1
|
Straka TM, Radchuk V, Kowarik I, von der Lippe M, Buchholz S. Urbanization Impacts Top Predators and Alters Biotic Interactions in Predator-Prey-Mutualistic Communities of Urban Dry Grasslands. Ecol Evol 2025; 15:e70791. [PMID: 39803209 PMCID: PMC11724209 DOI: 10.1002/ece3.70791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Urbanization as a major driver of global change modifies biodiversity patterns and the abundance and interactions among species or functional species groups. For example, urbanization can negatively impact both predator-prey and mutualistic relationships. However, empirical studies on how urbanization modifies biotic, particularly multitrophic, interactions are still limited. In this study, we applied a framework focused on a predator-prey-mutualistic relationship involving communities of insect-pollinated vascular plants, pollinators (bees and hoverflies), predatory spiders, and sand lizards as top predators to test (i) the effect of urbanization on abundance and species richness at different trophic levels and (ii) the effect of urbanization on the regulation of biotic interactions using correlations between species abundances as a proxy. By assessing 56 dry grassland patches in Berlin, Germany, we found that higher trophic levels (sand lizard abundance as well as predatory spider species richness and abundance) were significantly impacted by urbanization whereas pollinators were affected to a lesser degree (only abundance, but not species richness). In contrast, insect-pollinated vascular plants were not impacted by urbanization. Path analyses revealed significant relationships in low-urbanized areas. In these areas, we observed significant bottom-up-regulated mutualistic and predator-prey interactions (plants-pollinators, and pollinators-predatory spiders), as well as top-down-regulated predator-prey interactions (sand lizards-pollinators, and predatory spiders-pollinators). In contrast, no significant interactions were found in highly urbanized sites. Our results suggest that bottom-up regulation is stronger than top-down regulation in low-urbanized areas. To our knowledge, this is the first study to examine the effects of urbanization on predator-prey-mutualistic interactions and to determine whether these interactions are regulated by bottom-up or top-down processes. These findings enhance our understanding of multitrophic interactions in urban environments and their associated ecosystem services, such as pollination, thereby supporting efforts in urban biodiversity conservation.
Collapse
Affiliation(s)
- Tanja M. Straka
- Department of EcologyTechnische Universität BerlinBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
- Freie Universität Berlin, Institute of BiologyBerlinGermany
| | - Viktoriia Radchuk
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| | - Ingo Kowarik
- Department of EcologyTechnische Universität BerlinBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Moritz von der Lippe
- Department of EcologyTechnische Universität BerlinBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Sascha Buchholz
- Department of EcologyTechnische Universität BerlinBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
- University of Münster, Institute of Landscape EcologyMünsterGermany
| |
Collapse
|
2
|
Trigos-Peral G, Maák IE, Schmid S, Chudzik P, Czaczkes TJ, Witek M, Casacci LP, Sánchez-García D, Lőrincz Á, Kochanowski M, Heinze J. Urban abiotic stressors drive changes in the foraging activity and colony growth of the black garden ant Lasius niger. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170157. [PMID: 38242447 DOI: 10.1016/j.scitotenv.2024.170157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Changes in habitat characteristics are known to have profound effects on biotic communities and their functional traits. In the context of an urban-rural gradient, urbanisation drastically alters abiotic characteristics, e.g., by increasing environmental temperatures and through light pollution. These abiotic changes significantly impact the functional traits of organisms, particularly insects. Furthermore, changes in habitat characteristics also drive changes in the behavioural traits of animals, allowing them to adapt and thrive in new environments. In our study, we focused on the synanthropic ant species Lasius niger as a model organism. We conducted nocturnal field observations and complemented them with laboratory experiments to investigate the influence of night warming (NW) associated with Urban Heat Islands (UHI), light pollution (ALAN), and habitat type on ant foraging behaviour. In addition, we investigated the influence of elevated temperatures on brood development and worker mortality. Our findings revealed that urban populations of L. niger were generally more active during the night compared to their rural counterparts, although the magnitude of this difference varied with specific city characteristics. In laboratory settings, higher temperatures and continuous illumination were associated with increased activity level in ants, again differing between urban and rural populations. Rural ants exhibited more locomotion compared to their urban counterparts when maintained under identical conditions, which might enable them to forage more effectively in a potentially more challenging environment. High temperatures decreased the developmental time of brood from both habitat types and increased worker mortality, although rural colonies were more strongly affected. Overall, our study provides novel insights into the influence of urban environmental stressors on the foraging activity pattern and colony development of ants. Such stressors can be important for the establishment and spread of synanthropic ant species, including invasive ones, and the biotic homogenization of anthropogenic ecosystems.
Collapse
Affiliation(s)
- G Trigos-Peral
- Museum and Institute of Zoology - Polish Academy of Sciences, Warsaw, Poland.
| | - I E Maák
- Museum and Institute of Zoology - Polish Academy of Sciences, Warsaw, Poland; University of Szeged, Szeged, Hungary
| | - S Schmid
- University of Regensburg, Regensburg, Germany
| | - P Chudzik
- Han University of Applied Sciences, Nijmegen, Netherlands
| | | | - M Witek
- Museum and Institute of Zoology - Polish Academy of Sciences, Warsaw, Poland
| | - L P Casacci
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - D Sánchez-García
- Museum and Institute of Zoology - Polish Academy of Sciences, Warsaw, Poland
| | - Á Lőrincz
- University of Szeged, Szeged, Hungary
| | | | - J Heinze
- University of Regensburg, Regensburg, Germany
| |
Collapse
|
3
|
Tassin de Montaigu C, Goulson D. Factors influencing butterfly and bumblebee richness and abundance in gardens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:167995. [PMID: 37939959 DOI: 10.1016/j.scitotenv.2023.167995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
Gardens are often depicted as green sanctuaries, providing refuges for wildlife displaced from the countryside due to intensive farming. While gardens have been recognized for their positive impact on biodiversity conservation, few studies have investigated the impact of pesticide usage in domestic gardens. In this study, we explored how butterfly and bumblebee populations in gardens across the UK are influenced by habitat quality, urbanisation level and pesticide use. To achieve this, we engaged with participants in Garden BirdWatch, a weekly garden wildlife recording scheme operated by the British Trust for Ornithology. Participants in the study provided data on the attributes of their garden and surrounding area and were asked to complete a questionnaire about their pesticide practices. Of the 417 gardens from which we obtained useful data, we found that 32.6 % had pesticides applied to. Urbanisation and garden quality were the main factors influencing insect populations. Butterfly richness was lower in suburban and urban gardens and butterfly abundance lower only in suburban gardens when compared to rural gardens, but this relationship did not hold for bumblebees. Abundance of butterflies and bumblebees, but not their species richness, increased with the habitat quality of gardens. Butterflies were lower in abundance and richness in more northerly gardens, which was not the case for bumblebees. Effects of pesticides were relatively weak, but butterfly richness was 7 % lower in gardens applying any pesticide. Overall, our study shows that garden butterfly and bumblebee abundance and richness are strongly influenced by both extrinsic and intrinsic factors, and that garden management can have an important positive effect on insect population.
Collapse
Affiliation(s)
- Cannelle Tassin de Montaigu
- School of Life Sciences, Department of Evolution, Behaviour & Environment, University of Sussex, Falmer, East Sussex, United Kingdom.
| | - Dave Goulson
- School of Life Sciences, Department of Evolution, Behaviour & Environment, University of Sussex, Falmer, East Sussex, United Kingdom
| |
Collapse
|
4
|
Lewthwaite JMM, Baiotto TM, Brown BV, Cheung YY, Baker AJ, Lehnen C, McGlynn TP, Shirey V, Gonzalez L, Hartop E, Kerr PH, Wood E, Guzman LM. Drivers of arthropod biodiversity in an urban ecosystem. Sci Rep 2024; 14:390. [PMID: 38172148 PMCID: PMC10764344 DOI: 10.1038/s41598-023-50675-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Our world is becoming increasingly urbanized with a growing human population concentrated around cities. The expansion of urban areas has important consequences for biodiversity, yet the abiotic drivers of biodiversity in urban ecosystems have not been well characterized for the most diverse group of animals on the planet, arthropods. Given their great diversity, comparatively small home ranges, and ability to disperse, arthropods make an excellent model for studying which factors can most accurately predict urban biodiversity. We assessed the effects of (i) topography (distance to natural areas and to ocean) (ii) abiotic factors (mean annual temperature and diurnal range), and (iii) anthropogenic drivers (land value and amount of impervious surface) on the occurrence of six arthropod groups represented in Malaise trap collections run by the BioSCAN project across the Greater Los Angeles Area. We found striking heterogeneity in responses to all factors both within and between taxonomic groups. Diurnal temperature range had a consistently negative effect on occupancy but this effect was only significant in Phoridae. Anthropogenic drivers had mixed though mostly insignificant effects, as some groups and species were most diverse in highly urbanized areas, while other groups showed suppressed diversity. Only Phoridae was significantly affected by land value, where most species were more likely to occur in areas with lower land value. Los Angeles can support high regional arthropod diversity, but spatial community composition is highly dependent on the taxonomic group.
Collapse
Affiliation(s)
- Jayme M M Lewthwaite
- Marine and Environmental Section, Department of Biological Sciences, University of Southern California, Los Angeles, 90089, USA
| | - Teagan M Baiotto
- Marine and Environmental Section, Department of Biological Sciences, University of Southern California, Los Angeles, 90089, USA
| | - Brian V Brown
- Department of Entomology, Natural History Museum of Los Angeles County, Los Angeles, 90007, USA
| | - Yan Yin Cheung
- Marine and Environmental Section, Department of Biological Sciences, University of Southern California, Los Angeles, 90089, USA
| | - Austin J Baker
- Marine and Environmental Section, Department of Biological Sciences, University of Southern California, Los Angeles, 90089, USA
- Department of Entomology, Natural History Museum of Los Angeles County, Los Angeles, 90007, USA
| | - Charles Lehnen
- Marine and Environmental Section, Department of Biological Sciences, University of Southern California, Los Angeles, 90089, USA
- Human Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, 90089, USA
| | - Terrence P McGlynn
- Department of Entomology, Natural History Museum of Los Angeles County, Los Angeles, 90007, USA
- Department of Biology, California State University Dominguez Hills, Carson, 90747, USA
| | - Vaughn Shirey
- Marine and Environmental Section, Department of Biological Sciences, University of Southern California, Los Angeles, 90089, USA
- Department of Biology, Georgetown University, Washington, DC, 20057, USA
| | - Lisa Gonzalez
- Natural History Museum of Los Angeles County, Los Angeles, 90007, USA
| | - Emily Hartop
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde, Berlin, Germany
| | - Peter H Kerr
- California State Collection of Arthropods, CDFA Plant Pest Diagnostics Center, Sacramento, CA, 95832, USA
| | - Eric Wood
- Department of Biological Sciences, California State University Los Angeles, 5151 State University Drive, Los Angeles, 90032, USA
| | - Laura Melissa Guzman
- Marine and Environmental Section, Department of Biological Sciences, University of Southern California, Los Angeles, 90089, USA.
| |
Collapse
|
5
|
Yek SH, Sethu Pathy T, Yeo DYC, Gan JYS. The effects of anthropogenic disturbance and seasonality on the ant communities of Lang Tengah Island. PeerJ 2023; 11:e16157. [PMID: 37868047 PMCID: PMC10590099 DOI: 10.7717/peerj.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/31/2023] [Indexed: 10/24/2023] Open
Abstract
Anthropogenic disturbances and seasonal changes significantly impact diversity and community composition of ants, but their effects are often intertwined. We investigated these drivers on Lang Tengah Island, a location with a pronounced monsoon season and three resorts that close during this period. We surveyed four sites, two disturbed and two undisturbed, before and after the monsoon season, using pitfall traps to sample epigaeic ant communities. Undisturbed habitats had higher species diversity, but both habitats (undisturbed and disturbed sites) have a high proportion of ants with characteristics of being encroached by generalist and invasive/tramp ant species. Post-monsoon sampling yielded an increase in species richness and diversity. Seasonal changes, such as monsoonal rains, can temporarily alter ant interactions and resource distribution, potentially maintaining diversity. Future studies should validate these findings for ant communities under similar pressures, using ant composition and functional roles for conservation and management purposes.
Collapse
Affiliation(s)
- Sze Huei Yek
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
- Institute for Tropical Biology & Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | | | | | | |
Collapse
|
6
|
Hahs AK, Fournier B, Aronson MFJ, Nilon CH, Herrera-Montes A, Salisbury AB, Threlfall CG, Rega-Brodsky CC, Lepczyk CA, La Sorte FA, MacGregor-Fors I, Scott MacIvor J, Jung K, Piana MR, Williams NSG, Knapp S, Vergnes A, Acevedo AA, Gainsbury AM, Rainho A, Hamer AJ, Shwartz A, Voigt CC, Lewanzik D, Lowenstein DM, O'Brien D, Tommasi D, Pineda E, Carpenter ES, Belskaya E, Lövei GL, Makinson JC, Coleman JL, Sadler JP, Shroyer J, Shapiro JT, Baldock KCR, Ksiazek-Mikenas K, Matteson KC, Barrett K, Siles L, Aguirre LF, Armesto LO, Zalewski M, Herrera-Montes MI, Obrist MK, Tonietto RK, Gagné SA, Hinners SJ, Latty T, Surasinghe TD, Sattler T, Magura T, Ulrich W, Elek Z, Castañeda-Oviedo J, Torrado R, Kotze DJ, Moretti M. Urbanisation generates multiple trait syndromes for terrestrial animal taxa worldwide. Nat Commun 2023; 14:4751. [PMID: 37550318 PMCID: PMC10406945 DOI: 10.1038/s41467-023-39746-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/27/2023] [Indexed: 08/09/2023] Open
Abstract
Cities can host significant biological diversity. Yet, urbanisation leads to the loss of habitats, species, and functional groups. Understanding how multiple taxa respond to urbanisation globally is essential to promote and conserve biodiversity in cities. Using a dataset encompassing six terrestrial faunal taxa (amphibians, bats, bees, birds, carabid beetles and reptiles) across 379 cities on 6 continents, we show that urbanisation produces taxon-specific changes in trait composition, with traits related to reproductive strategy showing the strongest response. Our findings suggest that urbanisation results in four trait syndromes (mobile generalists, site specialists, central place foragers, and mobile specialists), with resources associated with reproduction and diet likely driving patterns in traits associated with mobility and body size. Functional diversity measures showed varied responses, leading to shifts in trait space likely driven by critical resource distribution and abundance, and taxon-specific trait syndromes. Maximising opportunities to support taxa with different urban trait syndromes should be pivotal in conservation and management programmes within and among cities. This will reduce the likelihood of biotic homogenisation and helps ensure that urban environments have the capacity to respond to future challenges. These actions are critical to reframe the role of cities in global biodiversity loss.
Collapse
Affiliation(s)
- Amy K Hahs
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Burnley Campus 500 Yarra Blvd, Richmond, 3121 VIC, Australia.
| | - Bertrand Fournier
- Institute of Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| | - Myla F J Aronson
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08816, USA
| | - Charles H Nilon
- School of Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Adriana Herrera-Montes
- Department of Environmental Science, College of Natural Sciences, University of Puerto Rico, San Juan, Puerto Rico
| | | | - Caragh G Threlfall
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | | | - Christopher A Lepczyk
- School of Forestry, Wildlife and Environment, Auburn University, Auburn, AL, 36849, USA
| | - Frank A La Sorte
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| | - Ian MacGregor-Fors
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, FI-15140, Lahti, Finland
| | - J Scott MacIvor
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada
| | - Kirsten Jung
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| | - Max R Piana
- USDA Forest Service, Northern Research Station, Amherst, MA, 01002, USA
| | - Nicholas S G Williams
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Burnley Campus 500 Yarra Blvd, Richmond, 3121 VIC, Australia
| | - Sonja Knapp
- Helmholtz Centre for Environmental Research - UFZ, Department of Community Ecology, Theodor-Lieser-Str. 4, 06120, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
- Technische Universität Berlin, Department of Plant Ecology, Rothenburgstraße 12, 12165, Berlin, Germany
| | - Alan Vergnes
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Aldemar A Acevedo
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Laboratorio de Genética y Evolución, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Alison M Gainsbury
- University of South Florida, St. Petersburg Campus, Department of Integrative Biology, St. Petersburg, FL, 33701, USA
| | - Ana Rainho
- cE3c - Centre for Ecology, Evolution and Environmental Changes at the Dept. of Animal Biology, Faculty of Sciences, Univ. of Lisbon, Lisboa, Portugal
| | - Andrew J Hamer
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina u. 29, 1113, Budapest, Hungary
| | - Assaf Shwartz
- Faculty of Architecture and Town Planning, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Christian C Voigt
- Dept. of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany
| | - Daniel Lewanzik
- Dept. of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany
| | - David M Lowenstein
- Michigan State University Extension, Macomb County, 21885 Dunham Rd - Suite 12, Clinton Twp, MI, 48036, USA
| | - David O'Brien
- Scottish Natural Heritage (NatureScot), Great Glen House, Inverness, IV3 8NW, UK
| | - Desiree Tommasi
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Eduardo Pineda
- Red de Biología y Conservación de Vertebrados. Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351, Xalapa, 91073, Mexico
| | - Ela Sita Carpenter
- U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, 177 Admiral Cochrane Dr, Annapolis, MD, 21401, USA
| | - Elena Belskaya
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Eighth March Street 202, Yekaterinburg, 620144, Russia
| | - Gábor L Lövei
- Department of Agroecology, Aarhus University, Flakkebjerg Research Centre, DK-4200, Slagelse, Denmark
- ELKH-DE Anthropocene Ecology Research Group, University of Debrecen, H-4032, Debrecen, Egyetem square 1, Hungary
| | - James C Makinson
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Joanna L Coleman
- Queens College at the City University of New York, Flushing, NY, USA
| | - Jon P Sadler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jordan Shroyer
- School of Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Julie Teresa Shapiro
- University of Lyon, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory of Lyon, 31 Avenue Tony Garnier, 69364, Lyon Cedex 07, France
| | - Katherine C R Baldock
- Department of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UK
- School of Biological Sciences, University of Bristol, Bristol, UK
- Cabot Institute, University of Bristol, Bristol, UK
| | | | - Kevin C Matteson
- Department of Biology/Project Dragonfly, Miami University, Oxford, OH, USA
| | - Kyle Barrett
- Department of Forestry and Environmental Conservation, Clemson University, 261 Lehotsky Hall, Clemson, SC, 29631, USA
| | - Lizette Siles
- Área de Mastozoología, Museo de Historia Natural Alcide d'Orbigny, Avenida Potosí 1458, Cochabamba, Cochabamba, Bolivia
| | - Luis F Aguirre
- Centro de Biodiversidad y Genética, Universidad Mayor de San Simón, c Sucre, frente Parque La Torre s/n, Cochabamba, Bolivia
| | - Luis Orlando Armesto
- Tecnoacademia, CEDRUM, Servicio Nacional de Aprendizaje (SENA), Cúcuta, Colombia
| | - Marcin Zalewski
- Museum and Institute of Zoology of the Polish Academy of Sciences, Wilcza 64, Warsaw, 00-679, Poland
| | | | - Martin K Obrist
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Biodiversity and Conservation Biology, CH-8903, Birmensdorf, Switzerland
| | - Rebecca K Tonietto
- Department of Natural Sciences, University of Michigan-Flint, 303 E Kearsley St., Flint, MI, 48502, USA
| | - Sara A Gagné
- University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, USA
| | - Sarah J Hinners
- Department of City and Metropolitan Planning, University of Utah, Salt Lake City, UT, USA
| | - Tanya Latty
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Thilina D Surasinghe
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, 02325, USA
| | - Thomas Sattler
- Swiss Ornithological Institute, Seerose 1, CH-6204, Sempach, Switzerland
| | - Tibor Magura
- ELKH-DE Anthropocene Ecology Research Group, University of Debrecen, H-4032, Debrecen, Egyetem square 1, Hungary
- Department of Ecology, Faculty of Science and Technology, University of Debrecen, H-4032, Debrecen, Egyetem square 1., Hungary
| | - Werner Ulrich
- Department of Ecology and Biogeography, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
| | - Zoltan Elek
- Centre for Agricultural Research, Plant Protection Institute, Eötvös Loránd Research Network, Herman Ottó út 15, Budapest, 1022, Hungary
| | | | - Ricardo Torrado
- Secretaría de Educación del Municipio de Cúcuta, Cúcuta, Colombia
| | - D Johan Kotze
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, FI-15140, Lahti, Finland.
| | - Marco Moretti
- Swiss Federal Research Institute WSL, Biodiversity and Conservation Biology, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland.
| |
Collapse
|
7
|
Rivkin LR, de Andrade AC. Increased herbivory but not cyanogenesis is associated with urbanization in a tropical wildflower. AUSTRAL ECOL 2023. [DOI: 10.1111/aec.13274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- L. Ruth Rivkin
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
- Department of Biology University of Toronto Mississauga Toronto Ontario Canada
- Centre for Urban Environments University of Toronto Mississauga Toronto Ontario Canada
| | - Antonio C. de Andrade
- Universidade Federal da Paraiba Departamento de Engenharia e Meio Ambiente Rio Tinto PB Brazil
| |
Collapse
|
8
|
Dung beetles prefer used land over natural greenspace in urban landscape. Sci Rep 2022; 12:22179. [PMID: 36564513 PMCID: PMC9789146 DOI: 10.1038/s41598-022-26841-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Urbanization drives land-use and patterns of biodiversity. Yet, very little is known about how biodiversity of structurally different habitats is responded to urbanization. We surveyed coprophagous dung beetles and their ecological functional groups-tunnellers, dwellers, and rollers-in shaded natural semi-evergreen forests of sacred groves and the neighbouring relatively open home gardens of sites that represent three levels of urbanization to address the following questions: (1) Do sacred groves have higher abundance, richness, and diversity of dung beetles than home gardens? (2) Is urbanization a key driver of dung beetle abundance, richness, diversity, and community? (3) Is dung beetle assemblage of sacred groves immune to urbanization? and (4) Which ecological functional groups of dung beetles are affected by urbanization? We hypothesized that the sacred groves have a distinct community, resulting in higher abundance, richness, and diversity of dung beetles than home gardens, and the dung beetle assemblage of sacred groves may be immune to urbanization. We sampled the beetles during wet and dry periods using cow dung as a bait. Against our predictions, dung beetle abundance, richness, and diversity were higher in used lands than sacred groves, particularly in urban landscapes. The two habitats had distinct compositions of dung beetles. Tunnellers and rollers were affected by urbanization, but not dwellers. Heliophilic and synanthropic species characterized by smaller species dominated overall catches in the used lands of urban areas. Results downplay sacred grove as a potential refuge for dung beetles and suggest that the biodiversity of native forests may be affected more by urbanization than the manipulated anthropogenic habitats.
Collapse
|
9
|
Ong TW, Lin BB, Lucatero A, Cohen H, Bichier P, Egerer MH, Danieu A, Jha S, Philpott SM, Liere H. Rarity begets rarity: Social and environmental drivers of rare organisms in cities. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2708. [PMID: 35810452 PMCID: PMC10078586 DOI: 10.1002/eap.2708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/22/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Cities are sometimes characterized as homogenous with species assemblages composed of abundant, generalist species having similar ecological functions. Under this assumption, rare species, or species observed infrequently, would have especially high conservation value in cities for their potential to increase functional diversity. Management to increase the number of rare species in cities could be an important conservation strategy in a rapidly urbanizing world. However, most studies of species rarity define rarity in relatively pristine environments where human management and disturbance is minimized. We know little about what species are rare, how many species are rare, and what management practices promote rare species in urban environments. Here, we identified which plants and species of birds and bees that control pests and pollinate crops are rare in urban gardens and assessed how social, biophysical factors, and cross-taxonomic comparisons influence rare species richness. We found overwhelming numbers of rare species, with more than 50% of plants observed classified as rare. Our results highlight the importance of women, older individuals, and gardeners who live closer to garden sites in increasing the number of rare plants within urban areas. Fewer rare plants were found in older gardens and gardens with more bare soil. There were more rare bird species in larger gardens and more rare bee species for which canopy cover was higher. We also found that in some cases, rarity begets rarity, with positive correlations found between the number of rare plants and bee species and between bee and bird species. Overall, our results suggest that urban gardens include a high number of species existing at low frequency and that social and biophysical factors promoting rare, planned biodiversity can cascade down to promote rare, associated biodiversity.
Collapse
Affiliation(s)
- Theresa W. Ong
- Department of Environmental Studies, Ecology, Evolution, Environment & Society Graduate ProgramDartmouth CollegeHanoverNew HampshireUSA
| | - Brenda B. Lin
- CSIRO Land and Water FlagshipBrisbaneQueenslandAustralia
| | - Azucena Lucatero
- Environmental Studies DepartmentUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Hamutahl Cohen
- Institute for Food and Agricultural SciencesUniversity of Florida, Collier Extension ServiceNaplesFloridaUSA
| | - Peter Bichier
- Environmental Studies DepartmentUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Monika H. Egerer
- Department of Life Science SystemsSchool of Life Sciences, Technische Universität MünchenFreisingGermany
| | - Alana Danieu
- Department of Environmental Studies, Ecology, Evolution, Environment & Society Graduate ProgramDartmouth CollegeHanoverNew HampshireUSA
| | - Shalene Jha
- Integrative Biology DepartmentUniversity of Texas at AustinAustinTexasUSA
| | - Stacy M. Philpott
- Environmental Studies DepartmentUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Heidi Liere
- Environmental Studies DepartmentSeattle UniversitySeattleWashingtonUSA
| |
Collapse
|
10
|
Miles LS, Murray‐Stoker D, Nhan VJ, Johnson MTJ. Effects of urbanization on specialist insect communities of milkweed are mediated by spatial and temporal variation. Ecosphere 2022. [DOI: 10.1002/ecs2.4222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Lindsay S. Miles
- Department of Biology University of Toronto Mississauga Mississauga Ontario Canada
- Centre for Urban Environments, University of Toronto Mississauga Mississauga Ontario Canada
| | - David Murray‐Stoker
- Department of Biology University of Toronto Mississauga Mississauga Ontario Canada
- Centre for Urban Environments, University of Toronto Mississauga Mississauga Ontario Canada
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
| | - Vanessa J. Nhan
- Department of Biology University of Toronto Mississauga Mississauga Ontario Canada
| | - Marc T. J. Johnson
- Department of Biology University of Toronto Mississauga Mississauga Ontario Canada
- Centre for Urban Environments, University of Toronto Mississauga Mississauga Ontario Canada
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
| |
Collapse
|
11
|
Korányi D, Egerer M, Rusch A, Szabó B, Batáry P. Urbanization hampers biological control of insect pests: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155396. [PMID: 35460770 DOI: 10.1016/j.scitotenv.2022.155396] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/25/2022] [Accepted: 04/15/2022] [Indexed: 05/25/2023]
Abstract
Biological control is a major ecosystem service provided by pest natural enemies, even in densely populated areas where the use of pesticides poses severe risks to human and environmental health. However, the impact of urbanization on this service and the abundance patterns of relevant functional groups of arthropods (herbivores, predators, and parasitoids) remain contested. Here, we synthesize current evidence through three hierarchical meta-analyses and show that advancing urbanization leads to outbreaks of sap-feeding insects, declining numbers of predators with low dispersal abilities, and weakened overall biological pest control delivered by arthropods. Our results suggest that sedentary predators may have the potential to effectively regulate sap-feeders, that are one of the most important pests in urban environments. A well-connected network of structurally diverse and rich green spaces with less intensive management practices is needed to promote natural plant protection in urban landscapes and sustainable cities.
Collapse
Affiliation(s)
- Dávid Korányi
- Centre for Ecological Research, Institute of Ecology and Botany, "Lendület" Landscape and Conservation Ecology, Alkotmány u. 2-4, 2163 Vácrátót, Hungary.
| | - Monika Egerer
- Technische Universität München, Department of Life Science Systems, School of Life Sciences, Hans Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Adrien Rusch
- INRAE, UMR 1065 Santé et Agroécologie du Vignoble, ISVV, Université de Bordeaux, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | - Borbála Szabó
- Centre for Ecological Research, Institute of Ecology and Botany, "Lendület" Landscape and Conservation Ecology, Alkotmány u. 2-4, 2163 Vácrátót, Hungary
| | - Péter Batáry
- Centre for Ecological Research, Institute of Ecology and Botany, "Lendület" Landscape and Conservation Ecology, Alkotmány u. 2-4, 2163 Vácrátót, Hungary
| |
Collapse
|
12
|
Theodorou P. The effects of urbanisation on ecological interactions. CURRENT OPINION IN INSECT SCIENCE 2022; 52:100922. [PMID: 35490874 DOI: 10.1016/j.cois.2022.100922] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/10/2022] [Accepted: 04/10/2022] [Indexed: 05/25/2023]
Abstract
Cities are expanding worldwide and urbanisation is considered a global threat to biodiversity. Urban ecology has provided important insights on how urban environmental changes might affect individuals, populations, and species; however, we know little about how the ecological impacts of urbanisation alter species interactions. Species interactions are the backbone of ecological communities and play a crucial role in population and community dynamics and in the generation, maintenance and structure of biodiversity. Here, I review urban ecological studies to identify key mechanistic pathways through which urban environmental processes could alter antagonistic and mutualistic interactions among species. More specifically, I focus on insect predation, parasitoidism and herbivory, competition, insect host-pathogen interactions, and pollination. I furthermore identify important knowledge gaps that require additional research attention and I suggest future research directions that may help to shed light on the mechanisms that affect species interactions and structure insect communities and will thus aid conservation management in cities.
Collapse
Affiliation(s)
- Panagiotis Theodorou
- General Zoology, Institute for Biology, Martin-Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany.
| |
Collapse
|
13
|
de Sandozequi A, Salazar-Cortés JJ, Tapia-Vázquez I, Martínez-Anaya C. Prevalent association with the bacterial cell envelope of prokaryotic expansins revealed by bioinformatics analysis. Protein Sci 2022; 31:e4315. [PMID: 35481628 PMCID: PMC9045087 DOI: 10.1002/pro.4315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/10/2022]
Abstract
Expansins are a group of proteins from diverse organisms from bacteria to plants. Although expansins show structural conservation, their biological roles seem to differ among kingdoms. In plants, these proteins remodel the cell wall during plant growth and other processes. Contrarily, determination of bacterial expansin activity has proven difficult, although genetic evidence of bacterial mutants indicates that expansins participate in bacteria-plant interactions. Nevertheless, a large proportion of expansin genes are found in the genomes of free-living bacteria, suggesting roles that are independent of the interaction with living plants. Here, we analyzed all available sequences of prokaryotic expansins for correlations between surface electric charge, extra protein modules, and sequence motifs for association with the bacteria exterior after export. Additionally, information on the fate of protein after translocation across the membrane also points to bacterial cell association of expansins through six different mechanisms, such as attachment of a lipid molecule for membrane anchoring in diderm species or covalent linking to the peptidoglycan layer in monoderms such as the Bacilliales. Our results have implications for expansin function in the context of bacteria-plant interactions and also for free-living species in which expansins might affect cell-cell or cell-substrate interaction properties and indicate the need to re-examine the roles currently considered for these proteins.
Collapse
Affiliation(s)
- Andrés de Sandozequi
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, Mexico
| | - Juan José Salazar-Cortés
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, Mexico
| | - Irán Tapia-Vázquez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, Mexico
| | - Claudia Martínez-Anaya
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, Mexico
| |
Collapse
|
14
|
Qu J, Bonte D, Vandegehuchte ML. Phenotypic and genotypic divergence of plant‐herbivore interactions along an urbanization gradient. Evol Appl 2022; 15:865-877. [PMID: 35603025 PMCID: PMC9108311 DOI: 10.1111/eva.13376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022] Open
Abstract
Urban environments provide challenging conditions for species survival, including increased temperatures, drought and pollution. Species can deal with these conditions through evolution across generations or the immediate expression of phenotypic plasticity. The resulting phenotypic changes are key to the performance of species and their interactions with other species in the community. We here document patterns of herbivory in Arabidopsis thaliana along a rural–urban gradient, and tested the genetic background and ecological consequences of traits related to herbivore resistance. Aphid densities increased with urbanization levels along the gradient while plant size did not change. Offspring of urban mothers, raised under common garden conditions, were larger and had a decreased trichome density and seed set but a higher caterpillar (Pieris brassicae) tolerance. In contrast, no urban evolution was detected for defences against aphids (Myzus persicae). Aphids reduced seed set more strongly in urban offspring, but this effect disappeared in second‐generation plants. In general, urban adaptations as expressed in size and caterpillar tolerance were found, but these adaptations were associated with smaller inflorescences. The maternal effect on the response of seed set to aphid feeding demonstrates the relevance of intergenerational plasticity as a direct ecological consequence of herbivory. Our study demonstrates that the urban environment interacts with the plant's genotype and the extended phenotype as determined by ecological interactions.
Collapse
Affiliation(s)
- Jiao Qu
- Lushan Botanical Garden Chinese Academy of Sciences Jiujiang 332900 Jiangxi China
- Terrestrial Ecology Unit Department of Biology Ghent University Karel Lodewijk Ledeganckstraat 35 9000 Ghent Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit Department of Biology Ghent University Karel Lodewijk Ledeganckstraat 35 9000 Ghent Belgium
| | - Martijn L. Vandegehuchte
- Terrestrial Ecology Unit Department of Biology Ghent University Karel Lodewijk Ledeganckstraat 35 9000 Ghent Belgium
- Department of Biology Norwegian University of Science and Technology Høgskoleringen 5 7491 Trondheim Norway
| |
Collapse
|
15
|
Cronin AD, Smit JAH, Muñoz MI, Poirier A, Moran PA, Jerem P, Halfwerk W. A comprehensive overview of the effects of urbanisation on sexual selection and sexual traits. Biol Rev Camb Philos Soc 2022; 97:1325-1345. [PMID: 35262266 PMCID: PMC9541148 DOI: 10.1111/brv.12845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/18/2022]
Abstract
Urbanisation can affect mating opportunities and thereby alter inter- and intra-sexual selection pressures on sexual traits. Biotic and abiotic urban conditions can influence an individual's success in pre- and post-copulatory mating, for example through impacts on mate attraction and mate preference, fertilisation success, resource competition or rival interactions. Divergent sexual selection pressures can lead to differences in behavioural, physiological, morphological or life-history traits between urban and non-urban populations, ultimately driving adaptation and speciation. Most studies on urban sexual selection and mating interactions report differences between urban and non-urban populations or correlations between sexual traits and factors associated with increased urbanisation, such as pollution, food availability and risk of predation and parasitism. Here we review the literature on sexual selection and sexual traits in relation to urbanisation or urban-associated conditions. We provide an extensive list of abiotic and biotic factors that can influence processes involved in mating interactions, such as signal production and transmission, mate choice and mating opportunities. We discuss all relevant data through the lens of two, non-mutually exclusive theories on sexual selection, namely indicator and sensory models. Where possible, we indicate whether these models provide the same or different predictions regarding urban-adapted sexual signals and describe different experimental designs that can be useful for the different models as well as to investigate the drivers of sexual selection. We argue that we lack a good understanding of: (i) the factors driving urban sexual selection; (ii) whether reported changes in traits result in adaptive benefits; and (iii) whether these changes reflect a short-term ecological, or long-term evolutionary response. We highlight that urbanisation provides a unique opportunity to study the process and outcomes of sexual selection, but that this requires a highly integrative approach combining experimental and observational work.
Collapse
Affiliation(s)
- Andrew D Cronin
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Judith A H Smit
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Matías I Muñoz
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Armand Poirier
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Peter A Moran
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Paul Jerem
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Wouter Halfwerk
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| |
Collapse
|
16
|
Abdel-Dayem MS, Sharaf MR, Majer JD, Al-Sadoon MK, Aldawood AS, Aldhafer HM, Orabi GM. Ant diversity and composition patterns along the urbanization gradients in an arid city. J NAT HIST 2022. [DOI: 10.1080/00222933.2021.2003461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mahmoud S. Abdel-Dayem
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mostafa R. Sharaf
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jonathan D. Majer
- School of Biological Sciences, University of Western Australia, Perth, Australia
| | - Mohammed K. Al-Sadoon
- Department of Zoology, College of Science, King Saud University Riyadh, Riyadh, Saudi Arabia
| | - Abdulrahman S. Aldawood
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hathal M. Aldhafer
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Gamal M. Orabi
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
17
|
Srisakrapikoop U, Pirie TJ, Fellowes MDE. Urbanization and plant pathogen infection interact to affect the outcome of ecological interactions in an experimental multitrophic system. JOURNAL OF URBAN ECOLOGY 2022. [DOI: 10.1093/jue/juab039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Urbanization can change interactions in insect communities, and the few studies of tritrophic interactions in urban settings focus on interactions between plants, herbivorous insects and their mutualists and natural enemies. Plant pathogen infection is also widespread and common, and infection may also alter such interactions, but we have no understanding of whether the ecological consequences of pathogen infection vary with urbanization. Using replicated aphid colonies on experimental plants, we investigated how infection by the plant pathogen Botrytis cinerea influences interactions between plants, aphids and the aphid natural enemies and ant mutualists in highly urbanized, suburban and rural study sites. Aphid and natural enemy abundance were highest in the suburban site, while mutualist ants were most abundant in the urban site, reversing the usual positive density-dependent relationship between natural enemies and aphids. The effect of pathogen infection varied with trait and site, mediated by natural enemy preference for hosts or prey on uninfected plants. The effect of infection on aphid abundance was only seen in the suburban site, where natural enemies were most abundant on uninfected plants and aphid numbers were greatest on infected plants. In the urban site, there was no effect of infection, while in the rural site, aphid numbers were lower on infected plants. Uninfected plants were smaller than infected plants and differed between locations. This study suggests that the effects of urbanization on ecological interactions may become more complex and difficult to predict as we study ecological assemblages and communities at greater levels of structural complexity.
Collapse
Affiliation(s)
- Ussawit Srisakrapikoop
- People and Wildlife Research Group, School of Biological Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6AS, UK
| | - Tara J Pirie
- People and Wildlife Research Group, School of Biological Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6AS, UK
| | - Mark D E Fellowes
- People and Wildlife Research Group, School of Biological Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6AS, UK
| |
Collapse
|
18
|
Marschalek DA, Deutschman DH. Differing insect communities and reduced decomposition rates suggest compromised ecosystem functioning in urban preserves of southern California. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2021.e01996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
19
|
Pinto J, Magni PA, O’Brien RC, Dadour IR. Domestic Filth Flies in New Haven, Connecticut: A Case Study on the Effects of Urbanization and Climate Change by Comparing Fly Populations after 78 Years. INSECTS 2021; 12:insects12110972. [PMID: 34821773 PMCID: PMC8623608 DOI: 10.3390/insects12110972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/04/2022]
Abstract
Simple Summary Domestic filth fly population data were collected in the summers of 1942–1944 in the urban city of New Haven, Connecticut, during a polio epidemic. The current survey was completed 78 years later by setting out a weekly trap in the same region during June–September over a two-year period. Results indicate that the fly population has changed in the city, with 16 fewer species trapped overall, and there have been changes in the fly species trapped. Some species have increased in abundance, notably Lucilia coeruleiviridis, while numbers of the common Lucilia sericata have decreased, and Lucilia illustris was absent. Changes in land cover and climate were also assessed to show that the trap site has experienced significant habitat change, together with an increase in the average temperature and rainfall. Fly numbers were significantly affected by temperature and rainfall in both the 1940s and the current survey. The results of this study suggest the prolonged period of urbanization of the region is influencing the domestic filth fly population. Abstract Changes in common and widespread insect populations such as the domestic filth fly in urban cities are useful and relevant bioindicators for overall changes in the insect biomass. The current study surveyed necrophagous flies by placing a weekly trap from June–September over a two-year period in the city of New Haven, Connecticut, to compare data on fly abundance and diversity with data collected 78 years earlier. Climate and land cover changes were also assessed in combination with the fly population for each period. The survey results suggest the domestic filth fly population is now less diverse with decreased species richness and changes in the relative abundance of species. In both surveys, 95–96% of the population was composed of only three species. The current survey data indicate the numerical dominance of Lucilia sericata has decreased, the abundance of several species, notably Lucilia coeruleiviridis, has increased, and Lucilia illustris is absent. Species that showed a significant interaction with temperature in the 1940s survey have now increased in abundance, with several of the trapped species continuing to show an interaction with temperature and rainfall. Analysis of the land cover and climate data characterizes the trap site as a region exposed to a prolonged period of industrialization and urbanization, with only 7% of the land cover remaining undeveloped and over 50% impervious, coupled with an increase in temperature and rainfall. This study serves as a model for changes in domestic filth fly populations and other insects in similarly highly urbanized established cities.
Collapse
Affiliation(s)
- Julie Pinto
- Discipline of Medical, Molecular & Forensic Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia;
- Correspondence:
| | - Paola A. Magni
- Discipline of Medical, Molecular & Forensic Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia;
- Murdoch University Singapore, King’s Centre, 390 Havelock Road, Singapore 169662, Singapore
| | - R. Christopher O’Brien
- Criminal Justice and Forensic Sciences Department, Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA;
| | - Ian R. Dadour
- Source Certain International Pty Ltd., P.O. Box 1570, Wangara DC, WA 6947, Australia;
| |
Collapse
|
20
|
Baardsen LF, De Bruyn L, Adriaensen F, Elst J, Strubbe D, Heylen D, Matthysen E. No overall effect of urbanization on nest-dwelling arthropods of great tits (Parus major). Urban Ecosyst 2021. [DOI: 10.1007/s11252-020-01082-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Urbanization alters the abundance and composition of predator communities and leads to aphid outbreaks on urban trees. Urban Ecosyst 2020. [DOI: 10.1007/s11252-020-01061-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractUrbanization can affect arthropod abundance in different ways. While species with narrow habitat range and low dispersal ability often respond negatively to urban environments, many habitat generalist species with good dispersal ability reach high densities in city centers. This filtering effect of urban habitats can strongly influence predator-prey-mutualist interactions and may therefore affect the abundance of predatory and phytophagous species both directly and indirectly. Here, we assessed the effect of urbanization on aphids, predatory arthropods, and ants on field maple (Acer campestre) trees in and around the city of Budapest, Hungary. We used the percentage of impervious surfaces within a 500 m radius of each site as an index of the degree of urbanization. We found that the abundance of aphids increased with increasing level of urbanization. However, abundance of predatory arthropods and occurrence of poorly dispersing species within the predator community were negatively related to urbanization, and we identified these two independent factors as significant predictors of aphid abundances. The abundance of ants decreased with urbanization, and contrary to our expectations, did not affect the abundance pattern of aphids. Our results suggest that urbanization, by altering the abundance and composition of predator communities, can disrupt biological control of aphid populations, and thus may contribute to the aphid outbreaks on urban trees.
Collapse
|
22
|
Amprako L, Stenchly K, Wiehle M, Nyarko G, Buerkert A. Arthropod Communities in Urban Agricultural Production Systems under Different Irrigation Sources in the Northern Region of Ghana. INSECTS 2020; 11:insects11080488. [PMID: 32752151 PMCID: PMC7469155 DOI: 10.3390/insects11080488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/24/2020] [Accepted: 07/27/2020] [Indexed: 12/02/2022]
Abstract
Urban and peri-urban agricultural (UPA) production systems in West African countries do not only mitigate food and financial insecurity, they may also foster biodiversity of arthropods and partly compensate for structural losses of natural environments. However, management practices in UPA systems like irrigation may also contribute to disturbances in arthropod ecology. To fill knowledge gaps in the relationships between UPA management and arthropod populations, we compared arthropods species across different irrigation sources in Tamale. During a 72-h sampling period, 14,226 arthropods were caught with pitfall traps and pan traps from 36 fields. These specimens comprised 13 orders, 103 families, 264 genera, and 329 taxa (243 identified species, 86 unidentified species) and categorized into five feeding guilds (carnivores, decomposers, herbivores, omnivores, and pollinators). Species richness, species accumulation curves, and diversity functions (richness, evenness, and dispersion) were calculated to characterize the arthropod community. Non-metric multidimensional scaling was applied to examine structural similarity of arthropod communities among sites. To account for the effects of soil-related data, we furthermore applied a redundancy analysis. Arthropods grouped according to the irrigation water source, whereby the dipterans were most dominant under wastewater conditions. Here, particularly the eye gnat, Hippelates pusio, a disease-causing vector for humans, accounted for the dipterans. The occurrence of three alien ant species suggested community shifts through invasive species, while the occurrence of seven ant species (at least one ant species occurred under each water source) that form mutualistic relationships with aphids highlighted future risks of aphid pest outbreak. Future studies on these taxa should specifically target their ecological and economic effects and potential countermeasures.
Collapse
Affiliation(s)
- Louis Amprako
- Organic Plant Production and Agroecosystems Research in the Tropics and Subtropics (OPATS), University of Kassel, Steinstrasse 19, D-37213 Witzenhausen, Germany; (L.A.); (K.S.); (A.B.)
| | - Kathrin Stenchly
- Organic Plant Production and Agroecosystems Research in the Tropics and Subtropics (OPATS), University of Kassel, Steinstrasse 19, D-37213 Witzenhausen, Germany; (L.A.); (K.S.); (A.B.)
- Competence Centre for Climate Change Mitigation and Adaptation (CliMA), University of Kassel, Kurt-Schumacher-Straße 25, D-34117 Kassel, Germany
- Grassland Science and Renewable Plant Resources (GNR), University of Kassel, Steinstrasse 19, D-37213 Witzenhausen, Germany
| | - Martin Wiehle
- Organic Plant Production and Agroecosystems Research in the Tropics and Subtropics (OPATS), University of Kassel, Steinstrasse 19, D-37213 Witzenhausen, Germany; (L.A.); (K.S.); (A.B.)
- Tropenzentrum-Centre for International Rural Development, University of Kassel, Steinstrasse 19, D-37213 Witzenhausen, Germany
- International Center for Development and Decent Work, University of Kassel, Kleine Rosenstrasse 1-3, D-34109 Kassel, Germany
- Correspondence:
| | - George Nyarko
- Department of Horticulture, Faculty of Agriculture, University for Development Studies (UDS), P.O. Box TL 1882, Tamale, Ghana;
| | - Andreas Buerkert
- Organic Plant Production and Agroecosystems Research in the Tropics and Subtropics (OPATS), University of Kassel, Steinstrasse 19, D-37213 Witzenhausen, Germany; (L.A.); (K.S.); (A.B.)
| |
Collapse
|
23
|
Map-A-Mole: Greenspace Area Influences the Presence and Abundance of the European Mole Talpa europaea in Urban Habitats. Animals (Basel) 2020; 10:ani10061097. [PMID: 32630423 PMCID: PMC7341262 DOI: 10.3390/ani10061097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/03/2022] Open
Abstract
Simple Summary The European mole is a burrowing mammal which is widely distributed across Britain and much of continental Europe. Its presence is readily confirmed by the presence of molehills, which contain the spoil heaps left behind as the mole digs its underground tunnels. Despite being easy to record, there are very few studies of moles in an urban environment. We asked how area of greenspace (largely parks, recreation areas, nature reserves and playing fields), distance to the nearest patch, human disturbance, how long the green patch had been isolated for, and degree of urban construction around the patch affected mole presence and abundance. We found that patch size affected mole presence, with a minimum greenspace of approximately 10 ha required. Where moles were found, larger patches had more signs of moles and surprisingly, mole abundance was also associated with the degree of urban construction around the greenspace. This result shows how urban planning can affect the presence of unusual species, such as the European mole. Abstract The European mole Talpa europaea is common across much of Britain. It has a unique fossorial lifestyle, and evidence of its presence is readily identified through the presence of characteristic molehills. Although molehills are often a common sight in urban greenspaces, moles are remarkably understudied, with very few studies to date exploring the urban ecology of moles. Here, we investigate if factors such as greenspace (largely urban parks and playing fields) area, intensity of management, distance to nearest patch, amount of time the patch had been isolated from other green patches, and the amount of urbanization (constructed surfaces) surrounding the patch, influence the distribution and abundance of urban moles. Mole signs (hills and surface runs) were counted in all discrete urban greenspaces (excluding domestic gardens and one private golf course) within an 89.5 km2 area in the UK town of Reading. We found that 17 out of 59 surveyed sites contained moles, with their presence being recorded in greenspaces with a minimum patch area of approximately 0.1 km2 (10 ha). Where present, the abundance of mole territories in the greenspaces was associated with both the area of greenspace and degree of urbanization within 150 m of the patch boundary. While the former was not surprising, the latter outcome may be a consequence of sites with an increased risk of flooding being home to fewer moles, and the surrounding area is also less likely to be built upon. This case study highlights how choices made in designing urban green infrastructure will determine which species survive in urban areas long into the future.
Collapse
|