1
|
Avery K, Chen X. Integration of bioprinting advances and biomechanical strategies for in vitrolung modelling. Biofabrication 2024; 17:012006. [PMID: 39536463 DOI: 10.1088/1758-5090/ad91e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
The recent occurrence of the Covid-19 pandemic and frequent wildfires have worsened pulmonary diseases and raised the urgent need for investigating host-pathogen interactions and advancing drug and vaccine therapies. Historically, research and experimental studies have relied on two-dimensional cell culture dishes and/or animal models, which suffer from physiological differences from the human lung. More recently, there has been investigation into the use of lung-on-a-chip models and organoids, while the use of bioprinting technologies has also emerged to fabricate three-dimensional constructs or lung models with enhanced physiological relevance. Concurrently, achievements have also been made to develop biomimetic strategies for simulating thein vivobiomechanical conditions induced by lung breathing, though challenges remain with incorporating these strategies with bioprinted models. Bioprinted models combined with advanced biomimetic strategies would represent a promising approach to advance disease discovery and therapeutic development. As inspired, this article briefly reviews the recent progress of both bioprintedin vitrolung models and biomechanical strategies, with a focus on native lung tissue microstructure and biomechanical properties, bioprinted constructs, and biomimetic strategies to mimic the native environment. This article also urges that the integration of bioprinting advances and biomimetic strategies would be essential to achieve synergistic effects forin vitrolung modelling. Key issues and challenges are also identified and discussed along with recommendations for future research.
Collapse
Affiliation(s)
- Kathryn Avery
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
2
|
Gustin P, Prasad A. EnduroBone: A 3D printed bioreactor for extended bone tissue culture. HARDWAREX 2024; 18:e00535. [PMID: 38690152 PMCID: PMC11059325 DOI: 10.1016/j.ohx.2024.e00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/01/2024] [Accepted: 04/13/2024] [Indexed: 05/02/2024]
Abstract
Studies of the effects of external stimuli on bone tissue, disease transmission mechanisms, and potential medication discoveries benefit from long-term tissue viability ex vivo. By simulating the in-vivo environment, bioreactors are essential for studying bone cellular activity throughout biological processes. We present the development of an automated 3D-printed bioreactor EnduroBone designed to sustain the ex-vivo viability of 10 mm diameter cancellous bone cores for an extended period. The device is supplied with two critical parameters for maintaining bone tissue viability: closed-loop continuous flow perfusion of 1 mL/min for nutrient diffusion and waste removal and direct mechanical stimulation with cyclic compression at 13.2 RPM (revolutions per minute) to promote cell viability which can lead to improved tissue stability during ex vivo culturing. The bioreactor addresses several limitations of existing systems and provides a versatile open-source platform for bone cancer research, orthopedic device testing, and other related applications. To validate the bioreactor, fresh swine samples were cultured ex-vivo, and their cell viability was determined to be maintained for up to 28 days. Periodic cell viability assessment through live/dead cell staining and confocal imaging at the start (0 days) and at several time points throughout the culture period (7, 14, 21, and 28 days) was used to demonstrate EnduroBone effectiveness in sustaining bone cell health for the extended period tested.
Collapse
Affiliation(s)
- Paula Gustin
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Anamika Prasad
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL, United States
- Biologcial Science Institute, Florida International University, Miami, FL, United States
| |
Collapse
|
3
|
Cross-Najafi AA, Farag K, Chen AM, Smith LJ, Zhang W, Li P, Ekser B. The Long Road to Develop Custom-built Livers: Current Status of 3D Liver Bioprinting. Transplantation 2024; 108:357-368. [PMID: 37322580 PMCID: PMC10724374 DOI: 10.1097/tp.0000000000004668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although liver transplantation is the gold-standard therapy for end-stage liver disease, the shortage of suitable organs results in only 25% of waitlisted patients undergoing transplants. Three-dimensional (3D) bioprinting is an emerging technology and a potential solution for personalized medicine applications. This review highlights existing 3D bioprinting technologies of liver tissues, current anatomical and physiological limitations to 3D bioprinting of a whole liver, and recent progress bringing this innovation closer to clinical use. We reviewed updated literature across multiple facets in 3D bioprinting, comparing laser, inkjet, and extrusion-based printing modalities, scaffolded versus scaffold-free systems, development of an oxygenated bioreactor, and challenges in establishing long-term viability of hepatic parenchyma and incorporating structurally and functionally robust vasculature and biliary systems. Advancements in liver organoid models have also increased their complexity and utility for liver disease modeling, pharmacologic testing, and regenerative medicine. Recent developments in 3D bioprinting techniques have improved the speed, anatomical, and physiological accuracy, and viability of 3D-bioprinted liver tissues. Optimization focusing on 3D bioprinting of the vascular system and bile duct has improved both the structural and functional accuracy of these models, which will be critical in the successful expansion of 3D-bioprinted liver tissues toward transplantable organs. With further dedicated research, patients with end-stage liver disease may soon be recipients of customized 3D-bioprinted livers, reducing or eliminating the need for immunosuppressive regimens.
Collapse
Affiliation(s)
- Arthur A. Cross-Najafi
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kristine Farag
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Angela M. Chen
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lester J. Smith
- Department of Radiology and Imaging Sciences, Indiana University of School of Medicine, Indianapolis, IN, USA
- 3D Bioprinting Core, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wenjun Zhang
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ping Li
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
4
|
Rodriguez BV, Wen Y, Shirk EN, Vazquez S, Gololobova O, Maxwell A, Plunkard J, Castell N, Carlson B, Queen SE, Izzi JM, Driedonks TAP, Witwer KW. An ex vivo model of interactions between extracellular vesicles and peripheral mononuclear blood cells in whole blood. J Extracell Vesicles 2023; 12:e12368. [PMID: 38047476 PMCID: PMC10694845 DOI: 10.1002/jev2.12368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/25/2023] [Accepted: 09/13/2023] [Indexed: 12/05/2023] Open
Abstract
Extracellular vesicles (EVs) can be loaded with therapeutic cargo and engineered for retention by specific body sites; therefore, they have great potential for targeted delivery of biomolecules to treat diseases. However, the pharmacokinetics and biodistribution of EVs in large animals remain relatively unknown, especially in primates. We recently reported that when cell culture-derived EVs are administered intravenously to Macaca nemestrina (pig-tailed macaques), they differentially associate with specific subsets of peripheral blood mononuclear cells (PBMCs). More than 60% of CD20+ B cells were observed to associate with EVs for up to 1 h post-intravenous administration. To investigate these associations further, we developed an ex vivo model of whole blood collected from healthy pig-tailed macaques. Using this ex vivo system, we found that labelled EVs preferentially associate with B cells in whole blood at levels similar to those detected in vivo. This study demonstrates that ex vivo blood can be used to study EV-blood cell interactions.
Collapse
Affiliation(s)
- Blanca V. Rodriguez
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Yi Wen
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Erin N. Shirk
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Samuel Vazquez
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Olesia Gololobova
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Amanda Maxwell
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jessica Plunkard
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Natalie Castell
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Bess Carlson
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Suzanne E. Queen
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jessica M. Izzi
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Tom A. P. Driedonks
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- University Medical CenterUtrecht UniversityUtrechtThe Netherlands
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
5
|
Sacco AM, Castaldo C, Di Meglio FD, Nurzynska D, Palermi S, Spera R, Gnasso R, Zinno G, Romano V, Belviso I. The Long and Winding Road to Cardiac Regeneration. APPLIED SCIENCES 2023; 13:9432. [DOI: 10.3390/app13169432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Cardiac regeneration is a critical endeavor in the treatment of heart diseases, aimed at repairing and enhancing the structure and function of damaged myocardium. This review offers a comprehensive overview of current advancements and strategies in cardiac regeneration, with a specific focus on regenerative medicine and tissue engineering-based approaches. Stem cell-based therapies, which involve the utilization of adult stem cells and pluripotent stem cells hold immense potential for replenishing lost cardiomyocytes and facilitating cardiac tissue repair and regeneration. Tissue engineering also plays a prominent role employing synthetic or natural biomaterials, engineering cardiac patches and grafts with suitable properties, and fabricating upscale bioreactors to create functional constructs for cardiac recovery. These constructs can be transplanted into the heart to provide mechanical support and facilitate tissue healing. Additionally, the production of organoids and chips that accurately replicate the structure and function of the whole organ is an area of extensive research. Despite significant progress, several challenges persist in the field of cardiac regeneration. These include enhancing cell survival and engraftment, achieving proper vascularization, and ensuring the long-term functionality of engineered constructs. Overcoming these obstacles and offering effective therapies to restore cardiac function could improve the quality of life for individuals with heart diseases.
Collapse
Affiliation(s)
- Anna Maria Sacco
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Clotilde Castaldo
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Franca Di Di Meglio
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Daria Nurzynska
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy
| | - Stefano Palermi
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Rocco Spera
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Rossana Gnasso
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Giorgio Zinno
- Department of Clinical and Surgical Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Veronica Romano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Immacolata Belviso
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
6
|
|