1
|
Crompton R, Elton S, Heaton J, Pickering T, Carlson K, Jashashvili T, Beaudet A, Bruxelles L, Kuman K, Thorpe SK, Hirasaki E, Scott C, Sellers W, Pataky T, Clarke R, McClymont J. Bipedalism or bipedalisms: The os coxae of StW 573. J Anat 2024. [PMID: 39036860 DOI: 10.1111/joa.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 06/08/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
There has been a long debate about the possibility of multiple contemporaneous species of Australopithecus in both eastern and southern Africa, potentially exhibiting different forms of bipedal locomotion. Here, we describe the previously unreported morphology of the os coxae in the 3.67 Ma Australopithecus prometheus StW 573 from Sterkfontein Member 2, comparing it with variation in ossa coxae in living humans and apes as well as other Plio-Pleistocene hominins. Statistical comparisons indicate that StW 573 and 431 resemble humans in their anteroposteriorly great iliac crest breadth compared with many other early australopiths, whereas Homo ergaster KNM WT 15000 surprisingly also has a relatively anterioposteriorly short iliac crest. StW 573 and StW 431 appear to resemble humans in having a long ischium compared with Sts 14 and KNM WT 15000. A Quadratic Discriminant Function Analysis of morphology compared with other Plio-Pleistocene hominins and a dataset of modern humans and hominoids shows that, while Lovejoy's heuristic model of the Ardipithecus ramidus os coxae falls with Pongo or in an indeterminate group, StW 573 and StW 431 from Sterkfontein Member 4 are consistently classified together with modern humans. Although clearly exhibiting the classic "basin shaped" bipedal pelvis, Sts 14 (also from Sterkfontein), AL 288-1 Australopithecus afarensis, MH2 Australopithecus sediba and KNM-WT 15000 occupy a position more peripheral to modern humans, and in some analyses are assigned to an indeterminate outlying group. Our findings strongly support the existence of two species of Australopithecus at Sterkfontein and the variation we observe in os coxae morphology in early hominins is also likely to reflect multiple forms of bipedality.
Collapse
Affiliation(s)
- Robin Crompton
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, the W.H. Duncan Building, University of Liverpool, Liverpool, UK
- School of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
| | - Sarah Elton
- Department of Anthropology, Dawson Building, Durham University, Durham, UK
| | - Jason Heaton
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Travis Pickering
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
- Department of Anthropology, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Kristian Carlson
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Tea Jashashvili
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Geology and Palaeontology, Georgian National Museum, Tbilisi, Georgia
| | - Amelie Beaudet
- Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Laurent Bruxelles
- TRACES, UMR 5608 CNRS, Jean Jaurès University, Toulouse, France
- French National Institute for Preventive Archaeological Research (INRAP), Nîmes, France
| | - Kathleen Kuman
- School of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Eishi Hirasaki
- Center for the Evolutionary Origins of Human Behavior, University of Kyoto, Kyoto, Japan
| | - Christopher Scott
- School of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
| | - William Sellers
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Todd Pataky
- Department of Human and Health Sciences, Kyoto University, Kyoto, Japan
| | - Ronald Clarke
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Juliet McClymont
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, the W.H. Duncan Building, University of Liverpool, Liverpool, UK
| |
Collapse
|
2
|
Crompton RH, Sellers W, Davids K, McClymont J. Biomechanics and the origins of human bipedal walking: The last 50 years. J Biomech 2023; 157:111701. [PMID: 37451208 DOI: 10.1016/j.jbiomech.2023.111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
Motion analysis, as applied to evolutionary biomechanics, has experienced its own evolution over the last 50 years. Here we review how an ever-increasing fossil record, together with continuing advancements in biomechanics techniques, have shaped our understanding of the origin of upright bipedal walking. The original, and long-established hypothesis held by Lamarck (1809), Darwin (1859) and Keith (1934), amongst others, maintained that bipedality originated in an arboreal context. However, the first field studies of gorilla and chimpanzees from the 1960's, highlighted their so-called 'knucklewalking' quadrupedalism, leading scientists to assume, semi-automatically, that knucklewalking must have been the precursor to bipedality. It would not be until the discovery of skeletons of early human relatives Australopithecus afarensis and Australopithecus prometheus, and the inclusion of methods of analysis from computer science, biomechanics, sports science and medicine, that the knucklewalking hypothesis would be most robustly challenged. Their short, but human-like lower limbs and human-like hand indicated that knucklewalking was not part of our ancestral locomotor repertoire. Rather, most current research in evolutionary biomechanics agrees it was a combination of climbing and bipedalism, both in an arboreal context, which facilitated upright, terrestrial, bipedal walking over short distances.
Collapse
Affiliation(s)
- Robin Huw Crompton
- Musculoskeletal and Ageing Science, The University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK.
| | - William Sellers
- Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Keith Davids
- Sport and Physical Activity Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK
| | - Juliet McClymont
- Musculoskeletal and Ageing Science, The University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK
| |
Collapse
|
3
|
Beaudet A. The Australopithecus assemblage from Sterkfontein Member 4 (South Africa) and the concept of variation in palaeontology. Evol Anthropol 2023. [PMID: 36632711 DOI: 10.1002/evan.21972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/06/2022] [Accepted: 12/17/2022] [Indexed: 01/13/2023]
Abstract
Interpreting morphological variation within the early hominin fossil record is particularly challenging. Apart from the fact that there is no absolute threshold for defining species boundaries in palaeontology, the degree of variation related to sexual dimorphism, temporal depth, geographic variation or ontogeny is difficult to appreciate in a fossil taxon mainly represented by fragmentary specimens, and such variation could easily be conflated with taxonomic diversity. One of the most emblematic examples in paleoanthropology is the Australopithecus assemblage from the Sterkfontein Caves in South Africa. Whereas some studies support the presence of multiple Australopithecus species at Sterkfontein, others explore alternative hypotheses to explain the morphological variation within the hominin assemblage. In this review, I briefly summarize the ongoing debates surrounding the interpretation of morphological variation at Sterkfontein Member 4 before exploring two promising avenues that would deserve specific attention in the future, that is, temporal depth and nonhuman primate diversity.
Collapse
Affiliation(s)
- Amélie Beaudet
- Department of Archaeology, University of Cambridge, Cambridge, UK.,School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Sabadell, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
4
|
Grine FE, Mongle CS, Fleagle JG, Hammond AS. The taxonomic attribution of African hominin postcrania from the Miocene through the Pleistocene: Associations and assumptions. J Hum Evol 2022; 173:103255. [PMID: 36375243 DOI: 10.1016/j.jhevol.2022.103255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
Postcranial bones may provide valuable information about fossil taxa relating to their locomotor habits, manipulative abilities and body sizes. Distinctive features of the postcranial skeleton are sometimes noted in species diagnoses. Although numerous isolated postcranial fossils have become accepted by many workers as belonging to a particular species, it is worthwhile revisiting the evidence for each attribution before including them in comparative samples in relation to the descriptions of new fossils, functional analyses in relation to particular taxa, or in evolutionary contexts. Although some workers eschew the taxonomic attribution of postcranial fossils as being less important (or interesting) than interpreting their functional morphology, it is impossible to consider the evolution of functional anatomy in a taxonomic and phylogenetic vacuum. There are 21 widely recognized hominin taxa that have been described from sites in Africa dated from the Late Miocene to the Middle Pleistocene; postcranial elements have been attributed to 17 of these. The bones that have been thus assigned range from many parts of a skeleton to isolated elements. However, the extent to which postcranial material can be reliably attributed to a specific taxon varies considerably from site to site and species to species, and is often the subject of considerable debate. Here, we review the postcranial remains attributed to African hominin taxa from the Late Miocene to the Middle and Late Pleistocene and place these assignations into categories of reliability. The catalog of attributions presented here may serve as a guide for making taxonomic decisions in the future.
Collapse
Affiliation(s)
- Frederick E Grine
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794-4364, USA; Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794-4364, USA.
| | - Carrie S Mongle
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794-4364, USA; Division of Anthropology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA; Turkana Basin Institute, Stony Brook University, Stony Brook, NY 11794-4364, USA
| | - John G Fleagle
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794-4364, USA
| | - Ashley S Hammond
- Division of Anthropology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA; New York Consortium of Evolutionary Primatology (NYCEP), New York, NY 10024, USA
| |
Collapse
|
5
|
de Jager E, Prigge L, Amod N, Oettlé A, Beaudet A. Exploring the relationship between soft and hard tissues: The example of vertebral arteries and transverse foramina. J Anat 2022; 241:447-452. [PMID: 35468222 PMCID: PMC9296038 DOI: 10.1111/joa.13681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/23/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022] Open
Abstract
Understanding how the brain is provided with glucose and oxygen is of particular interest in human evolutionary studies. In addition to the internal carotid arteries, vertebral arteries contribute significantly to the cerebral and cerebellar blood flow. The size of the transverse foramina has been suggested to represent a reliable proxy for assessing the size of the vertebral arteries in fossil specimens. To test this assumption, here, we statistically explore spatial relationships between the transverse foramina and the vertebral arteries in extant humans. Contrast computed tomography (CT) scans of the cervical regions of 16 living humans were collected. Cross-sectional areas of the right and left transverse foramina and the corresponding vertebral arteries were measured on each cervical vertebra from C1 to C6 within the same individuals. The cross-sectional areas of the foramina and corresponding arteries range between 13.40 and 71.25 mm2 and between 4.53 and 29.40 mm2 , respectively. The two variables are significantly correlated except in C1. Using regression analyses, we generate equations that can be subsequently used to estimate the size of the vertebral arteries in fossil specimens. By providing additional evidence of intra- and inter-individual size variation of the arteries and corresponding foramina in extant humans, our study introduces an essential database for a better understanding of the evolutionary story of soft tissues in the fossil record.
Collapse
Affiliation(s)
- Edwin de Jager
- Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Lané Prigge
- Department of Anatomy, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa.,Department of Anatomy, University of Pretoria, Pretoria, South Africa
| | - Nooreen Amod
- Department of Radiology, Dr George Mukhari Academic Hospital, Ga-Rankuwa, South Africa
| | - Anna Oettlé
- Department of Anatomy, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa.,Department of Anatomy, University of Pretoria, Pretoria, South Africa
| | - Amélie Beaudet
- Department of Archaeology, University of Cambridge, Cambridge, UK.,School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Beaudet A, Dumoncel J, Heaton JL, Pickering TR, Clarke RJ, Carlson KJ, Bam L, Van Hoorebeke L, Stratford D. Shape analysis of the StW 578 calotte from Jacovec Cavern, Gauteng (South Africa). S AFR J SCI 2022. [DOI: 10.17159/sajs.2022/11743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The fossiliferous deposits within the lower-lying Jacovec Cavern in the locality of Sterkfontein yielded valuable hominin remains, including the StW 578 specimen. Because StW 578 mainly preserves the calotte, the taxonomic status of this specimen has been a matter of discussion. Within this context, here we employed high-resolution microtomography and a landmark-free registration method to explore taxonomically diagnostic features in the external surface of the StW 578 calotte. Our comparative sample included adult humans and common chimpanzees as well as one Australopithecus africanus specimen (Sts 5). We partially restored the StW 578 calotte digitally and compared it to extant specimens and Sts 5 using a landmark-free registration based on smooth and invertible surface deformation. Our comparative shape analysis reveals morphological differences with extant humans, especially in the frontal bones, and with extant chimpanzees, as well as intriguing specificities in the morphology of the StW 578 parietal bones. Lastly, our study suggests morphological proximity between StW 578 and Sts 5. Given the intimate relationship between the brain and the braincase, as well as the integration of the hominin face and neurocranium, we suggest that cranial vault shape differences between StW 578 and extant humans, if confirmed by further analyses, could be either explained by differences in brain surface morphology or in the face. Besides providing additional information about the morphology of the Jacovec calotte that will be useful in future taxonomic discussion, this study introduces a new protocol for the landmark-free analysis of fossil hominin cranial shape.
Collapse
Affiliation(s)
- Amélie Beaudet
- Department of Archaeology, University of Cambridge, Cambridge, United Kingdom
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa
- Catalan Institute of Palaeontology Miquel Crusafont, Autonomous University of Barcelona, Barcelona, Spain
| | - Jean Dumoncel
- French National Centre for Scientific Research (CNRS), Paris, France
| | - Jason L. Heaton
- Department of Biology, Birmingham- Southern College, Birmingham, Alabama, USA
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
- Plio-Pleistocene Palaeontology Section, Department of Vertebrates, Ditsong National Museum of Natural History, Pretoria, South Africa
| | - Travis R. Pickering
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
- Plio-Pleistocene Palaeontology Section, Department of Vertebrates, Ditsong National Museum of Natural History, Pretoria, South Africa
- Department of Anthropology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ronald J. Clarke
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Kristian J. Carlson
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, California, USA
| | - Lunga Bam
- South African Nuclear Energy Corporation (Necsa), Pelindaba, South Africa
| | - Luc Van Hoorebeke
- UCGT Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | - Dominic Stratford
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
7
|
Abstract
The earliest South African hominids (humans and their ancestral kin) belong to the genera Australopithecus, Paranthropus, and Homo, with the oldest being a ca. 3.67 million-year-old nearly complete skeleton of Australopithecus (StW 573) from Sterkfontein Caves. This skeleton has provided, for the first time in almost a century of research, the full anatomy of an Australopithecus individual with indisputably associated skull and postcranial bones that give complete limb lengths. The three genera are also found in East Africa, but scholars have disagreed on the taxonomic assignment for some fossils owing to historical preconceptions. Here we focus on the South African representatives to help clarify these debates. The uncovering of the StW 573 skeleton in situ revealed significant clues concerning events that had affected it over time and demonstrated that the associated stalagmite flowstones cannot provide direct dating of the fossil, as they are infillings of voids caused by postdepositional collapse.
Collapse
Affiliation(s)
- Ronald J. Clarke
- Evolutionary Studies Institute, University of the Witwatersrand, WITS 2050 Johannesburg, South Africa
| | - Travis Rayne Pickering
- Evolutionary Studies Institute, University of the Witwatersrand, WITS 2050 Johannesburg, South Africa
- Department of Anthropology, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Jason L. Heaton
- Evolutionary Studies Institute, University of the Witwatersrand, WITS 2050 Johannesburg, South Africa
- Department of Biology, Birmingham-Southern College, Birmingham, Alabama 35254, USA
| | - Kathleen Kuman
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, WITS 2050 Johannesburg, South Africa
| |
Collapse
|
8
|
Bouchet F, Urciuoli A, Beaudet A, Pina M, Moyà-Solà S, Alba DM. Comparative anatomy of the carotid canal in the Miocene small-bodied catarrhine Pliobates cataloniae. J Hum Evol 2021; 161:103073. [PMID: 34628300 DOI: 10.1016/j.jhevol.2021.103073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 01/12/2023]
Abstract
The small-bodied Miocene catarrhine Pliobates cataloniae (11.6 Ma, Spain) displays a mosaic of catarrhine symplesiomorphies and hominoid synapomorphies that hinders deciphering its phylogenetic relationships. Based on cladistic analyses, it has been interpreted as a stem hominoid or as a pliopithecoid. Intriguingly, the carotid canal orientation of Pliobates was originally described as hylobatid-like. The variation in carotid canal morphology among anthropoid clades shown in previous studies suggests that this structure might be phylogenetically informative. However, its potential for phylogenetic reconstruction among extinct catarrhines remains largely unexplored. Here we quantify the orientation, proportions, and course of the carotid canal in Pliobates, extant anthropoids and other Miocene catarrhines (Epipliopithecus, Victoriapithecus, and Ekembo) using three-dimensional morphometric techniques. We also compute phylogenetic signal and reconstruct the ancestral carotid canal course for main anthropoid clades. Our results reveal that carotid canal morphology embeds strong phylogenetic signal but mostly discriminates between platyrrhines and catarrhines, with an extensive overlap among extant catarrhine families. The analyzed extinct taxa display a quite similar carotid canal morphology more closely resembling that of extant catarrhines. Nevertheless, our results for Pliobates highlight some differences compared with the pliopithecid Epipliopithecus, which displays a somewhat more platyrrhine-like morphology. In contrast, Pliobates appears as derived toward the modern catarrhine condition as the stem cercopithecid Victoriapithecus and the stem hominoid Ekembo, which more closely resemble one another. Moreover, Pliobates appears somewhat derived toward the reconstructed ancestral hominoid morphotype, being more similar than other Miocene catarrhines to the condition of great apes and the hylobatid Symphalangus. Overall, our results rule out previously noted similarities in carotid canal morphology between Pliobates and hylobatids, but do not show particular similarities with pliopithecoids either-as opposed to extant and other extinct catarrhines. Additional analyses will be required to clarify the phylogenetic relationships of Pliobates, particularly given its dental similarities with dendropithecids.
Collapse
Affiliation(s)
- Florian Bouchet
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - Alessandro Urciuoli
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Amélie Beaudet
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain; Department of Archaeology, University of Cambridge, The Old Schools, Trinity Lane, Cambridge CB2 1TN, UK; School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein 2000, Johannesburg, South Africa; Department of Anatomy, University of Pretoria, Lynnwood Road, Hatfield 0002, Pretoria, South Africa
| | - Marta Pina
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain; Department of Earth and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, UK
| | - Salvador Moyà-Solà
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys 23, 08010 Barcelona, Spain; Unitat d'Antropologia (Dept. BABVE), Universitat Autònoma de Barcelona, Edifici C, Facultat de Biociències, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - David M Alba
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
9
|
Stratford D, Crompton R. Introduction to special issue StW 573: A 3.67 Ma Australopithecus prometheus skeleton from Sterkfontein Caves, South Africa-An introduction to the special issue. J Hum Evol 2021; 158:103008. [PMID: 33933277 DOI: 10.1016/j.jhevol.2021.103008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Dominic Stratford
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, WITS, Johannesburg, 2050, South Africa.
| | - Robin Crompton
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences, and School of Archaeology, Classics and Egyptology, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
10
|
Carlson KJ, Green DJ, Jashashvili T, Pickering TR, Heaton JL, Beaudet A, Stratford D, Crompton R, Kuman K, Bruxelles L, Clarke RJ. The pectoral girdle of StW 573 ('Little Foot') and its implications for shoulder evolution in the Hominina. J Hum Evol 2021; 158:102983. [PMID: 33888323 DOI: 10.1016/j.jhevol.2021.102983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 10/21/2022]
Abstract
The ca. 3.67 Ma adult skeleton known as 'Little Foot' (StW 573), recovered from Sterkfontein Member 2 breccia in the Silberberg Grotto, is remarkable for its morphology and completeness. Preservation of clavicles and scapulae, including essentially complete right-side elements, offers opportunities to assess morphological and functional aspects of a nearly complete Australopithecus pectoral girdle. Here we describe the StW 573 pectoral girdle and offer quantitative comparisons to those of extant hominoids and selected homininans. The StW 573 pectoral girdle combines features intermediate between those of humans and other apes: a long and curved clavicle, suggesting a relatively dorsally positioned scapula; an enlarged and uniquely proportioned supraspinous fossa; a relatively cranially oriented glenoid fossa; and ape-like reinforcement of the axillary margin by a stout ventral bar. StW 573 scapulae are as follows: smaller than those of some homininans (i.e., KSD-VP-1/1 and KNM-ER 47000A), larger than others (i.e., A.L. 288-1, Sts 7, and MH2), and most similar in size to another australopith from Sterkfontein, StW 431. Moreover, StW 573 and StW 431 exhibit similar structural features along their axillary margins and inferior angles. As the StW 573 pectoral girdle (e.g., scapular configuration) has a greater affinity to that of apes-Gorilla in particular-rather than modern humans, we suggest that the StW 573 morphological pattern appears to reflect adaptations to arboreal behaviors, especially those with the hand positioned above the head, more than human-like manipulatory capabilities. When compared with less complete pectoral girdles from middle/late Miocene apes and that of the penecontemporaneous KSD-VP-1/1 (Australopithecus afarensis), and mindful of consensus views on the adaptiveness of arboreal positional behaviors soliciting abducted glenohumeral joints in early Pliocene taxa, we propose that the StW 573 pectoral girdle is a reasonable model for hypothesizing pectoral girdle configuration of the crown hominin last common ancestor.
Collapse
Affiliation(s)
- Kristian J Carlson
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Johannesburg WITS 2050, South Africa.
| | - David J Green
- Department of Anatomy, Campbell University School of Osteopathic Medicine, Buies Creek, NC 27506, USA; Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Johannesburg WITS 2050, South Africa
| | - Tea Jashashvili
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Geology and Paleontology, Georgian National Museum, Tbilisi 0105, Georgia
| | - Travis R Pickering
- Department of Anthropology, University of Wisconsin, Madison, WI 53706, USA; Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Johannesburg WITS 2050, South Africa; Plio-Pleistocene Palaeontology Section, Department of Vertebrates, Ditsong National Museum, Pretoria 0001, South Africa
| | - Jason L Heaton
- Department of Biology, Birmingham-Southern College, Birmingham, AL 35254, USA; Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Johannesburg WITS 2050, South Africa; Plio-Pleistocene Palaeontology Section, Department of Vertebrates, Ditsong National Museum, Pretoria 0001, South Africa
| | - Amélie Beaudet
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, Johannesburg WITS 2050 South Africa; Department of Anatomy, University of Pretoria, PO Box 2034, Pretoria 0001, South Africa
| | - Dominic Stratford
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, Johannesburg WITS 2050 South Africa
| | - Robin Crompton
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Kathleen Kuman
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, Johannesburg WITS 2050 South Africa
| | - Laurent Bruxelles
- TRACES, UMR 5608 of the French National Centre for Scientific Research, Jean Jaurès University, 31058 Toulouse, France; French National Institute for Preventive Archaeological Researches (INRAP), 30900 Nîmes, France; School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, Johannesburg WITS 2050 South Africa
| | - Ronald J Clarke
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Johannesburg WITS 2050, South Africa
| |
Collapse
|
11
|
Araiza I, Meyer MR, Williams SA. Is ulna curvature in the StW 573 ('Little Foot') Australopithecus natural or pathological? J Hum Evol 2020; 151:102927. [PMID: 33370642 DOI: 10.1016/j.jhevol.2020.102927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Isabella Araiza
- Department of Anthropology, University of California, Riverside, CA, 92521, USA
| | - Marc R Meyer
- Department of Anthropology, Chaffey College, Rancho Cucamonga, CA, 91737, USA.
| | - Scott A Williams
- Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY, 10003, USA; New York Consortium in Evolutionary Primatology, New York, NY, 10024, USA
| |
Collapse
|
12
|
Comparative anatomy and 3D geometric morphometrics of the El Sidrón atlases (C1). J Hum Evol 2020; 149:102897. [PMID: 33137550 DOI: 10.1016/j.jhevol.2020.102897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/28/2022]
Abstract
The first cervical vertebra (atlas, C1) is an important element of the vertebral column because it connects the cranial base with the cervical column, thus helping to maintain head posture and contributing to neck mobility. However, few atlases are preserved in the fossil record because of the fragility of this vertebra. Consequently, only eight well-preserved atlases from adult Neandertals have been recovered and described. Here, we present nine new atlas remains from the El Sidrón Neandertal site (Asturias, Spain), two of which (SD-1643 and SD-1605/1595) are sufficiently well preserved to allow for a detailed comparative and three-dimensional geometric morphometric analysis. We compared standard linear measurements of SD-1643 and SD-1605/1595 with those of other Neandertal atlases and carried out three-dimensional geometric morphometric analyses to compare size and shape of SD-1643 and SD-1605/1595 with those of 28 Pan (Pan troglodytes and Pan paniscus), a broad comparative sample of 55 anatomically modern humans from African and European populations, and other fossil hominins (Neandertals, Homo antecessor, Paranthropus boisei). The El Sidrón atlas fossils show typical features of the Neandertal atlas morphology, such as caudal projection of the anterior tubercle, gracility of both the posterior tubercle and the tuberosity for the insertion of the transverse ligament, and an anteroposteriorly elongated neural canal. Furthermore, when compared with atlases from the other taxa, Neandertals exhibit species-specific features of atlas morphology including a relatively lower lateral mass height, relatively narrower transverse foramina, and flatter and more horizontally oriented articular facets. Some of these features fit with previous suggestions of shorter overall length of the cervical spine and potential differences in craniocervical posture and mobility. Our results may support a different spinopelvic alignment in this species, as the atlas morphology suggests reduced cervical lordosis.
Collapse
|