various plants. In this study the complete mitochondrial genome of T. hawaiiensis was sequenced and characterized by using next-generation sequencing technique. The total length of the complete genome is 15,357 bp and A + T content of 77.8% (GeneBank accession No. MW582621). The T. hawaiiensis mitochondrial genome consists of 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, 22 transfer RNA genes (tRNAs) and 2 non-coding control regions (Dloop region). According to previous studies, only a few complete mitochondrial genomes from Order Thysanoptera have been reported. Thus, T. hawaiiensis complete mitochondrial genome sequence reported will provide molecular information for mitochondrial genome research on Thysanoptera.
Collapse
Affiliation(s)
- Yunyu Wang
- Plant Protection College, Yunnan Agricultural University, Kunming, China
| | - Chunying Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, China Academy of Sciences, Kunming, China
| | - Yanlan Xie
- College of Biotechnology and Engineering, West Yunnan University, Lincang, China
| | - Hui Liu
- Plant Protection College, Yunnan Agricultural University, Kunming, China
| | - Hongrui Zhang
- Plant Protection College, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
46
|
Novel tRNA gene rearrangements in the mitochondrial genomes of praying mantises (Mantodea: Mantidae): Translocation, duplication and pseudogenization. Int J Biol Macromol 2021; 185:403-411. [PMID: 34166699 DOI: 10.1016/j.ijbiomac.2021.06.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022]
Abstract
Gene rearrangements have been found in several mitochondrial genomes of Mantodea, located in the gene blocks CR-I-Q-M-ND2, COX1-K-D-ATP8 and ND3-A-R-N-S-E-F-ND5. We have sequenced one mitogenome of Amelidae (Yersinia mexicana) and six mitogenomes of Mantidae to discuss the mitochondrial gene rearrangement and the phylogenetic relationship within Mantidae. These mitogenomes showed rearrangements of tRNA genes except for Asiadodis yunnanensis and Hierodula zhangi. These novel gene rearrangements of Mantidae were primarily concentrated in the region of CR-I-Q-M-ND2, including gene translocation, duplication and pseudogenization. For the occurrences of these rearrangements, the tandem duplication-random loss (TDRL) model and slipped-strand mispairing model were suitable to explain. Large non-coding regions (LNCRs) located in the region of CR-I-Q-M-ND2 were detected in most Mantidae species, whereas some LNCRs had high similarity to the control region (CR). Both BI and ML phylogenetic analyses supported the monophyly of Mantidae and the paraphyly of Mantinae. The phylogenetic results with the gene order and the location of NCRs acted as forceful evidence that specific gene rearrangements and special LNCRs may be synapomorphies for several groups of mantises.
Collapse
|
47
|
The queen conch mitogenome: intra- and interspecific mitogenomic variability in Strombidae and phylogenetic considerations within the Hypsogastropoda. Sci Rep 2021; 11:11972. [PMID: 34099752 PMCID: PMC8184947 DOI: 10.1038/s41598-021-91224-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/24/2021] [Indexed: 02/05/2023] Open
Abstract
Aliger gigas is an economically important and vulnerable marine species. We present a new mitogenome of A. gigas from the Mexican Caribbean and use the eight publicly available Strombidae mitogenomes to analyze intra- and interspecific variation. We present the most complete phylogenomic understanding of Hypsogastropoda to date (17 superfamilies, 39 families, 85 genera, 109 species) to revisit the phylogenetic position of the Stromboidea and evaluate divergence times throughout the phylogeny. The A. gigas mitogenome comprises 15,460 bp including 13 PCGs, 22 tRNAs, and two rRNAs. Nucleotide diversity suggested divergence between the Mexican and Colombian lineages of A. gigas. Interspecific divergence showed high differentiation among Strombidae species and demonstrated a close relationship between A. gigas and Strombus pugilis, between Lambis lambis and Harpago chiragra, and among Tridentarius dentatus/Laevistrombus canarium/Ministrombus variabilis. At the intraspecific level, the gene showing the highest differentiation is ATP8 and the lowest is NAD4L, whereas at the interspecific level the NAD genes show the highest variation and the COX genes the lowest. Phylogenomic analyses confirm that Stromboidea belongs in the non-Latrogastropoda clade and includes Xenophoridea. The phylogenomic position of other superfamilies, including those of previously uncertain affiliation, is also discussed. Finally, our data indicated that Stromboidea diverged into two principal clades in the early Cretaceous while Strombidae diversified in the Paleocene, and lineage diversification within A. gigas took place in the Pleistocene.
Collapse
|
48
|
Nie Y, Fu YT, Zhang Y, Deng YP, Wang W, Tu Y, Liu GH. Highly rearranged mitochondrial genome in Falcolipeurus lice (Phthiraptera: Philopteridae) from endangered eagles. Parasit Vectors 2021; 14:269. [PMID: 34016171 PMCID: PMC8139141 DOI: 10.1186/s13071-021-04776-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Fragmented mitochondrial (mt) genomes and extensive mt gene rearrangements have been frequently reported from parasitic lice (Insecta: Phthiraptera). However, relatively little is known about the mt genomes from the family Philopteridae, the most species-rich family within the suborder Ischnocera. Methods Herein, we use next-generation sequencing to decode the mt genome of Falcolipeurus suturalis and compare it with the mt genome of F. quadripustulatus. Phylogenetic relationships within the family Philopteridae were inferred from the concatenated 13 protein-coding genes of the two Falcolipeurus lice and members of the family Philopteridae using Bayesian inference (BI) and maximum likelihood (ML) methods. Results The complete mt genome of F. suturalis is a circular, double-stranded DNA molecule 16,659bp in size that contains 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and three non-coding regions. The gene order of the F. suturalis mt genome is rearranged relative to that of F. quadripustulatus, and is radically different from both other louse species and the putative ancestral insect. Phylogenetic analyses revealed clear genetic distinctiveness between F. suturalis and F. quadripustulatus (Bayesian posterior probabilities=1.0 and bootstrapping frequencies=100), and that the genus Falcolipeurus is sister to the genus Ibidoecus (Bayesian posterior probabilities=1.0 and bootstrapping frequencies=100). Conclusions These datasets help to better understand gene rearrangements in lice and the phylogenetic position of Falcolipeurus and provide useful genetic markers for systematic studies of bird lice. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04776-5.
Collapse
Affiliation(s)
- Yu Nie
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yi-Tian Fu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yu Zhang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yuan-Ping Deng
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Wei Wang
- School of Science and Engineering, GeneCology Research Centre, Animal Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Ya Tu
- Beijing Wildlife Rescue and Rehabilitation Center, Beijing, 101300, China.
| | - Guo-Hua Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
49
|
Moreno-Carmona M, Cameron SL, Prada Quiroga CF. How are the mitochondrial genomes reorganized in Hexapoda? Differential evolution and the first report of convergences within Hexapoda. Gene 2021; 791:145719. [PMID: 33991648 DOI: 10.1016/j.gene.2021.145719] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022]
Abstract
The evolution of the Hexapoda mitochondrial genome has been the focus of several genetic and evolutionary studies over the last decades. However, they have concentrated on certain taxonomic orders of economic or health importance. The recent increase of mitochondrial genomes sequencing of diverse taxonomic orders generates an important opportunity to clarify the evolution of this group of organisms. However, there is no comparative study that investigates the evolution of the Hexapoda mitochondrial genome. In order to verify the level of rearrangement and the mitochondrial genome evolution, we performed a comparative genomic analysis of the Hexapoda mitochondrial genome available in the NCBI database. Using a combination of bioinformatics methods to carefully examine the mitochondrial gene rearrangements in 1198 Hexapoda species belonging to 32 taxonomic orders, we determined that there is a great variation in the rate of rearrangement by gene and by taxonomic order. A higher rate of genetic reassortment is observed in Phthiraptera, Thysanoptera, Protura, and Hymenoptera; compared to other taxonomic orders. Twenty-four events of convergence in the genetic order between different taxonomic orders were determined, most of them not previously reported; which proves the great evolutionary dynamics within Hexapoda.
Collapse
Affiliation(s)
- Manuela Moreno-Carmona
- Grupo de investigación de Biología y ecología de artrópodos, Facultad de Ciencias, Universidad del Tolima, Colombia
| | - Stephen L Cameron
- Department of Entomology, Purdue University, 901 West State Street, West Lafayette, IN 47907, USA
| | - Carlos Fernando Prada Quiroga
- Grupo de investigación de Biología y ecología de artrópodos, Facultad de Ciencias, Universidad del Tolima, Colombia.
| |
Collapse
|
50
|
Zhan XB, Chen B, Fang Y, Dong FY, Fang WX, Luo Q, Chu LM, Feng R, Wang Y, Su X, Fang Y, Xu JY, Zuo ZT, Xia XQ, Yu JG, Sun ET. Mitochondrial analysis of oribatid mites provides insights into their atypical tRNA annotation, genome rearrangement and evolution. Parasit Vectors 2021; 14:221. [PMID: 33892790 PMCID: PMC8063316 DOI: 10.1186/s13071-021-04719-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background The mitochondrial (mt) genomes of Sarcoptiformes mites typically contain 37 genes. Although the loss of genes is rare in Sarcoptiformes mite mitogenomes, two of the six previously reported oribatid mites (Acariforms: Sarcoptiformes) are reported to have lost parts of their tRNA genes. To confirm whether the tRNA genes were indeed lost and whether the loss is universal, we re-annotated the available oribatid mite sequences and sequenced the mitogenome of Oribatula sakamorii. Methods The mitogenome of O. sakamorii was sequenced using an Illumina HiSeq sequencer. The mt tRNA gene was annotated using multi-software combined with a manual annotation approach. Phylogenetic analyses were performed using the maximum likelihood and Bayesian inference methods with concatenated nucleotide and amino acid sequences. Results The mitogenomes of O. sakamorii contained 37 genes, including 22 tRNA genes. We identified all mt tRNA genes that were reported as “lost” in Steganacarus magnus and Paraleius leontonychus and revealed certain atypical tRNA annotation errors in oribatid mite sequences. Oribatid mite mitogenomes are characterized by low rates of genetic rearrangement, with six or seven gene blocks conserved between the mitogenome of all species and that of ancestral arthropods. Considering the relative order of the major genes (protein-coding genes and rRNAs), only one or two genes were rearranged with respect to their positions in the ancestral genome. We explored the phylogenetic relationships among the available oribatid mites, and the results confirmed the systematic position of Hermannia in the Crotonioidea superfamily. This was also supported by the synapomorphic gene-derived boundaries. Conclusions The tRNA “lost” phenomenon is not universal in oribatid mites. Rather, highly atypical secondary structure of the inferred mt tRNA genes made them unidentifiable using a single type of tRNA search program. The use of multi-software combined with a manual annotation approach can improve the accuracy of tRNA gene annotation. In addition, we identified the precise systematic position of Hermannia and validated that Astigmata is nested in Oribatida. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04719-0.
Collapse
Affiliation(s)
- Xue-Bing Zhan
- Department of Pathology, Wannan Medical College, Wuhu, Anhui Province, 241002, People's Republic of China
| | - Bing Chen
- Department of Pathology, Wannan Medical College, Wuhu, Anhui Province, 241002, People's Republic of China
| | - Yu Fang
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, Anhui Province, 241002, People's Republic of China
| | - Fang-Yuan Dong
- Department of Pathology, Wannan Medical College, Wuhu, Anhui Province, 241002, People's Republic of China
| | - Wei-Xi Fang
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, Anhui Province, 241002, People's Republic of China
| | - Qian Luo
- Department of Pathology, Wannan Medical College, Wuhu, Anhui Province, 241002, People's Republic of China
| | - Ling-Miao Chu
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, Anhui Province, 241002, People's Republic of China
| | - Rui Feng
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, Anhui Province, 241002, People's Republic of China
| | - Yan Wang
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, Anhui Province, 241002, People's Republic of China
| | - Xuan Su
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, Anhui Province, 241002, People's Republic of China
| | - Ying Fang
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, Anhui Province, 241002, People's Republic of China
| | - Jiao-Yang Xu
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, Anhui Province, 241002, People's Republic of China
| | - Ze-Tao Zuo
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, Anhui Province, 241002, People's Republic of China
| | - Xing-Quan Xia
- College of Life Science, the Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources in Anhui, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China.
| | - Jie-Gen Yu
- Department of Management Science, Wannan Medical College, Wuhu, Anhui Province, 241002, People's Republic of China.
| | - En-Tao Sun
- Department of Health Inspection and Quarantine, Wannan Medical College, Wuhu, Anhui Province, 241002, People's Republic of China.
| |
Collapse
|