1
|
Lin GB, Chen WT, Kuo YY, Liu HH, Chen YM, Leu SJ, Chao CY. Thermal cycling‑hyperthermia sensitizes non‑small cell lung cancer A549 cells to EGFR tyrosine kinase inhibitor erlotinib. Oncol Rep 2025; 53:58. [PMID: 40183398 PMCID: PMC11976370 DOI: 10.3892/or.2025.8891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/26/2025] [Indexed: 04/05/2025] Open
Abstract
Molecular targeted therapy has emerged as a mainstream treatment for non‑small cell lung cancer (NSCLC), the most common type of lung cancer and the leading cause of cancer‑related death in both men and women. Erlotinib (Erl), a targeted therapy inhibiting EGFR pathways, has shown notable response rate in NSCLC cells. However, limited efficacy of the treatment has been reported due to resistance among a proportion of patients with NSCLC. Therefore, sensitizers are required to potentiate the efficacy of Erl in NSCLC treatment. The present study proposed a novel thermal therapy, thermal cycling‑hyperthermia (TC‑HT), as a supplement to amplify the effects of Erl. It was demonstrated that TC‑HT reduced the half‑maximal inhibitory concentration of Erl to 0.5 µM and TC‑HT sensitized A549 NSCLC cells to Erl via the downstream EGFR signaling cascades. Furthermore, the combination treatment of Erl and TC‑HT induced G2/M cell cycle arrest and inhibition of cell proliferation and migration. In addition, by slightly raising the temperature of TC‑HT, TC‑HT treatment alone produced antineoplastic effects without damaging the normal IMR‑90 lung cells. The method presented in this study may be applicable to other combination therapies and could potentially act as a starter for anticancer treatments, with fewer side effects.
Collapse
Affiliation(s)
- Guan-Bo Lin
- Department of Physics, Laboratory for Medical Physics and Biomedical Engineering, National Taiwan University, Taipei 106319, Taiwan, R.O.C
- Molecular Imaging Center, National Taiwan University College of Medicine, Taipei 100233, Taiwan, R.O.C
| | - Wei-Ting Chen
- Department of Physics, Laboratory for Medical Physics and Biomedical Engineering, National Taiwan University, Taipei 106319, Taiwan, R.O.C
- Molecular Imaging Center, National Taiwan University College of Medicine, Taipei 100233, Taiwan, R.O.C
| | - Yu-Yi Kuo
- Department of Physics, Laboratory for Medical Physics and Biomedical Engineering, National Taiwan University, Taipei 106319, Taiwan, R.O.C
- Molecular Imaging Center, National Taiwan University College of Medicine, Taipei 100233, Taiwan, R.O.C
| | - Hsu-Hsiang Liu
- Molecular Imaging Center, National Taiwan University College of Medicine, Taipei 100233, Taiwan, R.O.C
- Graduate Institute of Applied Physics, Biophysics Division, National Taiwan University, Taipei 106319, Taiwan, R.O.C
| | - You-Ming Chen
- Molecular Imaging Center, National Taiwan University College of Medicine, Taipei 100233, Taiwan, R.O.C
- Graduate Institute of Applied Physics, Biophysics Division, National Taiwan University, Taipei 106319, Taiwan, R.O.C
| | - Shr-Jeng Leu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
| | - Chih-Yu Chao
- Department of Physics, Laboratory for Medical Physics and Biomedical Engineering, National Taiwan University, Taipei 106319, Taiwan, R.O.C
- Molecular Imaging Center, National Taiwan University College of Medicine, Taipei 100233, Taiwan, R.O.C
- Graduate Institute of Applied Physics, Biophysics Division, National Taiwan University, Taipei 106319, Taiwan, R.O.C
| |
Collapse
|
2
|
HARISA GAMALELDINI, ALZHRANI RIYADF, ALLUHAIDAN ABDULRAHMANA, ALAMRI SULTANM, BAKHEIT AHMEDH, ASIRI HANADIH, ATTIA SABRYM. Chitosan capped-NLCs enhanced codelivery of gefitinib and simvastatin into MDR HCC: impact of compositions on cell death, JNK3, and Telomerase. Oncol Res 2025; 33:477-492. [PMID: 39866231 PMCID: PMC11754001 DOI: 10.32604/or.2024.053337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/08/2024] [Indexed: 01/28/2025] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a health problem due to multi-drug resistance (MDR). Codelivery of multiple oncotherapy in one cargo as chimeric cancer therapy (CCT) is suggested as a solution for MDR. This study aims to engineer chitosan-coated nanostructure lipid carriers (NLCs) loaded with gefitinib (GF) and simvastatin (SV) as CCT for HCC. Methods Both GF and SV-loaded nanostructure lipids carriers (GFSVNLC) and chitosan-capped GF and SV-loaded nanostructure lipids carriers (CGFSVNLC) formulations were assembled by top-down techniques. Moreover, particle size (PS), zeta potential (ZP), and polydispersity index (PDI) were measured by Zetasizer. The biosafety of GFSVNLC preparations was investigated by using erythrocytes as a biological model. The cytotoxic, and apoptotic effects of the prepared GFSVNLCs were investigated using HepG2 cell lines as a substitute model for HCC. The effect of GF, SV, and NLC composition on JNK3, HDAC6, and telomerase was studied using molecular docking simulation (MDS). Results The present results revealed that the obtained GFSVNLC and CGFSVNLC have nanosized and consistent, CS coating shifts anionic ZP of GFSVNLC into CGFSVNLC with cationic ZP. Moreover, both formulations are biocompatible as indicated by their gentle effect on erythrocyte hemolysis. The treatment of HepG2 cells with GFSVNLC, and CGFSVNLC induced marked cell death compared to other groups with a decrease of IC50. Equally, the percentage of the apoptotic HepG2 cells was increased upon treatment of the cells with GFSV, GFSVNLC, and CGFSVNLC compared to the control group. Additionally, GF, SV, stearic acid (SA), and oleic acid (OA) modulate the activity of JNK3, HDAC6, and telomerase. Conclusions This study suggests CGFSVNLC achieves codelivery, selective targeting, and enhancing the synergistic effect of GF and SV for inducing HepG2 cell death. Mechanistically, CGFSVNLC inhibits key cascades implicated in MDR and HepG2 cell survival. CGFSVNLC is promising for overcoming drug resistance mechanisms and improving therapeutic outcomes against HepG2 cells.
Collapse
Affiliation(s)
- GAMALELDIN I. HARISA
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - RIYAD F. ALZHRANI
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | - SULTAN M. ALAMRI
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - AHMED H. BAKHEIT
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - HANADI H. ASIRI
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - SABRY M. ATTIA
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
3
|
Dai S, Zhang GCX, Xiang Y, Liu Y, Wang H, Zhao F, Shu Q. Taxus chinensis var. mairei (Lemée et Lévl) Cheng et L.K. Fu overcomes the resistance to osimertinib in EGFR-mutant non-small-cell lung cancer via suppression of ERK1/2-related cholesterol biosynthesis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118586. [PMID: 39032664 DOI: 10.1016/j.jep.2024.118586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acquired resistance to osimertinib limits its clinical efficacy in non-small cell lung cancer (NSCLC) with EGFR mutations. The widespread recognition of Taxus chinensis var. Mairei (Lemée et Lévl) Cheng et L.K. Fu (Chinese yew) as a natural anti-cancer medication is well-established. However, the specific contribution of Taxus chinensis var. Mairei (Lemée et Lévl) Cheng et L.K. Fu in addressing resistance to osimertinib is still uncertain. AIM OF THE STUDY Based on the biological behaviors and lipid metabolism, we investigated whether aqueous extract of Taxus chinensis var. Mairei (Lemée et Lévl) Cheng et L.K. Fu (AETC) could enhance the antitumor effect of osimertinib in NSCLC with an investigation on the precise mechanisms. MATERIALS AND METHODS The effect of AETC on enhancing osimertinib sensitivity was assessed via cell viability measurements, levels of reactive oxygen species (ROS), apoptosis, and lipid levels. Western blotting was used to verify the mechanisms of AETC responsible for overcoming the resistance to osimertinib via ERK1/2 overexpression and knockdown models. In vivo validation was conducted using subcutaneous xenografts from osimertinib-resistant cells in nude mice. RESULTS Osimertinib-resistant cells exhibited altered cholesterol biosynthesis, which was induced by ERK1/2 activation. The combination of AETC and osimertinib can synergistically decrease the levels of ROS in cells, enhance apoptosis, and inhibit the growth of osimertinib-resistant cells. Mechanistic experiments demonstrated that AETC can downregulate the key regulators of cholesterol biosynthesis by regulating ERK1/2, inhibiting the endogenous synthesis rate of cholesterol, and suppressing the level of lipids in osimertinib-resistant cells and xenograft tumors when combined with osimertinib, ultimately reversing resistance to osimertinib. CONCLUSIONS The resistance to osimertinib is significantly influenced by cholesterol biosynthesis, highlighting its pivotal role in this context. AETC can enhance osimertinib sensitivity via ERK/SREBP-2/HMGCR-mediated cholesterol biosynthesis. These results provide a promising therapeutic target and potential treatment option for resistance to osimertinib.
Collapse
Affiliation(s)
- Shuying Dai
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China; Department of Geriatrics, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Gao-Chen-Xi Zhang
- Department of Oncology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, No. 54 Youdian Road, Hangzhou 310006, China
| | - Yuying Xiang
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Yi Liu
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Haibing Wang
- Department of Oncology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, No. 54 Youdian Road, Hangzhou 310006, China
| | - Fangmin Zhao
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Qijin Shu
- Department of Oncology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, No. 54 Youdian Road, Hangzhou 310006, China.
| |
Collapse
|
4
|
Aydemir D, Öztürk K, Arslan FB, Çalis S, Ulusu NN. Gemcitabine-loaded chitosan nanoparticles enhanced apoptotic and ferroptotic response of gemcitabine treatment alone in the pancreatic cancer cells in vitro. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9051-9066. [PMID: 38884675 PMCID: PMC11522156 DOI: 10.1007/s00210-024-03193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024]
Abstract
Gemcitabine (GEM) is a first-line treatment for pancreatic ductal adenocarcinoma (PDAC) patients, causing side effects and poor overall survival. Eighty percent of patients often develop resistance rapidly to GEM. Developing therapeutic approaches and increasing sensitivity to gemcitabine in PDAC has become one of the challenges in cancer research. We synthesized GEM-loaded NPs prepared with a method that combines ultrasonication and ionotropic gelation to overcome GEM-related limitations in PDAC. CFPAC-1 cells were treated with increased concentrations of GEM, empty chitosan, and GEM-loaded NPs (0.66, 1.32, 2.64, 5.32 µg/ml) for up to 48 h. Empty chitosan NPs did not show toxicity on L929 cells. Antioxidant enzyme activities, including glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6-PGD), glutathione reductase (GR), glutathione s-transferase (GST), and glutathione peroxidase (GPx), significantly reduced in GEM-loaded NPs compared to the GEM associated with increased oxidative stress, PPP, and glycolysis. Bcl-xL, NOXA/mcl-1, and Ca2+ levels significantly increased in GEM-loaded NP-administered cells compared to the GEM and control groups. In contrast, JNK, p38, STAT3, Akt, and CREB levels significantly decreased in the GEM-loaded NP group, addressing enhanced apoptotic response compared to the GEM alone. Increased ferroptosis activity in GEM-loaded NP-administered groups has been validated via decreased antioxidant enzyme activities, increased cytosolic Fe, Zn, Mg, and Mn levels, and reduced GPx activity compared to the GEM and control groups. For the first time in the literature, we showed biocompatible GEM-loaded NPs enhanced apoptotic and ferroptotic response in CFPAC-1 cells via downregulation of antioxidant, glycolysis, and PPP metabolism compared to the GEM alone.
Collapse
Affiliation(s)
- Duygu Aydemir
- School of Medicine, Department of Medical Biochemistry, Koc University, Istanbul, Turkey.
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.
- Biochemistry Department, Koc University School of Medicine, Rumelifeneri Yolu, Sariyer, Istanbul, 34450, Turkey.
| | - Kıvılcım Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Fatma Betül Arslan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sema Çalis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Nuriye Nuray Ulusu
- School of Medicine, Department of Medical Biochemistry, Koc University, Istanbul, Turkey.
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.
- Biochemistry Department, Koc University School of Medicine, Rumelifeneri Yolu, Sariyer, Istanbul, 34450, Turkey.
| |
Collapse
|
5
|
Chen YH, Wu JX, Yang SF, Wu YC, Hsiao YH. Molecular Mechanisms Underlying the Anticancer Properties of Pitavastatin against Cervical Cancer Cells. Int J Mol Sci 2024; 25:7915. [PMID: 39063157 PMCID: PMC11277542 DOI: 10.3390/ijms25147915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Cervical cancer ranks as the fourth most prevalent form of cancer and is a significant contributor to female mortality on a global scale. Pitavastatin is an anti-hyperlipidemic medication and has been demonstrated to exert anticancer and anti-inflammatory effects. Thus, the purpose of this study was to evaluate the anticancer effect of pitavastatin on cervical cancer and the underlying molecular mechanisms involved. The results showed that pitavastatin significantly inhibited cell viability by targeting cell-cycle arrest and apoptosis in Ca Ski, HeLa and C-33 A cells. Pitavastatin caused sub-G1- and G0/G1-phase arrest in Ca Ski and HeLa cells and sub-G1- and G2/M-phase arrest in C-33 A cells. Moreover, pitavastatin induced apoptosis via the activation of poly-ADP-ribose polymerase (PARP), Bax and cleaved caspase 3; inactivated the expression of Bcl-2; and increased mitochondrial membrane depolarization. Furthermore, pitavastatin induced apoptosis and slowed the migration of all three cervical cell lines, mediated by the PI3K/AKT and MAPK (JNK, p38 and ERK1/2) pathways. Pitavastatin markedly inhibited tumor growth in vivo in a cancer cell-originated xenograft mouse model. Overall, our results identified pitavastatin as an anticancer agent for cervical cancer, which might be expanded to clinical use in the future.
Collapse
Affiliation(s)
- Ya-Hui Chen
- Women’s Health Research Laboratory, Changhua Christian Hospital, Changhua 50006, Taiwan; (Y.-H.C.); (J.-X.W.)
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Jyun-Xue Wu
- Women’s Health Research Laboratory, Changhua Christian Hospital, Changhua 50006, Taiwan; (Y.-H.C.); (J.-X.W.)
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yun-Chia Wu
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Yi-Hsuan Hsiao
- Women’s Health Research Laboratory, Changhua Christian Hospital, Changhua 50006, Taiwan; (Y.-H.C.); (J.-X.W.)
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
6
|
Siegman A, Shaykevich A, Chae D, Silverman I, Goel S, Maitra R. Erlotinib Treatment in Colorectal Cancer Suppresses Autophagy Based on KRAS Mutation. Curr Issues Mol Biol 2024; 46:7530-7547. [PMID: 39057088 PMCID: PMC11276370 DOI: 10.3390/cimb46070447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The KRAS gene is mutated in approximately 45% of colorectal cancer patients. There are currently very few targeted treatments or therapies equipped to directly inhibit KRAS due to its unusual structural intricacies. Erlotinib, an EGFR inhibitor, has previously been demonstrated to reduce cell viability by inducing autophagy in lung cancer cell lines with varying EGFR mutations. In contrast to lung cancer cells, evidence is provided herein for the first time that erlotinib treatment in colorectal cancer (CRC) cell lines reduces autophagy and still results in decreased cell viability. However, the effects of erlotinib in CRC cell lines containing a wildtype KRAS gene were different than in cells carrying a mutant KRAS gene. We show that there is significantly more downregulation of autophagy in KRAS mutant CRC cells compared to KRAS wildtype cells, both at transcriptional and translational levels, suggesting that the KRAS mutation is advantageous for cancer growth, even in the presence of erlotinib. Cell viability results determined that KRAS wildtype CRC cells had significantly more cell death compared to KRAS mutant cells. Using patient mRNA datasets, we showed that there was a significant correlation between the presence of the KRAS mutation and the expression of autophagy proteins. Additionally, through molecular dynamics simulations, we develop a blueprint for KRAS and autophagy protein interaction and the impact of the KRAS mutation on autophagy protein regulation. Overall, this is the first report of erlotinib treatment in CRC cells that assesses autophagy, and we demonstrate that autophagy activity is downregulated in these cells. This effect is not only greater in cells carrying a KRAS mutation compared to wildtype cells, but the KRAS mutant cells also have increased cell viability compared to wildtype cells. We hypothesize that the difference in cell viability and autophagy expression between KRAS mutant and KRAS wildtype cells after treatment with erlotinib can be of therapeutic value to treat CRC patients carrying KRAS mutations.
Collapse
Affiliation(s)
- Alexander Siegman
- Department of Biology, Yeshiva University, New York, NY 10033, USA (D.C.)
| | - Aaron Shaykevich
- Department of Biology, Yeshiva University, New York, NY 10033, USA (D.C.)
| | - Danbee Chae
- Department of Biology, Yeshiva University, New York, NY 10033, USA (D.C.)
| | - Isaac Silverman
- Department of Biology, Yeshiva University, New York, NY 10033, USA (D.C.)
| | - Sanjay Goel
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Radhashree Maitra
- Department of Biology, Yeshiva University, New York, NY 10033, USA (D.C.)
| |
Collapse
|
7
|
Kato Y, Matsumoto M, Takano N, Hirao M, Matsuda K, Tozuka T, Onda N, Nakamichi S, Takeuchi S, Miyanaga A, Noro R, Gemma A, Seike M. Induction of resistance to neurotrophic tropomyosin-receptor kinase inhibitors by HMGCS2 via a mevalonate pathway. Cancer Med 2024; 13:e7393. [PMID: 38923428 PMCID: PMC11194613 DOI: 10.1002/cam4.7393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION A neurotrophic tropomyosin receptor kinase (NTRK)-tyrosine kinase inhibitor (TKI) has shown dramatic efficacy against malignant tumors harboring an NTRK fusion gene. However, almost all tumors eventually acquire resistance to NTRK-TKIs. METHOD To investigate the mechanism of resistance to NTRK-TKIs, we established cells resistant to three types of NTRK-TKIs (larotrectinib, entrectinib, and selitrectinib) using KM12 colon cancer cells with a TPM3-NTRK1 rearrangement. RESULT Overexpression of 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) was observed in three resistant cells (KM12-LR, KM12-ER, and KM12-SR) by microarray analysis. Lower expression of sterol regulatory element-binding protein 2 (SREBP2) and peroxisome proliferator activated receptor α (PPARα) was found in two cells (KM12-ER and KM12-SR) in which HMGCS2 was overexpressed compared to the parental KM12 and KM12-LR cells. In resistant cells, knockdown of HMGCS2 using small interfering RNA improved the sensitivity to NTRK-TKI. Further treatment with mevalonolactone after HMGCS2 knockdown reintroduced the NTRK-TKI resistance. In addition, simvastatin and silibinin had a synergistic effect with NTRK-TKIs in resistant cells, and delayed tolerance was observed after sustained exposure to clinical concentrations of NTRK-TKI and simvastatin in KM12 cells. In xenograft mouse models, combination treatment with entrectinib and simvastatin reduced resistant tumor growth compared with entrectinib alone. CONCLUSION These results suggest that HMGCS2 overexpression induces resistance to NTRK-TKIs via the mevalonate pathway in colon cancer cells. Statin inhibition of the mevalonate pathway may be useful for overcoming this mechanistic resistance.
Collapse
Affiliation(s)
- Yasuhiro Kato
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Masaru Matsumoto
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Natsuki Takano
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Mariko Hirao
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Kuniko Matsuda
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Takehiro Tozuka
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Naomi Onda
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Shinji Nakamichi
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Susumu Takeuchi
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Akihiko Miyanaga
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Rintaro Noro
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| |
Collapse
|
8
|
Bajinka O, Ouedraogo SY, Golubnitschaja O, Li N, Zhan X. Energy metabolism as the hub of advanced non-small cell lung cancer management: a comprehensive view in the framework of predictive, preventive, and personalized medicine. EPMA J 2024; 15:289-319. [PMID: 38841622 PMCID: PMC11147999 DOI: 10.1007/s13167-024-00357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 06/07/2024]
Abstract
Energy metabolism is a hub of governing all processes at cellular and organismal levels such as, on one hand, reparable vs. irreparable cell damage, cell fate (proliferation, survival, apoptosis, malignant transformation etc.), and, on the other hand, carcinogenesis, tumor development, progression and metastazing versus anti-cancer protection and cure. The orchestrator is the mitochondria who produce, store and invest energy, conduct intracellular and systemically relevant signals decisive for internal and environmental stress adaptation, and coordinate corresponding processes at cellular and organismal levels. Consequently, the quality of mitochondrial health and homeostasis is a reliable target for health risk assessment at the stage of reversible damage to the health followed by cost-effective personalized protection against health-to-disease transition as well as for targeted protection against the disease progression (secondary care of cancer patients against growing primary tumors and metastatic disease). The energy reprogramming of non-small cell lung cancer (NSCLC) attracts particular attention as clinically relevant and instrumental for the paradigm change from reactive medical services to predictive, preventive and personalized medicine (3PM). This article provides a detailed overview towards mechanisms and biological pathways involving metabolic reprogramming (MR) with respect to inhibiting the synthesis of biomolecules and blocking common NSCLC metabolic pathways as anti-NSCLC therapeutic strategies. For instance, mitophagy recycles macromolecules to yield mitochondrial substrates for energy homeostasis and nucleotide synthesis. Histone modification and DNA methylation can predict the onset of diseases, and plasma C7 analysis is an efficient medical service potentially resulting in an optimized healthcare economy in corresponding areas. The MEMP scoring provides the guidance for immunotherapy, prognostic assessment, and anti-cancer drug development. Metabolite sensing mechanisms of nutrients and their derivatives are potential MR-related therapy in NSCLC. Moreover, miR-495-3p reprogramming of sphingolipid rheostat by targeting Sphk1, 22/FOXM1 axis regulation, and A2 receptor antagonist are highly promising therapy strategies. TFEB as a biomarker in predicting immune checkpoint blockade and redox-related lncRNA prognostic signature (redox-LPS) are considered reliable predictive approaches. Finally, exemplified in this article metabolic phenotyping is instrumental for innovative population screening, health risk assessment, predictive multi-level diagnostics, targeted prevention, and treatment algorithms tailored to personalized patient profiles-all are essential pillars in the paradigm change from reactive medical services to 3PM approach in overall management of lung cancers. This article highlights the 3PM relevant innovation focused on energy metabolism as the hub to advance NSCLC management benefiting vulnerable subpopulations, affected patients, and healthcare at large. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00357-5.
Collapse
Affiliation(s)
- Ousman Bajinka
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Serge Yannick Ouedraogo
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, University Hospital Bonn, Venusberg Campus 1, Rheinische Friedrich-Wilhelms-University of Bonn, 53127 Bonn, Germany
| | - Na Li
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
9
|
Ma W, Wei S, Li Q, Zeng J, Xiao W, Zhou C, Yoneda KY, Zeki AA, Li T. Simvastatin Overcomes Resistance to Tyrosine Kinase Inhibitors in Patient-derived, Oncogene-driven Lung Adenocarcinoma Models. Mol Cancer Ther 2024; 23:700-710. [PMID: 38237027 PMCID: PMC11065592 DOI: 10.1158/1535-7163.mct-23-0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/17/2023] [Accepted: 01/16/2024] [Indexed: 05/03/2024]
Abstract
There is an unmet clinical need to develop novel strategies to overcome resistance to tyrosine kinase inhibitors (TKI) in patients with oncogene-driven lung adenocarcinoma (LUAD). The objective of this study was to determine whether simvastatin could overcome TKI resistance using the in vitro and in vivo LUAD models. Human LUAD cell lines, tumor cells, and patient-derived xenograft (PDX) models from TKI-resistant LUAD were treated with simvastatin, either alone or in combination with a matched TKI. Tumor growth inhibition was measured by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and expression of molecular targets was assessed by immunoblots. Tumors were assessed by histopathology, IHC stain, immunoblots, and RNA sequencing. We found that simvastatin had a potent antitumor effect in tested LUAD cell lines and PDX tumors, regardless of tumor genotypes. Simvastatin and TKI combination did not have antagonistic cytotoxicity in these LUAD models. In an osimertinib-resistant LUAD PDX model, simvastatin and osimertinib combination resulted in a greater reduction in tumor volume than simvastatin alone (P < 0.001). Immunoblots and IHC stain also confirmed that simvastatin inhibited TKI targets. In addition to inhibiting 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase, RNA sequencing and Western blots identified the proliferation, migration, and invasion-related genes (such as PI3K/Akt/mTOR, YAP/TAZ, focal adhesion, extracellular matrix receptor), proteasome-related genes, and integrin (α3β1, αvβ3) signaling pathways as the significantly downregulated targets in these PDX tumors treated with simvastatin and a TKI. The addition of simvastatin is a safe approach to overcome acquired resistance to TKIs in several oncogene-driven LUAD models, which deserve further investigation.
Collapse
Affiliation(s)
- Weijie Ma
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
- Current address: Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Sixi Wei
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
- Current address: Department of Biochemistry, Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Qianping Li
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
- Current address: Department of Thoracic Surgery, Shanghai Sixth People’s Hospital, Shanghai, China
| | - Jie Zeng
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Wenwu Xiao
- Medical Service, Veterans Affairs Northern California Health Care System, 10535 Hospital Way, Mather, CA
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, USA
| | - Chihong Zhou
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, California, USA
| | - Ken Y. Yoneda
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis School of Medicine, UC Davis Lung Center, Sacramento, California, USA
| | - Amir A. Zeki
- Medical Service, Veterans Affairs Northern California Health Care System, 10535 Hospital Way, Mather, CA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis School of Medicine, UC Davis Lung Center, Sacramento, California, USA
| | - Tianhong Li
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
- Medical Service, Veterans Affairs Northern California Health Care System, 10535 Hospital Way, Mather, CA
| |
Collapse
|
10
|
Jiang W, Jin WL, Xu AM. Cholesterol metabolism in tumor microenvironment: cancer hallmarks and therapeutic opportunities. Int J Biol Sci 2024; 20:2044-2071. [PMID: 38617549 PMCID: PMC11008265 DOI: 10.7150/ijbs.92274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/27/2024] [Indexed: 04/16/2024] Open
Abstract
Cholesterol is crucial for cell survival and growth, and dysregulation of cholesterol homeostasis has been linked to the development of cancer. The tumor microenvironment (TME) facilitates tumor cell survival and growth, and crosstalk between cholesterol metabolism and the TME contributes to tumorigenesis and tumor progression. Targeting cholesterol metabolism has demonstrated significant antitumor effects in preclinical and clinical studies. In this review, we discuss the regulatory mechanisms of cholesterol homeostasis and the impact of its dysregulation on the hallmarks of cancer. We also describe how cholesterol metabolism reprograms the TME across seven specialized microenvironments. Furthermore, we discuss the potential of targeting cholesterol metabolism as a therapeutic strategy for tumors. This approach not only exerts antitumor effects in monotherapy and combination therapy but also mitigates the adverse effects associated with conventional tumor therapy. Finally, we outline the unresolved questions and suggest potential avenues for future investigations on cholesterol metabolism in relation to cancer.
Collapse
Affiliation(s)
- Wen Jiang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - A-Man Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
- Anhui Public Health Clinical Center, Hefei 230022, P. R. China
| |
Collapse
|
11
|
Kwon J, Kim MS, Blagojevic C, Mailloux J, Medwid S, Tirona RG, Wang R, Schwarz UI. Differential effects of OATP2B1 on statin accumulation and toxicity in a beta cell model. Toxicol Mech Methods 2024; 34:130-147. [PMID: 37771097 DOI: 10.1080/15376516.2023.2262568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
An increased risk of new-onset diabetes mellitus has been recently reported for statin therapy, and experimental studies have shown reduced glucose-stimulated insulin secretion (GSIS) and mitochondrial dysfunction in beta cells with effects differing among agents. Organic anion transporting polypeptide (OATP) 2B1 contributes to hepatic uptake of rosuvastatin, atorvastatin and pravastatin, three known substrates. Since OATP2B1 is present in beta cells of the human pancreas, we investigated if OATP2B1 facilitates the local accumulation of statins in a rat beta cell model INS-1 832/13 (INS-1) thereby amplifying statin-induced toxicity. OATP2B1 overexpression in INS-1 cells via adenoviral transduction showed 2.5-, 1.8- and 1.4-fold higher cellular retention of rosuvastatin, atorvastatin and pravastatin, respectively, relative to LacZ control, while absolute intracellular concentration was about twice as high for the lipophilic atorvastatin compared to the more hydrophilic rosuvastatin and pravastatin. After 24 h statin treatment at high concentrations, OATP2B1 enhanced statin toxicity involving activation of intrinsic apoptosis (caspase 3/7 activation) and mitochondrial dysfunction (NADH dehydrogenase activity) following rosuvastatin and atorvastatin, which was partly reversed by isoprenoids. OATP2B1 had no effect on statin-induced reduction in GSIS, mitochondrial electron transport chain complex expression or caspase 9 activation. We confirmed a dose-dependent reduction in insulin secretion by rosuvastatin and atorvastatin in native INS-1 with a modest change in cellular ATP. Collectively, our results indicate a role of OATP2B1, which is abundant in human beta cells, in statin accumulation and statin-induced toxicity but not insulin secretion of rosuvastatin and atorvastatin in INS-1 cells.
Collapse
Affiliation(s)
- Jihoon Kwon
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Michelle S Kim
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Christina Blagojevic
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jaymie Mailloux
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Samantha Medwid
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rommel G Tirona
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rennian Wang
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ute I Schwarz
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
12
|
Kuhlmann-Hogan A, Cordes T, Xu Z, Kuna RS, Traina KA, Robles-Oteíza C, Ayeni D, Kwong EM, Levy S, Globig AM, Nobari MM, Cheng GZ, Leibel SL, Homer RJ, Shaw RJ, Metallo CM, Politi K, Kaech SM. EGFR-driven lung adenocarcinomas coopt alveolar macrophage metabolism and function to support EGFR signaling and growth. Cancer Discov 2024; 14:733526. [PMID: 38241033 PMCID: PMC11258210 DOI: 10.1158/2159-8290.cd-23-0434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/15/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
The limited efficacy of currently approved immunotherapies in EGFR-driven lung adenocarcinoma (LUAD) underscores the need to better understand alternative mechanisms governing local immunosuppression to fuel novel therapies. Elevated surfactant and GM-CSF secretion from the transformed epithelium induces tumor-associated alveolar macrophage (TA-AM) proliferation which supports tumor growth by rewiring inflammatory functions and lipid metabolism. TA-AM properties are driven by increased GM-CSF-PPARγ signaling and inhibition of airway GM-CSF or PPARγ in TA-AMs suppresses cholesterol efflux to tumor cells, which impairs EGFR phosphorylation and restrains LUAD progression. In the absence of TA-AM metabolic support, LUAD cells compensate by increasing cholesterol synthesis, and blocking PPARγ in TA-AMs simultaneous with statin therapy further suppresses tumor progression and increases proinflammatory immune responses. These results reveal new therapeutic combinations for immunotherapy resistant EGFR-mutant LUADs and demonstrate how cancer cells can metabolically co-opt TA-AMs through GM-CSF-PPARγ signaling to provide nutrients that promote oncogenic signaling and growth.
Collapse
Affiliation(s)
- Alexandra Kuhlmann-Hogan
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
- Nomis Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA
| | - Thekla Cordes
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA
- Department of Bioinformatics and Biochemistry, Braunshweig Integrated Centre of Systems Biology (BRICS), Technishe Universität Braunschweig, Germany
- Research Group Cellular Metabolism in Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ziyan Xu
- Nomis Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Ramya S. Kuna
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA
| | - Kacie A. Traina
- Nomis Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA
| | | | - Deborah Ayeni
- Departments of Pathology and Internal Medicine, (Section of Medical Oncology), Yale School of Medicine, New Haven, CT
| | - Elizabeth M. Kwong
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA
| | - Stellar Levy
- Departments of Pathology and Internal Medicine, (Section of Medical Oncology), Yale School of Medicine, New Haven, CT
| | - Anna-Maria Globig
- Nomis Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA
| | - Matthew M. Nobari
- Division of Pulmonary and Critical Sleep Medicine, University of California San Diego Department of Medicine, La Jolla, CA
| | - George Z. Cheng
- Division of Pulmonary and Critical Sleep Medicine, University of California San Diego Department of Medicine, La Jolla, CA
| | - Sandra L. Leibel
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA
| | - Robert J. Homer
- Departments of Pathology and Internal Medicine (Section of Pulmonary, Critical Care and Sleep Medicine), Yale University School of Medicine, New Haven, CT
| | - Reuben J. Shaw
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA
| | - Christian M. Metallo
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA
| | - Katerina Politi
- Departments of Pathology and Internal Medicine, (Section of Medical Oncology), Yale School of Medicine, New Haven, CT
- Yale Cancer Center, Yale School of Medicine, New Haven, CT
| | - Susan M. Kaech
- Nomis Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA
| |
Collapse
|
13
|
Schelz Z, Muddather HF, Zupkó I. Repositioning of HMG-CoA Reductase Inhibitors as Adjuvants in the Modulation of Efflux Pump-Mediated Bacterial and Tumor Resistance. Antibiotics (Basel) 2023; 12:1468. [PMID: 37760764 PMCID: PMC10525194 DOI: 10.3390/antibiotics12091468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Efflux pump (EP)-mediated multidrug resistance (MDR) seems ubiquitous in bacterial infections and neoplastic diseases. The diversity and lack of specificity of these efflux mechanisms raise a great obstacle in developing drugs that modulate efflux pumps. Since developing novel chemotherapeutic drugs requires large investments, drug repurposing offers a new approach that can provide alternatives as adjuvants in treating resistant microbial infections and progressive cancerous diseases. Hydroxy-methyl-glutaryl coenzyme-A (HMG-CoA) reductase inhibitors, also known as statins, are promising agents in this respect. Originally, statins were used in the therapy of dyslipidemia and for the prevention of cardiovascular diseases; however, extensive research has recently been performed to elucidate the functions of statins in bacterial infections and cancers. The mevalonate pathway is essential in the posttranslational modification of proteins related to vital eukaryotic cell functions. In this article, a comparative review is given about the possible role of HMG-CoA reductase inhibitors in managing diseases of bacterial and neoplastic origin. Molecular research and clinical studies have proven the justification of statins in this field. Further well-designed clinical trials are urged to clarify the significance of the contribution of statins to the lower risk of disease progression in bacterial infections and cancerous diseases.
Collapse
Affiliation(s)
| | | | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary; (Z.S.); (H.F.M.)
| |
Collapse
|
14
|
Kuhlmann-Hogan A, Cordes T, Xu Z, Traina KA, Robles-Oteíza C, Ayeni D, Kwong EM, Levy SR, Nobari M, Cheng GZ, Shaw R, Leibel SL, Metallo CM, Politi K, Kaech SM. EGFR + lung adenocarcinomas coopt alveolar macrophage metabolism and function to support EGFR signaling and growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.536974. [PMID: 37131637 PMCID: PMC10153136 DOI: 10.1101/2023.04.15.536974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The limited efficacy of currently approved immunotherapies in EGFR-mutant lung adenocarcinoma (LUAD) underscores the need to better understand mechanisms governing local immunosuppression. Elevated surfactant and GM-CSF secretion from the transformed epithelium induces tumor-associated alveolar macrophages (TA-AM) to proliferate and support tumor growth by rewiring inflammatory functions and lipid metabolism. TA-AM properties are driven by increased GM-CSF-PPARγ signaling and inhibition of airway GM-CSF or PPARγ in TA-AMs suppresses cholesterol efflux to tumor cells, which impairs EGFR phosphorylation and restrains LUAD progression. In the absence of TA-AM metabolic support, LUAD cells compensate by increasing cholesterol synthesis, and blocking PPARγ in TA-AMs simultaneous with statin therapy further suppresses tumor progression and increases T cell effector functions. These results reveal new therapeutic combinations for immunotherapy resistant EGFR-mutant LUADs and demonstrate how such cancer cells can metabolically co-opt TA-AMs through GM-CSF-PPARγ signaling to provide nutrients that promote oncogenic signaling and growth.
Collapse
|
15
|
Piktel D, Moore JC, Nesbit S, Sprowls SA, Craig MD, Rellick SL, Nair RR, Meadows E, Hollander JM, Geldenhuys WJ, Martin KH, Gibson LF. Chemotherapeutic Activity of Pitavastatin in Vincristine Resistant B-Cell Acute Lymphoblastic Leukemia. Cancers (Basel) 2023; 15:707. [PMID: 36765664 PMCID: PMC9913300 DOI: 10.3390/cancers15030707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
B-cell acute lymphoblastic leukemia (ALL) is derived from an accumulation of malignant, immature B cells in the bone marrow and blood. Relapse due, in part, to the emergence of tumor cells that are resistant to front line standard chemotherapy is associated with poor patient outcomes. This challenge highlights the need for new treatment strategies to eliminate residual chemoresistant tumor cells. Based on the use of pitavastatin in acute myeloid leukemia (AML), we evaluated its efficacy in an REH ALL cell line derived to be resistant to vincristine. We found that pitavastatin inhibited the proliferation of both parental and vincristine-resistant REH tumor cells at an IC50 of 449 nM and 217 nM, respectively. Mitochondrial bioenergetic assays demonstrated that neither vincristine resistance nor pitavastatin treatment affected cellular oxidative phosphorylation, beta-oxidation, or glycolytic metabolism in ALL cells. In a co-culture model of ALL cells with bone marrow stromal cells, pitavastatin significantly decreased cell viability more robustly in the vincristine-resistant ALL cells compared with their parental controls. Subsequently, NSG mice were used to develop an in vivo model of B-cell ALL using both parental and vincristine-resistant ALL cells. Pitavastatin (10 mg/kg i.p.) significantly reduced the number of human CD45+ REH ALL cells in the bone marrow of mice after 4 weeks of treatment. Mechanistic studies showed that pitavastatin treatment in the vincristine-resistant cells led to apoptosis, with increased levels of cleaved PARP and protein-signaling changes for AMP-activated protein kinase/FoxO3a/Puma. Our data suggest the possible repurposing of pitavastatin as a chemotherapeutic agent in a model of vincristine-resistant B-cell ALL.
Collapse
Affiliation(s)
- Debbie Piktel
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Javohn C. Moore
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Sloan Nesbit
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Samuel A. Sprowls
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA
- Departments of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44195, USA
| | - Michael D. Craig
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
- Queen’s Health System, Honolulu, HI 96813, USA
| | - Stephanie L. Rellick
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Rajesh R. Nair
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Ethan Meadows
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University, Morgantown, WV 26506, USA
| | - John M. Hollander
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University, Morgantown, WV 26506, USA
| | - Werner J. Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Karen H. Martin
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Laura F. Gibson
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| |
Collapse
|
16
|
Doumat G, Daher D, Zerdan MB, Nasra N, Bahmad HF, Recine M, Poppiti R. Drug Repurposing in Non-Small Cell Lung Carcinoma: Old Solutions for New Problems. Curr Oncol 2023; 30:704-719. [PMID: 36661704 PMCID: PMC9858415 DOI: 10.3390/curroncol30010055] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Lung cancer is the second most common cancer and the leading cause of cancer-related deaths in 2022. The majority (80%) of lung cancer cases belong to the non-small cell lung carcinoma (NSCLC) subtype. Despite the increased screening efforts, the median five-year survival of metastatic NSCLC remains low at approximately 3%. Common treatment approaches for NSCLC include surgery, multimodal chemotherapy, and concurrent radio and chemotherapy. NSCLC exhibits high rates of resistance to treatment, driven by its heterogeneity and the plasticity of cancer stem cells (CSCs). Drug repurposing offers a faster and cheaper way to develop new antineoplastic purposes for existing drugs, to help overcome therapy resistance. The decrease in time and funds needed stems from the availability of the pharmacokinetic and pharmacodynamic profiles of the Food and Drug Administration (FDA)-approved drugs to be repurposed. This review provides a synopsis of the drug-repurposing approaches and mechanisms of action of potential candidate drugs used in treating NSCLC, including but not limited to antihypertensives, anti-hyperlipidemics, anti-inflammatory drugs, anti-diabetics, and anti-microbials.
Collapse
Affiliation(s)
- George Doumat
- Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Darine Daher
- Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Morgan Bou Zerdan
- Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Nasri Nasra
- Faculty of Medicine, University of Aleppo, Aleppo 15310, Syria
| | - Hisham F. Bahmad
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Monica Recine
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Robert Poppiti
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
17
|
Zhang X, Wang A, Chen Y, Bao J, Xing H. Intestinal barrier dysfunction induced by ammonia exposure in pigs in vivo and in vitro: The protective role of L-selenomethionine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114325. [PMID: 36436255 DOI: 10.1016/j.ecoenv.2022.114325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/17/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Ammonia has been reported to have a variety of toxicity to aquatic animals, farm animals and humans. However, its potential toxicity on the intestines remains unknown. L-selenomethionine is one of the important organic selenium sources. However, the mitigating effect of L-selenomethionine on ammonia exposure toxicity is still lacking. Therefore, in this study, the mechanism of toxic action of ammonia on intestinal tract and the detoxification effect of L-selenomethionine were examined. We evaluated the intestinal toxicity of ammonia and the alleviating effect of L-selenomethionine in an in vivo model, and then verified it in vitro model by a variety of cutting-edge experimental techniques. Our results showed that ammonia exposure causes oxidative stress, necroptosis, Th1/Th2 imbalance and inflammation in the intestinal tissue and the intestinal cells, and L-selenomethionine had a significant mitigation effect on the changes of these indexes induced by ammonia. In conclusion, ammonia exposure caused oxidative stress and Th1/Th2 imbalance in the porcine small intestine and IPEC-J2 cells, and that excessive ROS accumulation-mediated necroptosis targeted inflammatory responses, resulting in the destruction of tight connections of intestinal cells, thereby causing intestinal barrier dysfunction. L-selenomethionine could effectively reduce the intestinal injury caused by ammonia exposure and antagonize the toxic effect of ammonia.
Collapse
Affiliation(s)
- Xinxin Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Anqi Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Ying Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
18
|
Shaghaghi Z, Alvandi M, Farzipour S, Dehbanpour MR, Nosrati S. A review of effects of atorvastatin in cancer therapy. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:27. [PMID: 36459301 DOI: 10.1007/s12032-022-01892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
Cancer is one of the most challenging diseases to manage. A sizeable number of researches are done each year to find better diagnostic and therapeutic strategies. At the present time, a package of chemotherapy, targeted therapy, radiotherapy, and immunotherapy is available to cope with cancer cells. Regarding chemo-radiation therapy, low effectiveness and normal tissue toxicity are like barriers against optimal response. To remedy the situation, some agents have been proposed as adjuvants to improve tumor responses. Statins, the known substances for reducing lipid, have shown a considerable capability for cancer treatment. Among them, atorvastatin as a reductase (HMG-CoA) inhibitor might affect proliferation, migration, and survival of cancer cells. Since finding an appropriate adjutant is of great importance, numerous studies have been conducted to precisely unveil antitumor effects of atorvastatin and its associated pathways. In this review, we aim to comprehensively review the most highlighted studies which focus on the use of atorvastatin in cancer therapy.
Collapse
Affiliation(s)
- Zahra Shaghaghi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Alvandi
- Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran. .,Department of Nuclear Medicine and Molecular Imaging, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Soghra Farzipour
- Department of Cardiology, Cardiovascular Diseases Research Center, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Reza Dehbanpour
- Department of Radiology, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sahar Nosrati
- Institute of Nuclear Chemistry and Technology, Dorodna 16 Str, 03-195, Warsaw, Poland
| |
Collapse
|
19
|
Masbuchin AN, Widodo, Rohman MS, Liu PY. The two facets of receptor tyrosine kinase in cardiovascular calcification-can tyrosine kinase inhibitors benefit cardiovascular system? Front Cardiovasc Med 2022; 9:986570. [PMID: 36237897 PMCID: PMC9552878 DOI: 10.3389/fcvm.2022.986570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 01/09/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are widely used in cancer treatment due to their effectiveness in cancer cell killing. However, an off-target of this agent limits its success. Cardiotoxicity-associated TKIs have been widely reported. Tyrosine kinase is involved in many regulatory processes in a cell, and it is involved in cancer formation. Recent evidence suggests the role of tyrosine kinase in cardiovascular calcification, specifically, the calcification of heart vessels and valves. Herein, we summarized the accumulating evidence of the crucial role of receptor tyrosine kinase (RTK) in cardiovascular calcification and provided the potential clinical implication of TKIs-related ectopic calcification. We found that RTKs, depending on the ligand and tissue, can induce or suppress cardiovascular calcification. Therefore, RTKs may have varying effects on ectopic calcification. Additionally, in the context of cardiovascular calcification, TKIs do not always relate to an unfavored outcome-they might offer benefits in some cases.
Collapse
Affiliation(s)
- Ainun Nizar Masbuchin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Widodo
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Brawijaya, Malang, Indonesia
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Cardiology, Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
20
|
Cai WL, Chen JFY, Chen H, Wingrove E, Kurley SJ, Chan LH, Zhang M, Arnal-Estape A, Zhao M, Balabaki A, Li W, Yu X, Krop ED, Dou Y, Liu Y, Jin J, Westbrook TF, Nguyen DX, Yan Q. Human WDR5 promotes breast cancer growth and metastasis via KMT2-independent translation regulation. eLife 2022; 11:e78163. [PMID: 36043466 PMCID: PMC9584608 DOI: 10.7554/elife.78163] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/24/2022] [Indexed: 12/26/2022] Open
Abstract
Metastatic breast cancer remains a major cause of cancer-related deaths in women, and there are few effective therapies against this advanced disease. Emerging evidence suggests that key steps of tumor progression and metastasis are controlled by reversible epigenetic mechanisms. Using an in vivo genetic screen, we identified WDR5 as an actionable epigenetic regulator that is required for metastatic progression in models of triple-negative breast cancer. We found that knockdown of WDR5 in breast cancer cells independently impaired their tumorigenic as well as metastatic capabilities. Mechanistically, WDR5 promotes cell growth by increasing ribosomal gene expression and translation efficiency in a KMT2-independent manner. Consistently, pharmacological inhibition or degradation of WDR5 impedes cellular translation rate and the clonogenic ability of breast cancer cells. Furthermore, a combination of WDR5 targeting with mTOR inhibitors leads to potent suppression of translation and proliferation of breast cancer cells. These results reveal novel therapeutic strategies to treat metastatic breast cancer.
Collapse
Affiliation(s)
- Wesley L Cai
- Hillman Cancer Center, University of Pittsburgh Medical CenterPittsburghUnited States
- Department of Pathology, Yale UniversityNew HavenUnited States
| | | | - Huacui Chen
- Department of Pathology, Yale UniversityNew HavenUnited States
| | - Emily Wingrove
- Department of Pathology, Yale UniversityNew HavenUnited States
| | - Sarah J Kurley
- Department of Biochemistry and Molecular Biology, Baylor College of MedicineHoustonUnited States
| | - Lok Hei Chan
- Department of Pathology, Yale UniversityNew HavenUnited States
| | - Meiling Zhang
- Department of Pathology, Yale UniversityNew HavenUnited States
| | - Anna Arnal-Estape
- Department of Pathology, Yale UniversityNew HavenUnited States
- Yale Cancer Center, Yale School of MedicineNew HavenUnited States
| | - Minghui Zhao
- Department of Pathology, Yale UniversityNew HavenUnited States
| | - Amer Balabaki
- Department of Pathology, Yale UniversityNew HavenUnited States
| | - Wenxue Li
- Yale Cancer Biology Institute, Department of Pharmacology, Yale UniversityWest HavenUnited States
| | - Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ethan D Krop
- Department of Pathology, Yale UniversityNew HavenUnited States
- Department of Biosciences, Rice University,HoustonUnited States
| | - Yali Dou
- Department of Pathology, University of Michigan, Ann ArborAnn ArborUnited States
- Department of Medicine, Department of Biochemistry and Molecular Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Yansheng Liu
- Yale Cancer Center, Yale School of MedicineNew HavenUnited States
- Yale Cancer Biology Institute, Department of Pharmacology, Yale UniversityWest HavenUnited States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Thomas F Westbrook
- Department of Biochemistry and Molecular Biology, Baylor College of MedicineHoustonUnited States
| | - Don X Nguyen
- Department of Pathology, Yale UniversityNew HavenUnited States
- Yale Cancer Center, Yale School of MedicineNew HavenUnited States
- Yale Stem Cell Center, Yale School of MedicineNew HavenUnited States
- Department of Internal Medicine (Section of Medical Oncology), Yale School of Medicine,New HavenUnited States
| | - Qin Yan
- Department of Pathology, Yale UniversityNew HavenUnited States
- Yale Cancer Center, Yale School of MedicineNew HavenUnited States
- Yale Stem Cell Center, Yale School of MedicineNew HavenUnited States
- Yale Center for Immuno-Oncology, Yale School of MedicineNew HavenUnited States
| |
Collapse
|
21
|
Dewidar SA, Hamdy O, Eltantawy A, El-Mesery M, El Gayar AM, Soliman MM. Effect of concomitant use of pitavastatin with neoadjuvant chemotherapy protocols in breast cancer patients: A randomized controlled clinical trial. Saudi Pharm J 2022; 30:1486-1496. [PMID: 36387337 PMCID: PMC9649354 DOI: 10.1016/j.jsps.2022.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Preclinical studies have demonstrated the possible anticancer effects of statins, but the synergistic effect of concomitant statin use with standard chemotherapy protocols in patients with breast cancer has not yet been investigated. Aim The current study aimed to evaluate the efficacy of concomitant pitavastatin use with neoadjuvant chemotherapy protocols in patients with breast cancer. Methods This study was a randomized controlled clinical trial. A total of 70 adult female patients with pathologically-proven invasive breast cancer were randomized to receive or not receive pitavastatin (2 mg) oral tablets once daily concomitantly with standard neoadjuvant chemotherapy protocols for 6 months. The primary outcomes of this study were changes in tumor size and changes to the Ki67 index. In addition, secondary outcomes were changes in cyclin D1 and cleaved caspase-3 serum levels. This study was registered at ClinicalTrials.gov (Identifier: NCT04705909). Results Patients in the pitavastatin group showed significantly higher median (IQR) reductions in tumor size [−19.8 (−41.5, 9.5)] compared to those in the control group [−5.0 (−15.5, 0.0), p = 0.0009]. The change in Ki67 from baseline to the end of therapy was similar between the two groups (p = 0.12). By the end of therapy, the cyclin D1 levels in the pitavastatin group were significantly decreased [median (IQR) change of − 10.0 (−20.2, −2.9) from baseline], whereas the control group showed an increase in cyclin D1 levels [14.8 (4.1, 56.4)]. The median (IQR) caspase−3 was elevated in the pitavastatin group 1.6 (0.2, 2.2), and decreased in the control group (−0.2 (−1.1, 0.0), p = 0.0002). Subgroup analysis of the pitavastatin group revealed that patients with positive human epidermal growth receptor 2 (HER2) had higher median (IQR) reductions in Ki67 [−35.0 (−70.0, −12.5)] than those with negative HER2 [2.5 (−15.0, 10.0), p = 0.04]. All patients who achieved a complete pathological response (n = 9) exhibited an HER2-neu positive receptor at baseline. Conclusion Concomitant use of pitavastatin with standard neoadjuvant chemotherapy protocols may improve neoadjuvant chemotherapy responses in patients with breast cancer.
Collapse
Affiliation(s)
- Samar A. Dewidar
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Omar Hamdy
- Surgical Oncology Department, Oncology Center, Mansoura University, Mansoura University, Mansoura, Egypt
| | - Ahmed Eltantawy
- Medical Oncology Unit, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Mesery
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Amal M. El Gayar
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Moetaza M. Soliman
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Corresponding author at: Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
22
|
Marcianò G, Palleria C, Casarella A, Rania V, Basile E, Catarisano L, Vocca C, Bianco L, Pelaia C, Cione E, D’Agostino B, Citraro R, De Sarro G, Gallelli L. Effect of Statins on Lung Cancer Molecular Pathways: A Possible Therapeutic Role. Pharmaceuticals (Basel) 2022; 15:589. [PMID: 35631415 PMCID: PMC9144184 DOI: 10.3390/ph15050589] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is a common neoplasm, usually treated through chemotherapy, radiotherapy and/or surgery. Both clinical and experimental studies on cancer cells suggest that some drugs (e.g., statins) have the potential to improve the prognosis of cancer. In fact, statins blocking the enzyme "hydroxy-3-methylglutaryl-coenzyme A reductase" exert pleiotropic effects on different genes involved in the pathogenesis of lung cancer. In this narrative review, we presented the experimental and clinical studies that evaluated the effects of statins on lung cancer and described data on the effectiveness and safety of these compounds. We also evaluated gender differences in the treatment of lung cancer to understand the possibility of personalized therapy based on the modulation of the mevalonate pathway. In conclusion, according to the literature data, statins exert multiple effects on lung cancer cells, even if the evidence for their use in clinical practice is lacking.
Collapse
Affiliation(s)
- Gianmarco Marcianò
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Caterina Palleria
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
| | - Alessandro Casarella
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Vincenzo Rania
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Emanuele Basile
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Luca Catarisano
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Cristina Vocca
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Luigi Bianco
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
| | - Corrado Pelaia
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ed. Polifunzionale, Arcavacata di Rende, 87036 Rende, Italy;
| | - Bruno D’Agostino
- Department of Experimental Medicine L. Donatelli, Section of Pharmacology, School of Medicine, University of Campania Luigi Vanvitelli, 80100 Naples, Italy;
| | - Rita Citraro
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
- Research Centre FAS@UMG, Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
- Research Centre FAS@UMG, Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy
| | - Luca Gallelli
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
- Research Centre FAS@UMG, Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
23
|
Tulbah AS. Inhaled Atorvastatin Nanoparticles For Lung Cancer. Curr Drug Deliv 2022; 19:1073-1082. [PMID: 35473526 DOI: 10.2174/1567201819666220426091500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/05/2022] [Accepted: 01/29/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung cancer is one of the main causes of mortality globally. This research paper aims at the development of an inhaled nanotechnology for lung cancer to deliver an atorvastatin calcium compound, for lung cancer, capable of reaching the tumor site directly via inhalation. METHODS Atorvastatin calcium micellar nanoparticles (ATO-NPs) encapsulated with Pluronic F-127 and polyvinyl alcohol (PVA) were manufactured utilizing the solvent and anti-solvent precipitation technique. The physicochemical features of the formulation were evaluated in terms of their physicochemical characteristics using Fourier transform infrared spectroscopy, differential scanning calorimetry, and dynamic light scattering. Additionally, the Andersen Cascade impactor was used at 15 L/minutes to assist in the aerosols performances of the formulation. The ATO-NPs formula's cell viability was tested in vitro using the A549 non-small cell lung cancer cell type. RESULTS Transmission electron microscopy was utilized to determine the ATO-NPs particle morphology, demonstrating a spherical shape with a smooth surface. The fine particle fraction of the aerosol produced was 62.70 ± 1.18%. This finding suggests that atorvastatin micellar nanoparticles are suitable for medication administration by inhalation with a wide particle size dispersion. Moreover, it was found in vitro that concentrations up to 21 µg/mL of the atorvastatin nanoparticles were safe and non-toxic on the cell model. CONCLUSION This study found that atorvastatin micellar nanoparticles for inhalation could potentially be used for lung cancer treatment.
Collapse
Affiliation(s)
- Alaa S Tulbah
- Pharmaceutics Department, College of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia
| |
Collapse
|
24
|
Aydemir D, Malik AN, Kulac I, Basak AN, Lazoglu I, Ulusu NN. Impact of the Amyotrophic Lateral Sclerosis Disease on the Biomechanical Properties and Oxidative Stress Metabolism of the Lung Tissue Correlated With the Human Mutant SOD1G93A Protein Accumulation. Front Bioeng Biotechnol 2022; 10:810243. [PMID: 35284425 PMCID: PMC8914018 DOI: 10.3389/fbioe.2022.810243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/31/2022] [Indexed: 01/19/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease, and ALS incidence is increasing worldwide. Patients with ALS have respiratory failure at the disease’s end stages, leading to death; thus, the lung is one of the most affected organs during disease progression. Tissue stiffness increases in various lung diseases because of impaired extracellular matrix (ECM) homeostasis leading to tissue damage and dysfunction at the end. According to the literature, oxidative stress is the major contributor to ECM dysregulation, and mutant protein accumulation in ALS have been reported as causative to tissue damage and oxidative stress. In this study, we used SOD1G93A and SOD1WT rats and measured lung stiffness of rats by using a custom-built stretcher, where H&E staining is used to evaluate histopathological changes in the lung tissue. Oxidative stress status of lung tissues was assessed by measuring glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6-PGD), glutathione reductase (GR), glutathione s-transferase (GST), catalase (CAT), and superoxide dismutase 1 (SOD1) levels. Western blot experiments were performed to evaluate the accumulation of the SOD1G93A mutated protein. As a result, increased lung stiffness, decreased antioxidant status, elevated levels of oxidative stress, impaired mineral and trace element homeostasis, and mutated SOD1G93A protein accumulation have been found in the mutated rats even at the earlier stages, which can be possible causative of increased lung stiffness and tissue damage in ALS. Since lung damage has altered at the very early stages, possible therapeutic approaches can be used to treat ALS or improve the life quality of patients with ALS.
Collapse
Affiliation(s)
- Duygu Aydemir
- Department of Medical Biochemistry, School of Medicine, Koc University, Istanbul, Turkey
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Anjum Naeem Malik
- Manufacturing and Automation Research Center, Department of Mechanical Engineering, Koc University, Istanbul, Turkey
| | - Ibrahim Kulac
- Department of Pathology, Koc University School of Medicine, Istanbul, Turkey
| | - Ayse Nazli Basak
- Suna and İnan Kirac Foundation, Neurodegeneration Research Laboratory, NDAL-KUTTAM, School of Medicine, Koc University, Istanbul, Turkey
| | - Ismail Lazoglu
- Manufacturing and Automation Research Center, Department of Mechanical Engineering, Koc University, Istanbul, Turkey
| | - Nuriye Nuray Ulusu
- Department of Medical Biochemistry, School of Medicine, Koc University, Istanbul, Turkey
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
- *Correspondence: Nuriye Nuray Ulusu,
| |
Collapse
|
25
|
Crosstalk between Statins and Cancer Prevention and Therapy: An Update. Pharmaceuticals (Basel) 2021; 14:ph14121220. [PMID: 34959621 PMCID: PMC8704600 DOI: 10.3390/ph14121220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
The importance of statins in cancer has been discussed in many studies. They are known for their anticancer properties against solid tumors of the liver or lung, as well as diffuse cancers, such as multiple myeloma or leukemia. Currently, the most commonly used statins are simvastatin, rosuvastatin and atorvastatin. The anti-tumor activity of statins is largely related to their ability to induce apoptosis by targeting cancer cells with high selectivity. Statins are also involved in the regulation of the histone acetylation level, the disturbance of which can lead to abnormal activity of genes involved in the regulation of proliferation, differentiation and apoptosis. As a result, tumor growth and its invasion may be promoted, which is associated with a poor prognosis. High levels of histone deacetylases are observed in many cancers; therefore, one of the therapeutic strategies is to use their inhibitors. Combining statins with histone deacetylase inhibitors can induce a synergistic anticancer effect.
Collapse
|
26
|
Luttman JH, Hoj JP, Lin KH, Lin J, Gu JJ, Rouse C, Nichols AG, MacIver NJ, Wood KC, Pendergast AM. ABL allosteric inhibitors synergize with statins to enhance apoptosis of metastatic lung cancer cells. Cell Rep 2021; 37:109880. [PMID: 34706244 PMCID: PMC8579324 DOI: 10.1016/j.celrep.2021.109880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 08/29/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022] Open
Abstract
Targeting mitochondrial metabolism has emerged as a treatment option for cancer patients. The ABL tyrosine kinases promote metastasis, and enhanced ABL signaling is associated with a poor prognosis in lung adenocarcinoma patients. Here we show that ABL kinase allosteric inhibitors impair mitochondrial integrity and decrease oxidative phosphorylation. To identify metabolic vulnerabilities that enhance this phenotype, we utilized a CRISPR/Cas9 loss-of-function screen and identified HMG-CoA reductase, the rate-limiting enzyme of the mevalonate pathway and target of statin therapies, as a top-scoring sensitizer to ABL inhibition. Combination treatment with ABL allosteric inhibitors and statins decreases metastatic lung cancer cell survival in vitro in a synergistic manner. Notably, combination therapy in mouse models of lung cancer brain metastasis and therapy resistance impairs metastatic colonization with a concomitant increase in animal survival. Thus, metabolic combination therapy might be effective to decrease metastatic outgrowth, leading to increased survival for lung cancer patients with advanced disease. Metabolic reprogramming in tumors is an adaptation that generates vulnerabilities that can be exploited for developing new therapies. Here Luttman et al. identify synergism between ABL allosteric inhibitors and lipophilic statins to impair metastatic lung cancer cell outgrowth and colonization, leading to increased survival in mouse models of advanced disease.
Collapse
Affiliation(s)
- Jillian Hattaway Luttman
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jacob P Hoj
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Kevin H Lin
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jiaxing Lin
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jing Jin Gu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Clay Rouse
- Division of Laboratory Animal Resources, Duke University School of Medicine, Durham, NC, USA
| | - Amanda G Nichols
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Nancie J MacIver
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA; Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA; Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA; Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Ann Marie Pendergast
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA; Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
27
|
Ishikawa T, Osaki T, Sugiura A, Tashiro J, Warita T, Hosaka YZ, Warita K. Atorvastatin preferentially inhibits the growth of high ZEB-expressing canine cancer cells. Vet Comp Oncol 2021; 20:313-323. [PMID: 34657361 DOI: 10.1111/vco.12778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/03/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) is fundamental in cancer progression and contributes to the acquisition of malignant properties. The statin class of cholesterol-lowering drugs exhibits pleiotropic anticancer effects in vitro and in vivo, and many epidemiologic studies have reported a correlation between statin use and reduced cancer mortality. We have shown previously that sensitivity to the anti-proliferative effect of statins varies among human cancer cells and statins are more effective against mesenchymal-like cells than epithelial-like ones in human cancers. There have only been few reports on the application of statins to cancer therapy in veterinary medicine, and differences in statin sensitivity among canine cancer cells have not been examined. In this study, we aimed to clarify the correlation between sensitivity to atorvastatin and epithelial/mesenchymal states in 11 canine cancer cell lines derived from mammary gland, squamous cell carcinoma, lung, and melanoma. Sensitivity to atorvastatin varied among canine cancer cells, with IC50 values ranging from 5.92 to 71.5 μM at 48 h, which were higher than the plasma concentrations clinically achieved with statin therapy. Atorvastatin preferentially attenuated the proliferation of mesenchymal-like cells. In particular, highly statin-sensitive cells were characterized by aberrant expression of the ZEB family of EMT-inducing transcription factors. However, ZEB2 silencing in highly sensitive cells did not induce resistance to atorvastatin. Taken together, these results suggest that high expression of ZEB is a characteristic of highly statin-sensitive cells and could be a molecular marker for predicting whether cancers are sensitive to statins, though ZEB itself does not confer statin sensitivity.
Collapse
Affiliation(s)
- Takuro Ishikawa
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Tomohiro Osaki
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Akihiro Sugiura
- Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Jiro Tashiro
- Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Tomoko Warita
- Department of Biomedical Sciences, School of Biological and Environmental Science, Kwansei Gakuin University, Hyogo, Japan
| | - Yoshinao Z Hosaka
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Katsuhiko Warita
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, Tottori, Japan
| |
Collapse
|
28
|
Jiang W, Hu JW, He XR, Jin WL, He XY. Statins: a repurposed drug to fight cancer. J Exp Clin Cancer Res 2021; 40:241. [PMID: 34303383 PMCID: PMC8306262 DOI: 10.1186/s13046-021-02041-2] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
As competitive HMG-CoA reductase (HMGCR) inhibitors, statins not only reduce cholesterol and improve cardiovascular risk, but also exhibit pleiotropic effects that are independent of their lipid-lowering effects. Among them, the anti-cancer properties of statins have attracted much attention and indicated the potential of statins as repurposed drugs for the treatment of cancer. A large number of clinical and epidemiological studies have described the anticancer properties of statins, but the evidence for anticancer effectiveness of statins is inconsistent. It may be that certain molecular subtypes of cancer are more vulnerable to statin therapy than others. Whether statins have clinical anticancer effects is still an active area of research. Statins appear to enhance the efficacy and address the shortcomings associated with conventional cancer treatments, suggesting that statins should be considered in the context of combined therapies for cancer. Here, we present a comprehensive review of the potential of statins in anti-cancer treatments. We discuss the current understanding of the mechanisms underlying the anti-cancer properties of statins and their effects on different malignancies. We also provide recommendations for the design of future well-designed clinical trials of the anti-cancer efficacy of statins.
Collapse
Affiliation(s)
- Wen Jiang
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Jin-Wei Hu
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Xu-Ran He
- Department of Finance, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Xin-Yang He
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China.
| |
Collapse
|
29
|
Tilija Pun N, Jeong CH. Statin as a Potential Chemotherapeutic Agent: Current Updates as a Monotherapy, Combination Therapy, and Treatment for Anti-Cancer Drug Resistance. Pharmaceuticals (Basel) 2021; 14:ph14050470. [PMID: 34065757 PMCID: PMC8156779 DOI: 10.3390/ph14050470] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/31/2022] Open
Abstract
Cancer is incurable because progressive phenotypic and genotypic changes in cancer cells lead to resistance and recurrence. This indicates the need for the development of new drugs or alternative therapeutic strategies. The impediments associated with new drug discovery have necessitated drug repurposing (i.e., the use of old drugs for new therapeutic indications), which is an economical, safe, and efficacious approach as it is emerged from clinical drug development or may even be marketed with a well-established safety profile and optimal dosing. Statins are inhibitors of HMG-CoA reductase in cholesterol biosynthesis and are used in the treatment of hypercholesterolemia, atherosclerosis, and obesity. As cholesterol is linked to the initiation and progression of cancer, statins have been extensively used in cancer therapy with a concept of drug repurposing. Many studies including in vitro and in vivo have shown that statin has been used as monotherapy to inhibit cancer cell proliferation and induce apoptosis. Moreover, it has been used as a combination therapy to mediate synergistic action to overcome anti-cancer drug resistance as well. In this review, the recent explorations are done in vitro, in vivo, and clinical trials to address the action of statin either single or in combination with anti-cancer drugs to improve the chemotherapy of the cancers were discussed. Here, we discussed the emergence of statin as a lipid-lowering drug; its use to inhibit cancer cell proliferation and induction of apoptosis as a monotherapy; and its use in combination with anti-cancer drugs for its synergistic action to overcome anti-cancer drug resistance. Furthermore, we discuss the clinical trials of statins and the current possibilities and limitations of preclinical and clinical investigations.
Collapse
|
30
|
Aydemir D, Dogru S, Alaca BE, Ulusu NN. Impact of the surface modifications and cell culture techniques on the biomechanical properties of PDMS in relation to cell growth behavior. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1919670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Duygu Aydemir
- Biochemistry Department, Koç University School of Medicine, Sariyer, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Turkey
| | - Sedat Dogru
- Department of Mechanical Engineering, Koç University, Sariyer, Turkey
| | - B. Erdem Alaca
- Department of Mechanical Engineering, Koç University, Sariyer, Turkey
- Surface Science and Technology Center, KUYTAM, Koç University, Sariyer, Turkey
| | - Nuriye Nuray Ulusu
- Biochemistry Department, Koç University School of Medicine, Sariyer, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Turkey
| |
Collapse
|
31
|
Nagayama D, Saiki A, Shirai K. The Anti-Cancer Effect of Pitavastatin May Be a Drug-Specific Effect: Subgroup Analysis of the TOHO-LIP Study. Vasc Health Risk Manag 2021; 17:169-173. [PMID: 33953560 PMCID: PMC8092348 DOI: 10.2147/vhrm.s306540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/09/2021] [Indexed: 12/31/2022] Open
Abstract
The significance of statin treatment for the reduction of cardiovascular (CV) disease has been reported, whereas other reports have also described anti-cancer properties associated with the class effect of statins. However, the differences in anti-cancer effect of various types of statins have rarely been examined. Pitavastatin is a statin with a different chemical structure and pharmacokinetics from other statins, and the mechanism of the specific anti-cancer effect of pitavastatin has been reported in in vivo therapeutic models. We previously revealed that pitavastatin therapy was superior to atorvastatin therapy in the prevention of CV events, despite similar LDL-cholesterol-lowering effect in the TOHO Lipid Intervention Trial Using Pitavastatin (TOHO-LIP). Furthermore, in subgroup analysis of the TOHO-LIP study, cumulative 240-week incidence of new cancer cases tended to be lower in the pitavastatin group compared to the atorvastatin group [0.32% (1/312) vs 1.94% (6/310), log-rank P=0.051]. This finding might reveal the superiority of pitavastatin to prevent carcinogenesis. The molecular mechanism by which pitavastatin suppresses the incidence of any-organ cancer is gradually elucidated, and new combination of cancer treatments with pitavastatin will be developed in the future to further enhance the anti-cancer activity and reduce the side effects.
Collapse
Affiliation(s)
- Daiji Nagayama
- Department of Internal Medicine, Nagayama Clinic, Tochigi, Japan.,Center of Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Atsuhito Saiki
- Center of Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Kohji Shirai
- Department of Internal Medicine, Mihama Hospital, Chiba, Japan
| |
Collapse
|
32
|
Amin F, Fathi F, Reiner Ž, Banach M, Sahebkar A. The role of statins in lung cancer. Arch Med Sci 2021; 18:141-152. [PMID: 35154535 PMCID: PMC8826694 DOI: 10.5114/aoms/123225] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is one of the most common causes of cancer-related mortality in the 21st century. Statins as inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase not only reduce the cholesterol levels in the blood and decrease the risk of cardiovascular disease but may also play an important role in the prevention and treatment of lung cancer. Statins have several antitumor properties including the ability to reduce cell proliferation and angiogenesis, decrease invasion and synergistic suppression of lung cancer progression. Statins induce tumor cell apoptosis by inhibition of downstream products such as small GTP-binding proteins, Rho, Ras and Rac, which are dependent on isoprenylation. Statins reduce angiogenesis in tumors by down-regulation of pro-angiogenic factors, such as vascular endothelial growth factor. In this review, the feasibility and efficacy of statins in the prevention and treatment of lung cancer are discussed.
Collapse
Affiliation(s)
- Fatemeh Amin
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Farzaneh Fathi
- Pharmaceutical Sciences Research Center, Biosensor and Bioelectronic Department, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Lodz, Poland
- Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Barbalata CI, Tefas LR, Achim M, Tomuta I, Porfire AS. Statins in risk-reduction and treatment of cancer. World J Clin Oncol 2020; 11:573-588. [PMID: 32879845 PMCID: PMC7443827 DOI: 10.5306/wjco.v11.i8.573] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/18/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Statins, which are competitive inhibitors of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, reduce cholesterol blood levels and the risk of developing cardiovascular diseases and their related complications. In addition to this main activity, statins show pleiotropic effects such as antioxidant, anti-inflammatory and antiproliferative properties, with applications in many pathologies. Based on their antiproliferative properties, in vitro and in vivo studies have investigated their effects on various types of cancer (i.e., breast cancer, prostate cancer, colorectal cancer, ovarian cancer, lung cancer) with different genetic and molecular characteristics. Many positive results were obtained, but they were highly dependent on the physiochemical properties of the statins, their dose and treatment period. Combined therapies of statins and cytotoxic drugs have also been tested, and synergistic or additive effects were observed. Moreover, observational studies performed on patients who used statins for different pathologies, revealed that statins reduced the risk of developing various cancers, and improved the outcomes for cancer patients. Currently, there are many ongoing clinical trials aimed at exploring the potential of statins to lower the mortality and the disease-recurrence risk. All these results are the foundation of new treatment directions in cancer therapy.
Collapse
Affiliation(s)
- Cristina I Barbalata
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu-Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Lucia R Tefas
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu-Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Marcela Achim
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu-Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Ioan Tomuta
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu-Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Alina S Porfire
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu-Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| |
Collapse
|
34
|
Di Bello E, Zwergel C, Mai A, Valente S. The Innovative Potential of Statins in Cancer: New Targets for New Therapies. Front Chem 2020; 8:516. [PMID: 32626692 PMCID: PMC7312214 DOI: 10.3389/fchem.2020.00516] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/19/2020] [Indexed: 01/01/2023] Open
Abstract
Numerous and different types of cancers possess the dysregulation of the mevalonate pathway as a common feature. Statins, traditionally applied in cardiovascular diseases to reduce lipid levels, subsequently have been discovered to exhibit anti-cancer activities also. Indeed, statins influence proliferation, migration, and survival of cancer cells by regulating crucial signaling proteins, such as Rho, Ras, and Rac. Recently, several studies have demonstrated that simvastatin, fluvastatin, and lovastatin are implicated in different pathways that enhance the survival time of patients with cancer under treatment in combination with antineoplastic agents. In this minireview, we present an overview of the most important studies conducted regarding the use of statins in cancer therapy up to date.
Collapse
Affiliation(s)
- Elisabetta Di Bello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy.,Department of Precision Medicine, Luigi Vanvitelli, University of Campania, Naples, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
35
|
Li H, Feng Z, He ML. Lipid metabolism alteration contributes to and maintains the properties of cancer stem cells. Theranostics 2020; 10:7053-7069. [PMID: 32641978 PMCID: PMC7330842 DOI: 10.7150/thno.41388] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Lipids, the basic components of the cell membrane, execute fundamental roles in almost all the cell activities including cell-cell recognition, signalling transduction and energy supplies. Lipid metabolism is elementary for life sustentation that balances activity between synthesis and degradation. An accumulating amount of data has indicated abnormal lipid metabolism in cancer stem cells (CSCs), and that the alteration of lipid metabolism exerts a great impact on CSCs' properties such as the capability of self-renewal, differentiation, invasion, metastasis, and drug sensitivity and resistance. CSCs' formation and maintenance cannot do without the regulation of fatty acids and cholesterol. In normal cells and embryonic development, fatty acids and cholesterol metabolism are regulated by some important signalling pathways (such as Hedgehog, Notch, Wnt signalling pathways); these signalling pathways also play crucial roles in initiating and/or maintaining CSCs' properties, and such signalling is shown to be commonly modulated by the abnormal lipid metabolism in CSCs; on the other hand, the altered lipid metabolism in turn modifies the cell signalling and generates additional impacts on CSCs. Metabolic rewiring is considered as an ideal hallmark of CSCs, and metabolic alterations would be promising therapeutic targets of CSCs for aggressive tumors. In this review, we summarize the most updated findings of lipid metabolic abnormalities in CSCs and prospect the potential applications of targeting lipid metabolism for anticancer treatment.
Collapse
|