1
|
Hooyman A, Huentelman MJ, De Both M, Ryan L, Duff K, Schaefer SY. Relationship Between Within-Session Digital Motor Skill Acquisition and Alzheimer Disease Risk Factors Among the MindCrowd Cohort: Cross-Sectional Descriptive Study. JMIR Aging 2025; 8:e67298. [PMID: 40273338 PMCID: PMC12045524 DOI: 10.2196/67298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/24/2025] [Accepted: 03/11/2025] [Indexed: 04/26/2025] Open
Abstract
Background Previous research has shown that in-lab motor skill acquisition (supervised by an experimenter) is sensitive to biomarkers of Alzheimer disease (AD). However, remote unsupervised screening of AD risk through a skill-based task via the web has the potential to sample a wider and more diverse pool of individuals at scale. Objective The purpose of this study was to examine a web-based motor skill game ("Super G") and its sensitivity to risk factors of AD (eg, age, sex, APOE ε4 carrier status, and verbal learning deficits). Methods Emails were sent to 662 previous MindCrowd participants who had agreed to be contacted for future research and have their APOE ε4 carrier status recorded and those who were at least 45 years of age or older. Participants who chose to participate were redirected to the Super G site where they completed the Super G task using their personal computer remotely and unsupervised. Once completed, different Super G variables were derived. Linear and logistic multivariable regression was used to examine the relationship between available AD risk factors (age, sex, APOE ε4 carrier status, and verbal learning) and distinct Super G performance metrics. Results Fifty-four participants (~8% response rate) from the MindCrowd web-based cohort (mean age of 62.39 years; 39 females; and 23 APOE ε4 carriers) completed 75 trials of Super G. Results show that Super G performance was significantly associated with each of the targeted risk factors. Specifically, slower Super G response time was associated with being an APOE ε4 carrier (odds ratio 0.12, 95% CI 0.02-0.44; P=.006), greater Super G time in target (TinT) was associated with being male (odds ratio 32.03, 95% CI 3.74-1192,61; P=.01), and lower Super G TinT was associated with greater age (β -3.97, 95% CI -6.64 to -1.30; P=.005). Furthermore, a sex-by-TinT interaction demonstrated a differential relationship between Super G TinT and verbal learning depending on sex (βmale:TinT 6.77, 95% CI 0.34-13.19; P=.04). Conclusions This experiment demonstrated that this web-based game, Super G, has the potential to be a skill-based digital biomarker for screening of AD risk on a large scale with relatively limited resources.
Collapse
Affiliation(s)
- Andrew Hooyman
- Department of Physical Therapy, Chapman University, 9401 Jeronimo Rd, Irvine, CA, 92618, United States, 1 7146287208
| | - Matt J Huentelman
- Division of Early Detection and Prevention, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Matt De Both
- Division of Early Detection and Prevention, The Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Lee Ryan
- Department of Psychology, The University of Arizona, Tucson, AZ, United States
| | - Kevin Duff
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Sydney Y Schaefer
- School of Biological Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
2
|
Wefel JS, Deshmukh S, Brown PD, Grosshans DR, Sulman EP, Cerhan JH, Mehta MP, Khuntia D, Shi W, Mishra MV, Suh JH, Laack NN, Chen Y, Curtis AA, Laba JM, Elsayed A, Thakrar A, Pugh SL, Bruner DW. Impact of Apolipoprotein E Genotype on Neurocognitive Function in Patients With Brain Metastases: An Analysis of NRG Oncology's RTOG 0614. Int J Radiat Oncol Biol Phys 2024; 119:846-857. [PMID: 38101486 PMCID: PMC11162903 DOI: 10.1016/j.ijrobp.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
PURPOSE Whole-brain radiation therapy (WBRT) is a common treatment for brain metastases and is frequently associated with decline in neurocognitive functioning (NCF). The e4 allele of the apolipoprotein E (APOE) gene is associated with increased risk of Alzheimer disease and NCF decline associated with a variety of neurologic diseases and insults. APOE carrier status has not been evaluated as a risk factor for onset time or extent of NCF impairment in patients with brain metastases treated with WBRT. METHODS AND MATERIALS NRG/Radiation Therapy Oncology Group 0614 treated adult patients with brain metastases with 37.5 Gy of WBRT (+/- memantine), performed longitudinal NCF testing, and included an optional blood draw for APOE analysis. NCF test results were compared at baseline and over time with mixed-effects models. A cause-specific Cox model for time to NCF failure was performed to assess the effects of treatment arm and APOE carrier status. RESULTS APOE results were available for 45% of patients (n = 227/508). NCF did not differ by APOE e4 carrier status at baseline. Mixed-effects modeling showed that APOE e4 carriers had worse memory after WBRT compared with APOE e4 noncarriers (Hopkins Verbal Learning Test-Revised total recall [least square mean difference, 0.63; P = .0074], delayed recognition [least square mean difference, 0.75; P = .023]). However, APOE e4 carrier status was not associated with time to NCF failure (hazard ratio, 0.86; 95% CI, 0.60-1.23; P = .40). Memantine delayed the time to NCF failure, regardless of carrier status (hazard ratio, 0.72; 95% CI, 0.52-1.01; P = .054). CONCLUSIONS APOE e4 carriers with brain metastases exhibited greater decline in learning and memory, executive function, and the Clinical Trial Battery Composite score after treatment with WBRT (+/- memantine), without acceleration of onset of difference in time to NCF failure.
Collapse
Affiliation(s)
- Jeffrey S Wefel
- University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Snehal Deshmukh
- NRG Oncology Statistics and Data Management Center/American College of Radiology, Philadelphia, Pennsylvania
| | | | | | - Erik P Sulman
- Laura and Isaac Perlmutter Cancer Center, New York University Langone, New York, New York
| | | | - Minesh P Mehta
- Baptist Hospital of Miami and Florida International University, Miami, Florida
| | | | - Wenyin Shi
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Mark V Mishra
- University of Maryland Medical Systems, Baltimore, Maryland
| | - John H Suh
- Cleveland Clinic Foundation, Cleveland, Ohio
| | | | | | - Amarinthia Amy Curtis
- Spartanburg Medical Center, Accruals for Upstate Carolina NCORP-Gibbs Regional Cancer Center, Spartanburg, South Carolina
| | - Joanna M Laba
- London Regional Cancer Program, Accruals for University of Western Ontario, London, Ontario, Canada
| | - Ahmed Elsayed
- Toledo Community Hospital Oncology Program CCOP, Toledo, Ohio
| | - Anu Thakrar
- John H. Stroger Jr Hospital of Cook County MBCCOP, Chicago, Illinois
| | - Stephanie L Pugh
- NRG Oncology Statistics and Data Management Center/American College of Radiology, Philadelphia, Pennsylvania
| | | |
Collapse
|
3
|
Parums DV. A Review of the Current Status of Disease-Modifying Therapies and Prevention of Alzheimer's Disease. Med Sci Monit 2024; 30:e945091. [PMID: 38736218 PMCID: PMC11097689 DOI: 10.12659/msm.945091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024] Open
Abstract
Alzheimer's disease is the most common form of dementia and includes cognitive, personality, and behavioral changes. The 2024 report from the Alzheimer's Association estimated that 6.9 million adults >65 years in the US are currently living with Alzheimer's disease. Modeling studies predict that this number will double by 2050, and associated healthcare costs will reach $1 trillion. In June 2021, regulatory approval of aducanumab, a humanized recombinant monoclonal antibody to amyloid ß, initially raised expectations for improved disease-modifying therapy. However, in February 2024, production of aducanumab and a post-marketing clinical trial ceased in the US due to the costs and limitations of aducanumab therapy. In March 2024, biobank data identified significant modifiable risk factors for Alzheimer's disease, including diabetes mellitus, exposure to nitrogen dioxide (a proxy for air pollution), and the frequency of alcohol intake. Therefore, modification of identifiable risk factors, combined with testing for disease-susceptibility genes, could be the most effective approach to reduce the incidence. This article aims to review the current status of disease-modifying therapies and prevention of Alzheimer's disease.
Collapse
|
4
|
Dzianok P, Kublik E. PEARL-Neuro Database: EEG, fMRI, health and lifestyle data of middle-aged people at risk of dementia. Sci Data 2024; 11:276. [PMID: 38453963 PMCID: PMC10920678 DOI: 10.1038/s41597-024-03106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/29/2024] [Indexed: 03/09/2024] Open
Abstract
Interdisciplinary approaches are needed to understand the relationship between genetic factors and brain structure and function. Here we describe a database that includes genetic data on apolipoprotein E (APOE) and phosphatidylinositol binding clathrin assembly protein (PICALM) genes, both of which are known to increase the risk of late-onset Alzheimer's disease, paired with psychometric (memory, intelligence, mood, personality, stress coping strategies), basic demographic and health data on a cohort of 192 healthy middle-aged (50-63) individuals. Part of the database (~79 participants) also includes blood tests (blood counts, lipid profile, HSV virus) and functional neuroimaging data (EEG/fMRI) recorded with a resting-state protocol (eyes open and eyes closed) and two cognitive tasks (multi-source interference task, MSIT; and Sternberg's memory task). The data were validated and showed overall good quality. This open-science dataset is well suited not only for research relating to susceptibility to Alzheimer's disease but also for more general questions on brain aging or can be used as part of meta-analytical multi-disciplinary projects.
Collapse
Affiliation(s)
- Patrycja Dzianok
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Ewa Kublik
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology PAS, Warsaw, Poland.
| |
Collapse
|
5
|
Harker SA, Al-Hassan L, Huentelman MJ, Braden BB, Lewis CR. APOE ε4-Allele in Middle-Aged and Older Autistic Adults: Associations with Verbal Learning and Memory. Int J Mol Sci 2023; 24:15988. [PMID: 37958971 PMCID: PMC10650864 DOI: 10.3390/ijms242115988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disability and recent evidence suggests that autistic adults are more likely to develop Alzheimer's disease (Alz) and other dementias compared to neurotypical (NT) adults. The ε4-allele of the Apolipoprotein E (APOE) gene is the strongest genetic risk factor for Alz and negatively impacts cognition in middle-aged and older (MA+) adults. This study aimed to determine the impact of the APOE ε4-allele on verbal learning and memory in MA+ autistic adults (ages 40-71 years) compared to matched NT adults. Using the Auditory Verbal Learning Test (AVLT), we found that ε4 carriers performed worse on short-term memory and verbal learning across diagnosis groups, but there was no interaction with diagnosis. In exploratory analyses within sex and diagnosis groups, only autistic men carrying APOE ε4 showed worse verbal learning (p = 0.02), compared to autistic men who were not carriers. Finally, the APOE ε4-allele did not significantly affect long-term memory in this sample. These findings replicate previous work indicating that the APOE ε4-allele negatively impacts short-term memory and verbal learning in MA+ adults and presents new preliminary findings that MA+ autistic men may be vulnerable to the effects of APOE ε4 on verbal learning. Future work with a larger sample is needed to determine if autistic women may also be vulnerable.
Collapse
Affiliation(s)
- Samantha A. Harker
- School of Life Sciences and Psychology, Arizona State University, Tempe, AZ 85287, USA;
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA; (L.A.-H.); (B.B.B.)
| | - Lamees Al-Hassan
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA; (L.A.-H.); (B.B.B.)
| | - Matthew J. Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA;
| | - B. Blair Braden
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA; (L.A.-H.); (B.B.B.)
| | - Candace R. Lewis
- School of Life Sciences and Psychology, Arizona State University, Tempe, AZ 85287, USA;
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA;
| |
Collapse
|
6
|
Gorelik AJ, Paul SE, Karcher NR, Johnson EC, Nagella I, Blaydon L, Modi H, Hansen IS, Colbert SMC, Baranger DAA, Norton SA, Spears I, Gordon B, Zhang W, Hill PL, Oltmanns TF, Bijsterbosch JD, Agrawal A, Hatoum AS, Bogdan R. A Phenome-Wide Association Study (PheWAS) of Late Onset Alzheimer Disease Genetic Risk in Children of European Ancestry at Middle Childhood: Results from the ABCD Study. Behav Genet 2023; 53:249-264. [PMID: 37071275 PMCID: PMC10309061 DOI: 10.1007/s10519-023-10140-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/08/2023] [Indexed: 04/19/2023]
Abstract
Genetic risk for Late Onset Alzheimer Disease (AD) has been associated with lower cognition and smaller hippocampal volume in healthy young adults. However, whether these and other associations are present during childhood remains unclear. Using data from 5556 genomically-confirmed European ancestry youth who completed the baseline session of the ongoing the Adolescent Brain Cognitive DevelopmentSM Study (ABCD Study®), our phenome-wide association study estimating associations between four indices of genetic risk for late-onset AD (i.e., AD polygenic risk scores (PRS), APOE rs429358 genotype, AD PRS with the APOE region removed (ADPRS-APOE), and an interaction between ADPRS-APOE and APOE genotype) and 1687 psychosocial, behavioral, and neural phenotypes revealed no significant associations after correction for multiple testing (all ps > 0.0002; all pfdr > 0.07). These data suggest that AD genetic risk may not phenotypically manifest during middle-childhood or that effects are smaller than this sample is powered to detect.
Collapse
Affiliation(s)
- Aaron J Gorelik
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, One Booking Drive, St. Louis, MO, 63130, USA
| | - Sarah E Paul
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, One Booking Drive, St. Louis, MO, 63130, USA
| | - Nicole R Karcher
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Isha Nagella
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, One Booking Drive, St. Louis, MO, 63130, USA
| | - Lauren Blaydon
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, One Booking Drive, St. Louis, MO, 63130, USA
| | - Hailey Modi
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, One Booking Drive, St. Louis, MO, 63130, USA
| | - Isabella S Hansen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Sarah M C Colbert
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - David A A Baranger
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, One Booking Drive, St. Louis, MO, 63130, USA
| | - Sara A Norton
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, One Booking Drive, St. Louis, MO, 63130, USA
| | - Isaiah Spears
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, One Booking Drive, St. Louis, MO, 63130, USA
| | - Brian Gordon
- Department of Radiology, Washington University in Saint Louis, 660 South Euclid Ave, Box 8225, St. Louis, MO, 63110, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St Louis, MO, USA
| | - Wei Zhang
- Department of Radiology, Washington University in Saint Louis, 660 South Euclid Ave, Box 8225, St. Louis, MO, 63110, USA
| | - Patrick L Hill
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, One Booking Drive, St. Louis, MO, 63130, USA
| | - Thomas F Oltmanns
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, One Booking Drive, St. Louis, MO, 63130, USA
| | - Janine D Bijsterbosch
- Department of Radiology, Washington University in Saint Louis, 660 South Euclid Ave, Box 8225, St. Louis, MO, 63110, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexander S Hatoum
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, One Booking Drive, St. Louis, MO, 63130, USA
| | - Ryan Bogdan
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, One Booking Drive, St. Louis, MO, 63130, USA.
| |
Collapse
|
7
|
O’Shea DM, Galvin JE. Female APOE ɛ4 Carriers with Slow Rates of Biological Aging Have Better Memory Performances Compared to Female ɛ4 Carriers with Accelerated Aging. J Alzheimers Dis 2023; 92:1269-1282. [PMID: 36872781 PMCID: PMC10535361 DOI: 10.3233/jad-221145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
BACKGROUND Evidence suggests that APOE ɛ4 carriers have worse memory performances compared to APOE ɛ4 non-carriers and effects may vary by sex and age. Estimates of biological age, using DNA methylation may enhance understanding of the associations between sex and APOE ɛ4 on cognition. OBJECTIVE To investigate whether associations between APOE ɛ4 status and memory vary according to rates of biological aging, using a DNA methylation age biomarker, in older men and women without dementia. METHODS Data were obtained from 1,771 adults enrolled in the 2016 wave of the Health and Retirement Study. A series of ANCOVAs were used to test the interaction effects of APOE ɛ4 status and aging rates (defined as 1 standard deviation below (i.e., slow rate), or above (i.e., fast rate) their sex-specific mean rate of aging on a composite measure of verbal learning and memory. RESULTS APOE ɛ4 female carriers with slow rates of GrimAge had significantly better memory performances compared to fast and average aging APOE ɛ4 female carriers. There was no effect of aging group rate on memory in the female non-carriers and no significant differences in memory according to age rate in either male APOE ɛ4 carriers or non-carriers. CONCLUSION Slower rates of aging in female APOE ɛ4 carriers may buffer against the negative effects of the ɛ4 allele on memory. However, longitudinal studies with larger sample sizes are needed to evaluate risk of dementia/memory impairment based on rates of aging in female APOE ɛ4 carriers.
Collapse
Affiliation(s)
- Deirdre M. O’Shea
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| | - James E. Galvin
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| |
Collapse
|
8
|
Steele OG, Stuart AC, Minkley L, Shaw K, Bonnar O, Anderle S, Penn AC, Rusted J, Serpell L, Hall C, King S. A multi-hit hypothesis for an APOE4-dependent pathophysiological state. Eur J Neurosci 2022; 56:5476-5515. [PMID: 35510513 PMCID: PMC9796338 DOI: 10.1111/ejn.15685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 01/01/2023]
Abstract
The APOE gene encoding the Apolipoprotein E protein is the single most significant genetic risk factor for late-onset Alzheimer's disease. The APOE4 genotype confers a significantly increased risk relative to the other two common genotypes APOE3 and APOE2. Intriguingly, APOE4 has been associated with neuropathological and cognitive deficits in the absence of Alzheimer's disease-related amyloid or tau pathology. Here, we review the extensive literature surrounding the impact of APOE genotype on central nervous system dysfunction, focussing on preclinical model systems and comparison of APOE3 and APOE4, given the low global prevalence of APOE2. A multi-hit hypothesis is proposed to explain how APOE4 shifts cerebral physiology towards pathophysiology through interconnected hits. These hits include the following: neurodegeneration, neurovascular dysfunction, neuroinflammation, oxidative stress, endosomal trafficking impairments, lipid and cellular metabolism disruption, impaired calcium homeostasis and altered transcriptional regulation. The hits, individually and in combination, leave the APOE4 brain in a vulnerable state where further cumulative insults will exacerbate degeneration and lead to cognitive deficits in the absence of Alzheimer's disease pathology and also a state in which such pathology may more easily take hold. We conclude that current evidence supports an APOE4 multi-hit hypothesis, which contributes to an APOE4 pathophysiological state. We highlight key areas where further study is required to elucidate the complex interplay between these individual mechanisms and downstream consequences, helping to frame the current landscape of existing APOE-centric literature.
Collapse
Affiliation(s)
| | | | - Lucy Minkley
- School of Life SciencesUniversity of SussexBrightonUK
| | - Kira Shaw
- School of Life SciencesUniversity of SussexBrightonUK
| | - Orla Bonnar
- School of Life SciencesUniversity of SussexBrightonUK
| | | | | | | | | | | | - Sarah King
- School of PsychologyUniversity of SussexBrightonUK
| |
Collapse
|
9
|
Callow DD, Purcell JJ, Won J, Smith JC. Neurite dispersion and density mediates the relationship between cardiorespiratory fitness and cognition in healthy younger adults. Neuropsychologia 2022; 169:108207. [PMID: 35259402 PMCID: PMC8985444 DOI: 10.1016/j.neuropsychologia.2022.108207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/23/2022]
Abstract
Growing evidence suggests physical activity and cardiorespiratory fitness are associated with better cognition across the lifespan. However, the neurobiological underpinnings relating fitness and cognition remain unclear, particularly in healthy younger adults. Using a well-established and popular multi-compartment diffusion modeling approach, called Neurite Orientation and Dispersion and Density Imaging (NODDI), we investigated the relationship between physical fitness (measured via a 2-min walk test), cognition (fluid and crystallized), and gray and white matter microstructure, in a large sample (n = 816) of healthy younger adults (ages 22-35 years) from the human connectome project (HCP). Concurrent with previous literature, we found that fitness was positively associated with both fluid and crystallized cognition. Furthermore, we found that physical fitness was negatively associated with white matter orientation dispersion index (ODIWM) around the cerebellar peduncle and was negatively associated with widespread cortical and subcortical gray matter neurite density index (NDIGM). Lower ODIWM of the cerebral peduncle was associated with better fluid cognitive performance, while lower NDIGM was associated with better crystallized cognition. Finally, we found that while ODIWM partially mediated the relationship between fitness and fluid cognition, NDIGM partially mediated the relationship between fitness and crystallized cognition. This study is the first to explore the relationship between physical fitness and white and gray matter microstructure measures using NODDI. Our findings suggest that in addition to improved cognitive performance, higher physical fitness may be associated with lower white matter tract dispersion and lower neurite density in the cortical and subcortical gray matter of healthy younger adults.
Collapse
Affiliation(s)
- Daniel D. Callow
- Department of Kinesiology, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | | | - Junyeon Won
- Department of Kinesiology, University of Maryland, College Park, MD, USA
| | - J. Carson Smith
- Department of Kinesiology, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| |
Collapse
|
10
|
Thiankhaw K, Chattipakorn N, Chattipakorn SC. PM2.5 exposure in association with AD-related neuropathology and cognitive outcomes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118320. [PMID: 34634399 DOI: 10.1016/j.envpol.2021.118320] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Particulate matter with a diameter of less than 2.5 μm or PM2.5 is recognized worldwide as a cause of public health problems, mainly associated with respiratory and cardiovascular diseases. There is accumulating evidence to show that exposure to PM2.5 has a crucial causative role in various neurological disorders, the main ones being dementia and Alzheimer's disease (AD). PM2.5 can activate glial and microglial activity, resulting in neuroinflammation, increased intracellular ROS production, and ultimately neuronal apoptosis. PM2.5 also causes the alteration of neuronal morphology and synaptic changes and increases AD biomarkers, including amyloid-beta and hyperphosphorylated-tau, as well as raising the levels of enzymes involved in the amyloidogenic pathway. Clinical trials have highlighted the correlation between exposure to PM2.5, dementia, and AD diagnosis. This correlation is also displayed by concordant evidence from animal models, as indicated by increased AD biomarkers in cerebrospinal fluid and markers of vascular injury. Blood-brain barrier disruption is another aggravated phenomenon demonstrated in people at risk who are exposed to PM2.5. This review summarizes and discusses studies from in vitro, in vivo, and clinical studies on causative relationships of PM2.5 exposure to AD-related neuropathology. Conflicting data are also examined in order to determine the actual association between ambient air pollution and neurodegenerative diseases.
Collapse
Affiliation(s)
- Kitti Thiankhaw
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
11
|
Frisoni GB, Altomare D, Thal DR, Ribaldi F, van der Kant R, Ossenkoppele R, Blennow K, Cummings J, van Duijn C, Nilsson PM, Dietrich PY, Scheltens P, Dubois B. The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. Nat Rev Neurosci 2022; 23:53-66. [PMID: 34815562 PMCID: PMC8840505 DOI: 10.1038/s41583-021-00533-w] [Citation(s) in RCA: 242] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 01/03/2023]
Abstract
The current conceptualization of Alzheimer disease (AD) is driven by the amyloid hypothesis, in which a deterministic chain of events leads from amyloid deposition and then tau deposition to neurodegeneration and progressive cognitive impairment. This model fits autosomal dominant AD but is less applicable to sporadic AD. Owing to emerging information regarding the complex biology of AD and the challenges of developing amyloid-targeting drugs, the amyloid hypothesis needs to be reconsidered. Here we propose a probabilistic model of AD in which three variants of AD (autosomal dominant AD, APOE ε4-related sporadic AD and APOE ε4-unrelated sporadic AD) feature decreasing penetrance and decreasing weight of the amyloid pathophysiological cascade, and increasing weight of stochastic factors (environmental exposures and lower-risk genes). Together, these variants account for a large share of the neuropathological and clinical variability observed in people with AD. The implementation of this model in research might lead to a better understanding of disease pathophysiology, a revision of the current clinical taxonomy and accelerated development of strategies to prevent and treat AD.
Collapse
Affiliation(s)
- Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland.
| | - Daniele Altomare
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, and Leuven Brain Institute, University of Leuven, Leuven, Belgium
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Rik van der Kant
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
- Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Kaj Blennow
- Cinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences; University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Cornelia van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Peter M Nilsson
- Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
- Life Science Partners, Amsterdam, Netherlands
| | - Bruno Dubois
- Institut de la Mémoire et de la Maladie d'Alzheimer, IM2A, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, Paris, France
- Institut du Cerveau et de la Moelle Épinière, UMR-S975, INSERM, Paris, France
| |
Collapse
|
12
|
Hu Q, Chen J, Kang M, Ying P, Liao X, Zou J, Su T, Wang Y, Wei H, Shao Y. Abnormal percent amplitude of fluctuation changes in patients with monocular blindness: A resting-state functional magnetic resonance imaging study. Front Psychiatry 2022; 13:942905. [PMID: 36353573 PMCID: PMC9637563 DOI: 10.3389/fpsyt.2022.942905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Previous studies on monocular blindness (MB) have mainly focused on concept and impact. The present study measured spontaneous brain activity in MB patients using the percentage of amplitude fluctuation (PerAF) method. METHODS Twenty-nine patients with MB (21 male and 8 female) and 29 age-, gender-, and weight-matched healthy controls (HCs) were recruited. All participants underwent resting state functional magnetic resonance imaging (rs-fMRI). The PerAF method was used to analyze the data and evaluate the spontaneous regional brain activity. The ability of PerAF values to distinguish patients with MB from HCs was analyzed using receiver operating characteristic (ROC) curves, and correlation analysis was used to assess the relationship between PerAF values of brain regions and the Hospital Anxiety and Depression Scale (HADS) scores. RESULTS PerAF values in Occipital_Mid_L/Occipital_Mid_R/Cingulum_ Mid_L were significantly lower in patients with MB than in controls. Conversely, values in the Frontal_Sup_Orb_L/Frontal_Inf_Orb_L/Temporal _Inf_L/Frontal_Inf_Oper_L were significantly higher in MB patients than in HCs. And the AUC of ROC curves were follows: 0.904, (p < 0.0001; 95%CI: 0.830-0.978) for Frontal_Sup_Orb_L/Frontal_Inf_Orb_L; Temporal_Inf_L 0.883, (p < 0.0001; 95% CI: 0.794-0.972); Frontal_Inf_Oper_L 0.964, (p < 0.0001; 95% CI: 0.924-1.000), and 0.893 (p < 0.0001; 95% CI: 0.812-0.973) for Occipital_Mid_L; Occipital_Mid_R 0.887, (p < 0.0001; 95% CI: 0.802-0.971); Cingulum_Mid_L 0.855, (p < 0.0001; 95% CI: 0.750-0.960). CONCLUSION The results of our study show abnormal activity in some brain regions in patients with MB, indicating that these patients may be at risk of disorder related to these brain regions. These results may reflect the neuropathological mechanisms of MB and facilitate early MB diagnoses.
Collapse
Affiliation(s)
- Qiaohao Hu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, China
| | - Jun Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, China
| | - Min Kang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, China
| | - Ping Ying
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, China
| | - Xulin Liao
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jie Zou
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, China
| | - Ting Su
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Yixin Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, China
| | - Hong Wei
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, China
| |
Collapse
|
13
|
Apolipoprotein e (APOE) ε4 genotype influences memory performance following remote traumatic brain injury in U.S. military service members and veterans. Brain Cogn 2021; 154:105790. [PMID: 34487993 DOI: 10.1016/j.bandc.2021.105790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
The purpose of this study was to examine the association between the apolipoprotein E (APOE) ε4 allele and neurocognitive functioning following traumatic brain injury (TBI) in military service members and veterans (SMVs). Participants included 176 SMVs with a history of remote TBI (≥1 year post-injury), categorized into mild (n = 100), moderate (n = 40), and severe (n = 36) TBI groups. Participants completed a neuropsychological assessment and APOE genotyping (n = 46 ε4+, n = 130 ε4-). Neurocognitive composite scores representing memory, executive functioning, and visual processing speed were computed. ANCOVAs adjusting for race, education, combat exposure, and PTSD symptom severity showed a significant main effect of ε4 on the memory composite, such that ε4+ SMVs exhibited poorer memory performance than ε4- SMVs. When ε2 allele carriers were removed from the analyses, associations with memory were strengthened, demonstrating a possible protective effect of the ε2 allele. No main effect of TBI group was identified on any cognitive composite, nor were there any significant TBI group × ε4 status interactions for any cognitive composite. Future studies with larger samples are needed to verify these findings, but our results suggest an important relationship between ε4 status and memory functioning following remote TBI of all severities.
Collapse
|
14
|
Kamagata K, Andica C, Kato A, Saito Y, Uchida W, Hatano T, Lukies M, Ogawa T, Takeshige-Amano H, Akashi T, Hagiwara A, Fujita S, Aoki S. Diffusion Magnetic Resonance Imaging-Based Biomarkers for Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22105216. [PMID: 34069159 PMCID: PMC8155849 DOI: 10.3390/ijms22105216] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/27/2022] Open
Abstract
There has been an increasing prevalence of neurodegenerative diseases with the rapid increase in aging societies worldwide. Biomarkers that can be used to detect pathological changes before the development of severe neuronal loss and consequently facilitate early intervention with disease-modifying therapeutic modalities are therefore urgently needed. Diffusion magnetic resonance imaging (MRI) is a promising tool that can be used to infer microstructural characteristics of the brain, such as microstructural integrity and complexity, as well as axonal density, order, and myelination, through the utilization of water molecules that are diffused within the tissue, with displacement at the micron scale. Diffusion tensor imaging is the most commonly used diffusion MRI technique to assess the pathophysiology of neurodegenerative diseases. However, diffusion tensor imaging has several limitations, and new technologies, including neurite orientation dispersion and density imaging, diffusion kurtosis imaging, and free-water imaging, have been recently developed as approaches to overcome these constraints. This review provides an overview of these technologies and their potential as biomarkers for the early diagnosis and disease progression of major neurodegenerative diseases.
Collapse
Affiliation(s)
- Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (C.A.); (Y.S.); (W.U.); (T.A.); (A.H.); (S.F.); (S.A.)
- Correspondence:
| | - Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (C.A.); (Y.S.); (W.U.); (T.A.); (A.H.); (S.F.); (S.A.)
| | - Ayumi Kato
- Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan;
| | - Yuya Saito
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (C.A.); (Y.S.); (W.U.); (T.A.); (A.H.); (S.F.); (S.A.)
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (C.A.); (Y.S.); (W.U.); (T.A.); (A.H.); (S.F.); (S.A.)
| | - Taku Hatano
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (T.H.); (T.O.); (H.T.-A.)
| | - Matthew Lukies
- Department of Diagnostic and Interventional Radiology, Alfred Health, Melbourne, VIC 3004, Australia;
| | - Takashi Ogawa
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (T.H.); (T.O.); (H.T.-A.)
| | - Haruka Takeshige-Amano
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; (T.H.); (T.O.); (H.T.-A.)
| | - Toshiaki Akashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (C.A.); (Y.S.); (W.U.); (T.A.); (A.H.); (S.F.); (S.A.)
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (C.A.); (Y.S.); (W.U.); (T.A.); (A.H.); (S.F.); (S.A.)
| | - Shohei Fujita
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (C.A.); (Y.S.); (W.U.); (T.A.); (A.H.); (S.F.); (S.A.)
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (C.A.); (Y.S.); (W.U.); (T.A.); (A.H.); (S.F.); (S.A.)
| |
Collapse
|
15
|
Harrison AT, McAllister T, McCrea M, Broglio SP, Moore RD. Recovery Profiles after Concussion among Male Student-Athletes and Service Cadets with a Family History of Neurodegenerative Disease: Data from the NCAA-DoD CARE Consortium. J Neurotrauma 2020; 38:485-492. [PMID: 33280495 DOI: 10.1089/neu.2020.7386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Preliminary evidence indicates that genetic factors associated with having a family history of neurodegenerative disease (fhNDD) may predispose an individual to persistent symptoms and poorer cognitive performance after concussion. No previous study, however, longitudinally examined athletes with (+) and without (-) a fhNDD. Therefore, we aimed to compare clinical symptoms and cognitive performance of fhNDD+ and fhNDD- athletes at baseline and at multiple time points after concussion. Questionnaire data from the Concussion Assessment, Research and Education (CARE) Consortium were used to identify male athletes and cadets with (n = 51) and without (n = 102) a fhNDD (Alzheimer disease, Parkinson disease, mild cognitive impairment, and non-Alzheimer dementia). All athletes completed the SCAT3 symptom checklist and ImPACT test before their sport season and again within 24-48 h of injury, at the unrestricted return-to-play, and at six months post-concussion. Compared with fhNDD-, fhNDD+ individuals demonstrated greater decrements in visual memory (relative to baseline) 24-48 h post-injury (p < 0.05, d = 0.18). In addition, a main effect of group was observed for impulse control. Compared with fhNDD- athletes, fhNDD+ individuals demonstrated greater decrements in impulse control, 24-48 h post-injury, at the return to play, and at six-month assessments (p < 0.01, d = 0.23). These findings suggest that male athletes with a fhNDD may exhibit greater decrements in cognitive performance after concussion. Small, subtle deficits in cognitive performance may still significantly hinder day-to-day function in student-athletes.
Collapse
Affiliation(s)
- Adam T Harrison
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina, USA
| | - Thomas McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Steven P Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert D Moore
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina, USA
| | | |
Collapse
|
16
|
Sone D, Shigemoto Y, Ogawa M, Maikusa N, Okita K, Takano H, Kato K, Sato N, Matsuda H. Association between neurite metrics and tau/inflammatory pathology in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12125. [PMID: 33204813 PMCID: PMC7656172 DOI: 10.1002/dad2.12125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The molecular mechanism of neurodegeneration, including tau and neurite complexity, is an important topic in Alzheimer's disease (AD) research. METHODS We recruited 27 amyloid-positive individuals identified through 11C-Pittsburgh compound B (PiB) positron emission tomography (PET) and 31 amyloid-negative individuals with normal cognition. All participants underwent 11C-PiB and 18F-THK5351 PET and magnetic resonance imaging (MRI) with neurite orientation dispersion and density imaging (NODDI) protocol. The neurite density index (NDI), orientation dispersion index (ODI), and PET images were analyzed to calculate voxel-wise correlations among the imaging modalities and correlations with cognitions. RESULTS In the amyloid-positive participants, there were significant negative correlations between 18F-THK5351 and NDI and between 18F-THK5351 and ODI. The bilateral mesial and lateral temporal lobes were mainly involved. Regarding cognition, 18F-THK5351 showed more marked associations with all cognitive domains than the other modalities. DISCUSSION Tau and neuroinflammation in AD may reduce the neurite density and orientation dispersion, particularly in the mesial and lateral temporal lobes.
Collapse
Affiliation(s)
- Daichi Sone
- Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryTokyoJapan
- Department of Clinical and Experimental EpilepsyUCL Institute of NeurologyLondonUK
- Cyclotron and Drug Discovery Research CenterSouthern Tohoku Research Institute for NeuroscienceFukushimaJapan
| | - Yoko Shigemoto
- Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryTokyoJapan
- Cyclotron and Drug Discovery Research CenterSouthern Tohoku Research Institute for NeuroscienceFukushimaJapan
- Department of RadiologyNational Center of Neurology and PsychiatryTokyoJapan
| | - Masayo Ogawa
- Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryTokyoJapan
| | - Norihide Maikusa
- Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryTokyoJapan
| | - Kyoji Okita
- Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryTokyoJapan
| | - Harumasa Takano
- Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryTokyoJapan
| | - Koichi Kato
- Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryTokyoJapan
| | - Noriko Sato
- Department of RadiologyNational Center of Neurology and PsychiatryTokyoJapan
| | - Hiroshi Matsuda
- Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryTokyoJapan
- Cyclotron and Drug Discovery Research CenterSouthern Tohoku Research Institute for NeuroscienceFukushimaJapan
| |
Collapse
|